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Motivation

@ Large data-sets measured or defined inherently on the sphere arise in many applications
(e.g. computer graphics, planetary science, geophysics, quantum chemistry, astrophysics).

@ Current and forthcoming observations of the CMB of considerable size.
WMAP: 3 mega-pixel maps; Planck: 50 mega-pixel maps

@ Efficient and accurate compression of data on the sphere becoming increasingly important for
both dissemination and storage of data.

@ Compression on the sphere considered previously
(notably by Schroder & Sweldens 1995 [4] for an icosahedron pixelisation of the sphere).

@ We are motivated by the requirement for a compression algorithm defined on a constant
latitude pixelisation and a publicly available implementation.
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Haar wavelets on the sphere

@ Wavelets on the sphere
e Continuous wavelets
e.g. Antoine & Vandergheynst 1998 [1], Wiaux et al. 2005 [6]

o Discrete/discretised wavelets
e.g. Schroder & Sweldens 1995 [4], Barreio et al. 2000 [2], McEwen & Eyers 2008 [3],

Starck et al. 2006 [5], Wiaux et al. 2007 [7]
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@ Wavelets on the sphere

e Continuous wavelets
e.g. Antoine & Vandergheynst 1998 [1], Wiaux et al. 2005 [6]

o Discrete/discretised wavelets
e.g. Schroder & Sweldens 1995 [4], Barreio et al. 2000 [2], McEwen & Eyers 2008 [3],
Starck et al. 2006 [5], Wiaux et al. 2007 [7]
@ Define approximation spaces on the sphere V; C L*(S?)
@ Construct the nested hierarchy of approximation spaces
VicV,C---CV,CcL¥SY),
where coarser (finer) approximation spaces correspond to a lower (higher) resolution level ;.

@ For each space V; we define a basis with basis elements given by the scaling functions
®j.x € V;, where the k index corresponds to a translation on the sphere.
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@ Wavelets on the sphere

e Continuous wavelets
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o Discrete/discretised wavelets
e.g. Schroder & Sweldens 1995 [4], Barreio et al. 2000 [2], McEwen & Eyers 2008 [3],
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@ Define approximation spaces on the sphere V; C L*(S?)
@ Construct the nested hierarchy of approximation spaces
VicV,C---CV,CcL¥SY),
where coarser (finer) approximation spaces correspond to a lower (higher) resolution level ;.

@ For each space V; we define a basis with basis elements given by the scaling functions
®j.x € V;, where the k index corresponds to a translation on the sphere.

@ Define detail space W; to be the orthogonal complement of V; in V1, i.e. Viyy =V, @ W,.
@ For each space W; we define a basis with basis elements given by the wavelets ¥; ; € W;.

@ Expanding the hierarchy of approximation spaces:

—1
VJ:VI@@VV/-
j=1
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Haar wavelets on the sphere

@ Relate generic multiresolution decomposition to HEALPix pixelisation.
@ Let V; correspond to a HEALPIx pixelised sphere with resolution parameter Ngjq. = 21
@ Define the scaling function ¢; « at level j to be constant for pixel k and zero elsewhere:

:{1/\//‘17/ w € Pjx
10

ik(w) elsewhere .

@ Orthonormal basis for the wavelet space W; given by the following wavelets:
P (@) = [D141,40 (@) — @itk (@) F Gtk (W) — Bt kg (w)] /255
P (W) = [0,k (@) + @ig1 sy (W) = Gttty (@) — Pt iy (w)] /25
P (W) = [0,k (@) — @ity (W) = Gty (@) + Pt iy (w)] /2

Level j +1 Level j

0 1
W04 (w) v

Figure: Haar scaling function ¢; ; (w) and wavelets Y (w)
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Haar wavelets on the sphere

@ Multiresolution decomposition of a function
defined on a HEALPIx data-sphere at
resolution J, i.e. f; € V; proceeds as follows.

