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Cosmic strings

Symmetry breaking phase transitions in the early Universe→ topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken→ line-like discontinuities in the fabric of the Universe.

Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Cosmic strings are distinct to the fundamental
superstrings of string theory.

However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. Credit:
Chuang et al. (1991).
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Observational signatures of cosmic strings

Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).

Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins
1984).

The amplitude of the induced contribution scales with Gµ,
the string tension.

Figure: Spacetime around a cosmic string.
Credit: Kaiser & Stebbins 1984, DAMTP.
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Observational signatures of cosmic strings

Make contact between theory and data using high-resolution simulations.

High-resolution full-sky simulations created by Christophe Ringeval.

5

FIG. 1: String-induced CMB temperature fluctuations on a 7.2 degree field with a (unrealistic) resolution of ✓res = 0.420

(1024 pixels). The upper left image shows the fluctuations induced in between the last scattering surface and the redshift
z = 36, while the upper right map represents the anisotropies produced by strings between z = 36 and z = 0.3. Due to their
cosmological scaling, most of the long strings intercept our past-light cone close to the last scattering surface. The overall
string-induced fluctuations are plotted in the bottom left panel. As can be seen in the bottom right image, the edges in the
temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions
corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these spots are
associated with ⇥ > 80 GU and saturate the color-map (see Sec. III).

(or long) strings, defined as strings larger than the hori-
zon size, because they rapidly reach the scaling regime.
Although it has been shown in Ref. [28] that the cosmic
string loop distribution scales as well, the relaxation time
for the loops to reach such a self-similar evolution with
respect to the horizon size appears to be larger for smaller
loops. As a result, and this is inherent to all cosmic string
numerical simulations, the smaller length scales in a nu-

merical string network keep some memory of the initial
network configuration until they reach their stable cos-
mological evolution (see also Refs. [27, 59]). Note that
even if this memory e↵ect is physical, one does not expect
a physical string network at the last scattering surface to
still exhibit structures coming from its initial configura-
tion at the GUT energy scale. The change in scale factor
between the GUT redshift and the last scattering surface

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.

(a) CMB (b) CMB with embedded string

Figure: CMB simulation with string contribution (Gµ = 5 × 10−7) embedded .
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Why wavelets?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (credit: http://www.wavelet.org/tutorial/)

http://www.wavelet.org/tutorial/
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Wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting (image from http://www.wavelet.org/tutorial/)

http://www.wavelet.org/tutorial/
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Continuous wavelets on the sphere

First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ω = (θ, ϕ) ∈ S2

, ρ = (α, β, γ) ∈ SO(3) .

How define dilation on the sphere?

The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection Π:

D(a) ≡ Π
−1 d(a) Π .
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Figure: Stereographic projection.
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Continuous wavelets on the sphere

Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet Φ:

{Φa,ρ ≡ R(ρ)D(a)Φ : ρ ∈ SO(3), a ∈ R+
∗ }.

The forward wavelet transform is given by

W f
Φ(a, ρ) = 〈f ,Φa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Φ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Fast algorithms essential (for a review see Wiaux, JDM & Vielva 2007)
Factoring of rotations: JDM et al. (2007), Wandelt & Gorski (2001)
Separation of variables: Wiaux et al. (2005)

The inverse wavelet transform given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)W f
Φ(a, ρ) [R(ρ)L̂ΦΦa](ω) ,

provided wavelets satisfy an admissibility property.

BUT...

exact reconstruction not feasible in practice!
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Scale-discretised wavelets on the sphere

Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code publicly available from: http://www.jasonmcewen.org/

1 2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

j=0
j=1 j=2 j=3 j=4 j=5

ℓ

Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.
Following JDM et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ̂`m = K̃Ψ(`)SΨ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Ψ(α

J
`) +

J∑
j=0

K̃2
Ψ(α

j
`) = 1.

http://www.jasonmcewen.org/


Cosmic strings Wavelets on the sphere String tension estimation

Scale-discretised wavelets on the sphere

Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code publicly available from: http://www.jasonmcewen.org/

1 2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

j=0
j=1 j=2 j=3 j=4 j=5

ℓ

Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.
Following JDM et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ̂`m = K̃Ψ(`)SΨ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Ψ(α

J
`) +

J∑
j=0

K̃2
Ψ(α

j
`) = 1.

http://www.jasonmcewen.org/


Cosmic strings Wavelets on the sphere String tension estimation

Scale-discretised wavelets on the sphere

Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code publicly available from: http://www.jasonmcewen.org/

1 2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

j=0
j=1 j=2 j=3 j=4 j=5

ℓ

Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.
Following JDM et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ̂`m = K̃Ψ(`)SΨ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Ψ(α

J
`) +

J∑
j=0

K̃2
Ψ(α

j
`) = 1.

http://www.jasonmcewen.org/


Cosmic strings Wavelets on the sphere String tension estimation

Scale-discretised wavelets

Figure: Spherical scale-discretised wavelets.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W f
Ψ(ρ, α

j
) = 〈f ,Ψρ,αj 〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
ρ,αj (ω) .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (ω) =
[
ΦαJ f

]
(ω) +

J∑
j=0

∫
SO(3)

d%(ρ) W f
Ψ

(
ρ, α

j
) [

R (ρ) Ld
Ψαj

]
(ω) .
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Motivation for using wavelets to detect cosmic strings

Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, JDM et al. 2008), where we
denote the wavelet coefficients of the data d by

Wd
jρ = 〈d, Ψjρ〉 for scale j ∈ Z+ and position

ρ ∈ SO(3).

