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Cosmological concordance model

Concordance model of modern cosmology emerged recently with many cosmological
parameters constrained to high precision.

General description is of a Universe undergoing accelerated expansion, containing 4%
ordinary baryonic matter, 22% cold dark matter and 74% dark energy.

Structure and evolution of the Universe constrained through cosmological observations.

Credit: WMAP Science Team
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Cosmic microwave background (CMB)

Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

Compton scattering happened frequently⇒ mean free
path of photons extremely small.

Universe consisted of an opaque photon-baryon fluid.

As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

Recombination occurred when temperature of Universe
dropped to 3000K (∼400,000 years after the Big Bang).

Credit: Max Tegmark

Photons then free to propagate largely unhindered and observed today on celestial
sphere as CMB radiation.

CMB is highly uniform over the celestial sphere, however it contains small fluctuations
at a relative level of 10−5 due to acoustic oscillations in the early Universe.

CMB observed on spherical manifold, hence the geometry of the sphere must be
taken into account in any analysis.
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Cosmic microwave background (CMB)

Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

Provide the seeds of structure formation in our Universe.

Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

Credit: WMAP Science Team

Although a general cosmological concordance model is now established, many details remain
unclear. Study of more exotic cosmological models now important.
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Observations of the CMB

Full-sky observations of the CMB ongoing.

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

Figure: Full-sky CMB observations

Each new experiment provides dramatic improvement in precision and resolution of
observations (e.g. COBE to WMAP illustration).

Credit: WMAP Science Team

Jason McEwen Wavelets on the sphere and cosmological applications



Cosmology Wavelets Multiresolution analysis Summary The big bang Cosmic microwave background Observations

Observations of the CMB
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(cobe 2 wmap movie)

Credit: WMAP Science Team
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Recall wavelet transform in Euclidean space

Project signal onto wavelets

W f
(a, b) = 〈f , ψa,b〉 = |a|−1/2

Z ∞
−∞

dt f (t) ψ∗
“ t − b

a

”
,

where ψa,b = |a|−1/2ψ( t−b
a ).

Synthesis signal from wavelet coefficients

f (t) = C−1
ψ

Z ∞
−∞

db
Z ∞

0

da
a2
W f

(a, b)ψa,b(t).

Admissibility condition to ensure perfect reconstruction

0 < Cψ ≡
Z ∞
−∞

dk
|k|
|ψ̂(k)|2 <∞.

Construct on sphere in analogous manner.
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Wavelets on the sphere

Follow construction derived by Antoine and Vandergheynst (1998) [1]
(reintroduced by Wiaux (2005) [8]).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Characterised by the
elements of the rotation group SO(3), which parameterise in terms of the three Euler angles
ρ = (α, β, γ). Rotation of a function f on the sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ρ ∈ SO(3) .

How define dilation and admissible wavelets on the sphere?
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Stereographic projection

Apply stereographic projection to build an association with
the plane.

Stereographic projection operator is defined by
Π : ω → x = Πω = (r(θ), φ) where r = 2 tan(θ/2),
ω ≡ (θ, φ) ∈ S2 and x ∈ R2 is a point in the plane,
denoted here by the polar coordinates (r, φ). The inverse
operator is Π−1 : x→ ω = Π−1x = (θ(r), φ), where
θ(r) = 2 tan−1(r/2).

PSfrag replacements

x

y

z

r = 2 tan( θ
2
)

θ

φ

θ
2

ω

x

North pole

South pole

Define the action of the stereographic projection operator on functions on the plane
and sphere. Consider the space of square integrable functions in L2(R2, d2x) on the
plane and L2(S2, dΩ(ω)) on the sphere.

The action of the stereographic projection operator
Π : f ∈ L2(S2, dΩ(ω))→ p = Πf ∈ L2(R2, d2x) on functions is defined as

p(r, φ) = (Πf )(r, φ) = (1 + r2
/4)
−1f (θ(r), φ) .

The inverse stereographic projection operator
Π−1 : p ∈ L2(R2, d2x)→ f = Π−1p ∈ L2(S2, dΩ(ω)) on functions is then

f (θ, φ) = (Π
−1p)(θ, φ) = [1 + tan2

(θ/2)]p(r(θ), φ) .
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Dilation on the sphere

The spherical dilation operator D(a) : f (ω)→ [D(a)f ](ω) in L2(S2, dΩ(ω)) is defined as the
conjugation by Π of the Euclidean dilation d(a) in L2(R2, d2x) on tangent plane at north pole:

D(a) ≡ Π
−1 d(a) Π .

Spherical dilation given by

[D(a)f ](ω) = [λ(a, θ, φ)]
1/2 f (ω1/a) ,

where ωa = (θa, φ) and tan(θa/2) = a tan(θ/2).