R
S,
SRR
SRS

Level J

@ Approximation coefficients at the coarser
level j are given by the projection of fj; onto
the scaling functions ¢; x:

Level J - 1

Ak = /ngf-%-l(‘*’) pjr(w) dQ .

@ Detail coefficients at level j are given by the
projection of fi+, onto the wavelets 7" /

Po= [ 1) vi(w) a2

Figure: Haar multiresolution decomposition

@ The function f; € V; may then be synthesised from its approximation and detail coefficients:

Ny =1 J—1N—1

@) = 37 Ageprgr(@) + 35T S Al (w) -
k=0

j=Jy k=0 m=0
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Compression algorithms

@ Haar wavelet transform to compress energy content.

(a) Original data
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(b) Wavelet coefficients

Figure: Histograms
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@ Haar wavelet transform to compress energy content.

@ Lossless compression

Lossless compression algorithm

@ Haar wavelet transform on sphere

@ Quantise detail coefficients to numerical precision
(precision parameter p)

© Huffman encoding

(a) Original data
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@ Haar wavelet transform to compress energy content.

@ Lossless compression

Lossless compression algorithm

@ Haar wavelet transform on sphere

@ Quantise detail coefficients to numerical precision
(precision parameter p)

© Huffman encoding

@ Lossy compression

@ Controlled degradation to quality of original data allows higher
compression ratios.

@ Discard detail coefficients close to zero.

Lossy compression algorithm

@ Haar wavelet transform on sphere

@ Thresholding

© Quantise detail coefficients to numerical precision
@ Run-length encoding (RLE)

@ Huffman encoding

(a) Original data

(b) Wavelet coefficients

Figure: Histograms
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Compression of CMB data: compression performance

@ Lossless to a user specified numerical precision only.

C) Compression performance fol

(a) Original for Ngjq. = 512 (13MB) (b) Compressed for N4, = 512 (2.5MB)
N, = 512

side

(e) Compressed for N4, = 1024 (9.1MB) (f) Compression performance for
Ngge = 1024

(d) Original for Ng;q. = 1024 (50MB)

Figure: Lossless compression of simulated Gaussian CMB data
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Compression of CMB data: cosmological information content

£

T

(a) Cp spectra (p = 5)

b) Absolute error (p = 5)

T

(d) € spectra (p = 4) (e) Absolute error (p = 4) (f) Relative error (p = 4)

i

(9) Cp spectra (p = 3) (h) Absolute error (p = 3) (i) Relative error (p = 3)

Figure: Reconstructed angular power spectrum of compressed CMB data
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Lossy compression applications

(c) St Peter's: original (3.2MB) (d) Uffizi: original (3.2MB)

(g) StPeter's: lossless (0.20MB) (h) Uffizi: lossless (0.19MB)

(i) Earth: lossy (0.33MB) (j) Galileo: lossy (0.07MB) (k) St Peter’s: lossy (0.08MB) (I) Uffizi: lossy (0.10MB)

Figure: Compressed data for lossy compression applications
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Lossy compression applications

(a) Earth: lossless (b) Galileo: lossless (c) St Peters: lossless (d) Uffizi: lossless

(e) Earth: lossy (f) Galileo: lossy (g) St Peter’s: lossy

Figure: Compression performance for lossy compression applications
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Summary

@ Developed algorithms to perform lossless and lossy compression of data defined on the
sphere.

@ Performance evaluated on various data and trade-off between compression ratio and fidelity
of decompressed data examined.

@ Compress CMB data to approximately 40% of its original size, while ensuring that essentially
no cosmological information content is lost. Compress to below 20% if small loss of
cosmological information content is tolerated.

@ For lossy compression of Earth topography and environmental illumination data compression
ratios of 40:1 (~2-3%) can be achieved for a relative error of ~5%.
@ Future improvements:

@ Other invertible wavelet transforms on the sphere
(e.g. scale discretised wavelets of Wiaux et al. 2007 [7])

@ More sophisticated lossy compression algorithms
e Optimise storage of encoding tables

@ Implementation will be made available publicly very soon.
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