Consider an even azimuthal band-limit N = 4 to
yield wavelet with odd azimuthal symmetry.

Figure: Example wavelet.

Wavelet transform yields a sparse representation of the string signal→ hope to effectively separate
the CMB and string signal in wavelet space.
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Learning the statistics of the CMB and string signals in wavelet space

Need to determine statistical description of the CMB and string signals in wavelet space.

Calculate analytically the probability distribution of the CMB in wavelet space:

Pc
j (Wc

jρ) =
1√

2π(σc
j )

2
exp
(
−

1
2

(Wc
jρ

σc
j

)2)
, where (σ

c
j )

2
= 〈Wc

jρWc
jρ
∗〉 =

∑
`m

C`|(Ψj)`m|
2
.

Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):

Ps
j (Ws

jρ |Gµ) =
υj

2GµνjΓ(υj
−1)

exp
(
−
∣∣∣∣ Ws

jρ

Gµνj

∣∣∣∣υj
)
,

with scale parameter νj and shape parameter υj.

Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 0.
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Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).
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Learning the statistics of the CMB and string signals in wavelet space
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Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 2.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 3.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.
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Spherical wavelet-Bayesian string tension estimation

We take a Bayesian approach to string tension estimation.

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed each wavelet coefficient is independent.

The wavelet coefficients are not independent but to incorporate the covariance of wavelet
coefficients would be computationally infeasible.

Instead, we compute the correlation length of wavelet coefficients, and only fold into the
likelihood calculation wavelet coefficients that are at least a correlation length apart.

Empirically we have found this approach to work well.
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Spherical wavelet-Bayesian string tension estimation

We take a Bayesian approach to string tension estimation.

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed each wavelet coefficient is independent.

The wavelet coefficients are not independent but to incorporate the covariance of wavelet
coefficients would be computationally infeasible.

Instead, we compute the correlation length of wavelet coefficients, and only fold into the
likelihood calculation wavelet coefficients that are at least a correlation length apart.

Empirically we have found this approach to work well.
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Spherical wavelet-Bayesian string tension estimation

We take a Bayesian approach to string tension estimation.

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed each wavelet coefficient is independent.

The wavelet coefficients are not independent but to incorporate the covariance of wavelet
coefficients would be computationally infeasible.

Instead, we compute the correlation length of wavelet coefficients, and only fold into the
likelihood calculation wavelet coefficients that are at least a correlation length apart.

Empirically we have found this approach to work well.
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 9 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 8 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 7 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 6 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 5 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 4 × 10−7).
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Bayesian evidence for strings

Compute Bayesian evidences to compare the string model Ms discussed so far to the
alternative model Mc that the observed data is comprised of just a CMB contribution.

The Bayesian evidence of the string model is given by

Es
= P(Wd |Ms

) =

∫
R

d(Gµ) P(Wd |Gµ) P(Gµ) .

The Bayesian evidence of the CMB model is given by

Ec
= P(Wd |Mc

) =
∏
j,ρ

Pc
j (Wd

jρ) .

Compute the Bayes factor to determine the preferred model:

∆ ln E = ln(Es
/Ec

) = ln Es − ln Ec
.

Table: Log-evidence differences for a particular simulation.

Gµ/10−7 2 3 4 5 6 7 8 9

∆lnE −278 −233 −164 −56 104 341 677 1132
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Bayesian evidence for strings

Compute Bayesian evidences to compare the string model Ms discussed so far to the
alternative model Mc that the observed data is comprised of just a CMB contribution.

The Bayesian evidence of the string model is given by

Es
= P(Wd |Ms

) =

∫
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d(Gµ) P(Wd |Gµ) P(Gµ) .

The Bayesian evidence of the CMB model is given by

Ec
= P(Wd |Mc

) =
∏
j,ρ

Pc
j (Wd

jρ) .

Compute the Bayes factor to determine the preferred model:

∆ ln E = ln(Es
/Ec

) = ln Es − ln Ec
.

Table: Log-evidence differences for a particular simulation.

Gµ/10−7 2 3 4 5 6 7 8 9

∆lnE −278 −233 −164 −56 104 341 677 1132
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Summary

Developed a hybrid wavelet-Bayesian method to test for the existence of cosmic strings.

Perform analysis in wavelet space where the string and CMB signals have very different
statistical distributions.

ToDo: Recover denoised string maps (cf. Wiaux et al. 2009).

ToDo: Assess the sensitivity of our approach on more realistic simulations.

ToDo: Apply to Planck observations to test for the existence of cosmic strings!
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Summary

Developed a hybrid wavelet-Bayesian method to test for the existence of cosmic strings.

Perform analysis in wavelet space where the string and CMB signals have very different
statistical distributions.

ToDo: Recover denoised string maps (cf. Wiaux et al. 2009).

ToDo: Assess the sensitivity of our approach on more realistic simulations.

ToDo: Apply to Planck observations to test for the existence of cosmic strings!
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