Cocycle of a spherical dilation is defined by

λ(a, θ, φ) ≡
4a2

[(a2 − 1) cos θ + (a2 + 1)]2 .

Jason McEwen Wavelets on the sphere and cosmological applications
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Wavelet analysis formula

Wavelets on the sphere may now be constructed from rotations and dilations of a mother
spherical wavelet ψ ∈ L2(S2, dΩ(ω)). The corresponding wavelet family
{ψa,ρ ≡ R(ρ)D(a)ψ : ρ ∈ SO(3), a ∈ R+

∗ } provides an over-complete set of functions in
L2(S2, dΩ(ω)).

The CSWT of f ∈ L2(S2, dΩ(ω)) is given by the projection on to each wavelet atom in the
usual manner:

W f
(a, ρ) = 〈f , ψa,ρ〉 =

Z
S2

dΩ(ω) f (ω) ψ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dφ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see [9])
Factoring of rotations: JDM et al. 2007 [4]
Separation of variables: Wiaux et al. 2005 [10]
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Wavelet synthesis formula

The synthesis of a signal on the sphere from its wavelet coefficients is given by

f (ω) =

Z ∞
0

da
a3

Z
SO(3)

d%(ρ)W f
(a, ρ) [R(ρ)bLψψa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

The bLψ operator in L2(S2, dΩ(ω)) is defined by the action

(bLψg)
`m ≡ g`m/bC`ψ

on the spherical harmonic coefficients of functions g ∈ L2(S2, dΩ(ω)).

In order to ensure the perfect reconstruction of a signal synthesised from its wavelet
coefficients, the admissibility condition

0 < bC`ψ ≡ 8π2

2`+ 1

X̀
m=−`

Z ∞
0

da
a3
| (ψa)`m |

2
<∞

must be satisfied for all ` ∈ N, where (ψa)`m are the spherical harmonic coefficients of ψa(ω).
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Correspondence principle

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005 [8].)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

ψ = Π
−1
ψR2 ,

where ψR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Gaussianity of the CMB

Statistics of primordial fluctuations provide a useful mechanism for distinguishing between
various scenarios of the early Universe, such as various models of inflation.

Primordial fluctuations give rise to the CMB anisotropies.

In the simplest inflationary scenarios, primordial perturbations seed Gaussian temperature
fluctuations in the CMB.

However, this is not the case for non-standard inflationary models.

Evidence of non-Gaussianity in the CMB anisotropies would therefore have profound
implications for the standard cosmological concordance model.

Probe WMAP observations of the CMB for evidence of non-Gaussianity.
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Wavelet analysis of Gaussianity of the CMB

Various physical processes manifest at different scales and locations, hence employ wavelet
analysis to probe CMB.

Wavelet coefficients of Gaussian signal remain Gaussian distributed (due to linearity of
wavelet transform).

Examine the skewness and kurtosis of wavelet coefficients.

Compare to Monte Carlo simulations of Gaussian CMB realisations.

Significant non-Gaussian signal detected in the skewness of wavelet coefficients.

Figure: Skewness of wavelet coefficients
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Localisation of non-Gaussian features in the CMB

Localise regions that contribute most significantly to the non-Gaussian signal.

Detection of the “cold spot” anomaly in the CMB.

Various new cosmology models constructed in attempt to explain the cold spot.

(a) SMHW coefficients

(b) SMW coefficients

Figure: Spherical wavelet coefficient maps (left) and thresholded maps (right)
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Various new cosmology models constructed in attempt to explain the cold spot.

(a) SMHW coefficients

(b) SMW coefficients

Figure: Spherical wavelet coefficient maps (left) and thresholded maps (right)
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Dark energy

Universe consists of ordinary baryonic matter, cold dark
matter and dark energy.

Dark energy represents energy density of empty space.
Modelled by a cosmological fluid with negative pressure
acting as a repulsive force.

Evidence for dark energy provided by observations of
CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

However, a consistent model in the framework of particle physics lacking. Indeed, attempts to
predict a cosmological constant obtain a value that is too large by a factor of ∼ 10120.

Dark energy dominates our Universe but yet we know very little about its nature and origin.

Verification of dark energy by independent physical methods of considerable interest.

Independent methods may also prove more sensitive probes of properties of dark energy.

Jason McEwen Wavelets on the sphere and cosmological applications



Cosmology Wavelets Multiresolution analysis Summary Wavelets on the sphere Gaussianity of the CMB Dark energy

Dark energy

Universe consists of ordinary baryonic matter, cold dark
matter and dark energy.

Dark energy represents energy density of empty space.
Modelled by a cosmological fluid with negative pressure
acting as a repulsive force.

Evidence for dark energy provided by observations of
CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

However, a consistent model in the framework of particle physics lacking. Indeed, attempts to
predict a cosmological constant obtain a value that is too large by a factor of ∼ 10120.

Dark energy dominates our Universe but yet we know very little about its nature and origin.

Verification of dark energy by independent physical methods of considerable interest.

Independent methods may also prove more sensitive probes of properties of dark energy.

Jason McEwen Wavelets on the sphere and cosmological applications



Cosmology Wavelets Multiresolution analysis Summary Wavelets on the sphere Gaussianity of the CMB Dark energy

Dark energy

Universe consists of ordinary baryonic matter, cold dark
matter and dark energy.

Dark energy represents energy density of empty space.
Modelled by a cosmological fluid with negative pressure
acting as a repulsive force.

Evidence for dark energy provided by observations of
CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

However, a consistent model in the framework of particle physics lacking. Indeed, attempts to
predict a cosmological constant obtain a value that is too large by a factor of ∼ 10120.

Dark energy dominates our Universe but yet we know very little about its nature and origin.

Verification of dark energy by independent physical methods of considerable interest.

Independent methods may also prove more sensitive probes of properties of dark energy.

Jason McEwen Wavelets on the sphere and cosmological applications



Cosmology Wavelets Multiresolution analysis Summary Wavelets on the sphere Gaussianity of the CMB Dark energy

Integrated Sachs-Wolfe (ISW) effect

(ball sim constant movie) (ball sim evolving movie)

Figure: ISW effect analogy

CMB photons blue (red) shifted when fall into (out of) potential wells.

Evolution of potential during photon propagation→ net change in photon energy.

Gravitation potentials constant w.r.t. conformal time in matter dominated universe.

Deviation from matter domination due to curvature or dark energy causes potentials to evolve
with time→ secondary anisotropy induced in CMB.
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Detecting the ISW effect

WMAP shown universe is (nearly) flat.

Detection of ISW effect⇒ direct evidence for dark energy.

Cannot isolate the ISW signal from CMB anisotropies easily.

Instead, detect by cross-correlating CMB anisotropies with tracers of large scale structure.
(Crittenden & Turok 1996 [2])

Wavelets ideal analysis tool to search for correlation induced by ISW effect since signal
manifest at different scales and locations.
(Pioneered by Vielva et al. 2005 [7], followed by JDM et al. 2006 [5], JDM et al. 2007 [6] and others.)

Compute correlation of WMAP and NVSS radio galaxy survey and compare to Monte Carlo
simulations to determine significance of any candidate detections.

(a) WMAP (b) NVSS

Figure: WMAP and NVSS maps after application of the joint mask
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Detection of the ISW effect with wavelets

Significant correlation detected between the WMAP and NVSS data.

Foreground contamination and instrumental systematics ruled out as source of the correlation
⇒ correlation due to ISW effect.

Direct observational evidence for dark energy.
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Figure: Wavelet correlation
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Constraining dark energy with wavelets

Possible to use positive detection of the ISW effect to constrain parameters of cosmological
models that describe dark energy:

Proportional energy density ΩΛ.
Equation of state parameter w relating pressure and density of cosmological fluid that models dark
energy, i.e. p = wρ.

Parameter estimates of ΩΛ = 0.63+0.18
−0.17 and w = −0.77+0.35

−0.36 computed from the mean of the
marginalised distributions (consistent with other analysis techniques and data sets).
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Figure: Dark energy likelihoods
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Multiresolution analysis on the sphere

Define multiresolution analysis on the sphere in an analogous manner to Euclidean
framework.

Define approximation spaces on the sphere Vj ⊂ L2(S2)

Construct the nested hierarchy of approximation spaces

V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ L2
(S2

) ,

where coarser (finer) approximation spaces correspond to a lower (higher) resolution level j.

For each space Vj we define a basis with basis elements given by the scaling functions
ϕj,k ∈ Vj, where the k index corresponds to a translation on the sphere.

Define detail space Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj+1 = Vj ⊕ Wj.

For each space Wj we define a basis with basis elements given by the wavelets ψj,k ∈ Wj.

Expanding the hierarchy of approximation spaces:

VJ = V1 ⊕
J−1M
j=1

Wj .
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Hierarchical pixelisation of the sphere

Relate generic multiresolution decomposition to HEALPix hierarchical pixelisation of the
sphere [3].

Credit: Krzysztof Gorski
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Haar wavelets on the sphere

Let Vj correspond to a HEALPix pixelised sphere with resolution parameter Nside = 2j−1.

Define the scaling function ϕj,k at level j to be constant for pixel k and zero elsewhere:

ϕj,k(ω) ≡
(

1/
p

Aj ω ∈ Pj,k

0 elsewhere .

Orthonormal basis for the wavelet space Wj given by the following wavelets:

ψ
0
j,k(ω) ≡

ˆ
ϕj+1,k0 (ω)− ϕj+1,k1 (ω) + ϕj+1,k2 (ω)− ϕj+1,k3 (ω)

˜
/2 ;

ψ
1
j,k(ω) ≡

ˆ
ϕj+1,k0 (ω) + ϕj+1,k1 (ω)− ϕj+1,k2 (ω)− ϕj+1,k3 (ω)

˜
/2 ;

ψ
2
j,k(ω) ≡

ˆ
ϕj+1,k0 (ω)− ϕj+1,k1 (ω)− ϕj+1,k2 (ω) + ϕj+1,k3 (ω)

˜
/2 .

Figure: Haar scaling function ϕj,k(ω) and wavelets ψm
j,k(ω)
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Haar wavelets on the sphere

Multiresolution decomposition of a function
defined on a HEALPix data-sphere at
resolution J, i.e. fJ ∈ VJ proceeds as follows.

Approximation coefficients at the coarser
level j are given by the projection of fj+1 onto
the scaling functions ϕj,k :

λj,k =

Z
S2

fj+1(ω) ϕj,k(ω) dΩ .

Detail coefficients at level j are given by the
projection of fj+1 onto the wavelets ψm

j,k :

γ
m
j,k =

Z
S2

fj+1(ω) ψ
m
j,k(ω) dΩ .

Figure: Haar multiresolution decomposition

The function fJ ∈ VJ may then be synthesised from its approximation and detail coefficients:

fJ(ω) =

NJ0
−1X

k=0

λJ0kϕJ0k(ω) +

J−1X
j=J0

Nj−1X
k=0

2X
m=0

γ
m
j,kψ

m
j,k(ω) .
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Compression of data on the sphere

Current and forthcoming observations of the CMB of
considerable size.

Haar wavelet transform to compress energy content.

Lossless compression algorithm

1 Haar wavelet transform on sphere
2 Quantise detail coefficients to numerical precision

(precision parameter p)
3 Huffman encoding

Lossy compression algorithm

1 Haar wavelet transform on sphere
2 Thresholding
3 Quantise detail coefficients to numerical precision
4 Run-length encoding (RLE)
5 Huffman encoding
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Figure: Histograms
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Compression of CMB data

Lossless to a user specified numerical precision only.

(a) Original for Nside = 512 (13MB) (b) Compressed for Nside = 512 (2.5MB)

(c) Original for Nside = 1024 (50MB) (d) Compressed for Nside = 1024 (9.1MB)

Figure: Lossless compression of simulated Gaussian CMB data
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Lossy compression applications

(a) Earth: original (13MB) (b) Galileo: original (3.2MB) (c) St Peter’s: original (3.2MB) (d) Uffizi: original (3.2MB)

(e) Earth: lossless (1.4MB) (f) Galileo: lossless (0.21MB) (g) St Peter’s: lossless (0.20MB) (h) Uffizi: lossless (0.19MB)

(i) Earth: lossy (0.33MB) (j) Galileo: lossy (0.07MB) (k) St Peter’s: lossy (0.08MB) (l) Uffizi: lossy (0.10MB)

Figure: Compressed data for lossy compression applications
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Summary

Wavelet analyses have many applications in physics and allow one to probe physical
processes manifest on different scales and locations.

Data are often defined on manifolds other than Euclidean space, such as the sphere, which
motivate novel wavelet transforms.

Observations of the CMB are inherently made on the celestial sphere due to the original
singularity and subsequent expansion of the Universe.

Analyses of the CMB have lead to a cosmological concordance model, however many exotic
details still to be resolved.

Wavelet analyses of the CMB have been used to detect non-Gaussianity in the CMB,
suggesting deviations from standard cosmological model, and to detect and constrain dark
energy.

Continuous wavelet analyses on the sphere allow one to probe physical processes but
discrete frameworks required to reconstruct signals on the sphere
→ opens door to new class of physical problem.

Student projects (see http://lts2www.epfl.ch/Main/StudentProjects):

Denoising and deconvolution on the sphere with application to cosmology and computer
vision.
Compressed sensing techniques for radio interferometric imaging on wide fields of view.

Jason McEwen Wavelets on the sphere and cosmological applications
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details still to be resolved.

Wavelet analyses of the CMB have been used to detect non-Gaussianity in the CMB,
suggesting deviations from standard cosmological model, and to detect and constrain dark
energy.

Continuous wavelet analyses on the sphere allow one to probe physical processes but
discrete frameworks required to reconstruct signals on the sphere
→ opens door to new class of physical problem.

Student projects (see http://lts2www.epfl.ch/Main/StudentProjects):

Denoising and deconvolution on the sphere with application to cosmology and computer
vision.
Compressed sensing techniques for radio interferometric imaging on wide fields of view.
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