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Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. Credit:
Chuang et al. (1991).
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Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

@ The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. Credit:
Chuang et al. (1991).
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Observational signatures of cosmic strings

@ Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).

@ Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins
1984).

@ The amplitude of the induced contribution scales with G,
the string tension.

Light rays
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Figure: Spacetime around a cosmic string.
Credit: Kaiser & Stebbins 1984, DAMTP.
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Observational signatures of cosmic strings

@ Make contact between theory and data using high-resolution simulations.
@ High-resolution full-sky simulations created by Christophe Ringeval.
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(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Observational signatures of cosmic strings

@ Make contact between theory and data using high-resolution simulations.
@ High-resolution full-sky simulations created by Christophe Ringeval.
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(a) Flat patch (Fraisse et al. 2008)
Figure: Cosmic string simulations.

(b) Full-sky (Ringeval et al. 2012)

(a) CMB (b) CMB with embedded string

Figure: CMB simulation with string contribution (G = 5 x 10~ ) embedded .
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@ Continuous wavelets on the sphere
@ Scale-discretised wavelets on the sphere
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Why wavelets?

Y
Fourier (1807) Haar (1909)

Morlet and Grossman (1981)
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Figure: Fourier vs wavelet transform (credit: http://www.wavelet .org/tutorial/)
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Figure: Fourier vs wavelet transform (credit: http://www.wavelet .org/tutorial/)
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Wavelet transform in Euclidean space

wigs)

Repeat Shifting Operation

Figure: Wavelet scaling and shifting (image from http://www.wavelet .org/tutoriat/)
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Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.
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Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(PI(w) =f(p~'w), w=(0,9) €S’, p=(a,B,7) €SO(3).
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Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
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@ How define dilation on the sphere?
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Continuous wavelets on the sphere

First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function / on the
sphere is defined by

[R(p)f](w) =f(p 'w), w=(6,0) €S, p=(a,pB,v)€S003).

How define dilation on the sphere?

North_pole-
The spherical dilation operator is defined through the E
conjugation of the Euclidean dilation and stereographic
projection II:

D) =T "d(a)II.

South pole

Figure: Stereographic projection.
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Continuous wavelets on the sphere

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet &:
{®,,, = R(p)D(a)® : p € SO(3), a € R} }.
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Continuous wavelets on the sphere

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet &:
{®,,, = R(p)D(a)® : p € SO(3), a € R} }.

@ The forward wavelet transform is given by

Wala.p) = 0.90,) = [ 490) f(0) ®], ()

where dQ(w) = sin 6 d0 de is the usual invariant measure on the sphere.

@ Fast algorithms essential (for a review see Wiaux, JDM & Vielva 2007)

e Factoring of rotations: JDM et al. (2007), Wandelt & Gorski (2001)
@ Separation of variables: Wiaux et al. (2005)

@ The inverse wavelet transform given by

Flw) = /  da /;W do(p)W, (a, p) [R(P)Le®)(w) ,

a3

provided wavelets satisfy an admissibility property.

@ BUT...
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Continuous wavelets on the sphere

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet &:
{®,,, = R(p)D(a)® : p € SO(3), a € R} }.

@ The forward wavelet transform is given by

Wala.p) = 0.90,) = [ 490) f(0) ®], ()

where dQ(w) = sin 6 d0 de is the usual invariant measure on the sphere.

@ Fast algorithms essential (for a review see Wiaux, JDM & Vielva 2007)

e Factoring of rotations: JDM et al. (2007), Wandelt & Gorski (2001)
@ Separation of variables: Wiaux et al. (2005)

@ The inverse wavelet transform given by

Flw) = /  da /;W do(p)W, (a, p) [R(P)Le®)(w) ,

a3

provided wavelets satisfy an admissibility property.

@ BUT... exact reconstruction not feasible in practice!
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Scale-discretised wavelets on the sphere

@ Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code publicly available from: http://www.jasonmcewen.org/
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Scale-discretised wavelets on the sphere

@ Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code publicly available from: http://www.jasonmcewen.org/

@ Dilation performed in harmonic space.
Following JDM et al. (2006), Sanz et al. (2006).
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Scale-discretised wavelets on the sphere

@ Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code publicly available from: http://www.jasonmcewen.org/

1 : 2 =5 @ Dilation performed in harmonic space.

Following JDM et al. (2006), Sanz et al. (2006).

0.8
@ The scale-discretised wavelet ¥ € L?(S?,dQ2) is
06| defined in harmonic space:
I % o

04 Wy, = Ky (£)S,,, -
02 @ Construct wavelets to satisfy a resolution of the

identity for0 < ¢ < L:

J
e s " % i’i,(ulﬁ) + ZIN(\ZJ,((MIZ) =1

j=0
Figure: Harmonic tiling on the sphere.
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Scale-discretised wavelets
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Figure: Spherical scale-discretised wavelets.
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Scale-discretised wavelets
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Figure: Spherical scale-discretised wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wl (. ol) = (0, ) = /S2 4Q(w) (@) ¥,y (w) -
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Scale-discretised wavelets
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Figure: Spherical scale-discretised wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wl (. ol) = (0, ) = /S2 4Q(w) (@) ¥,y (w) -

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f(w) = [(bujf} (w) + zl: /g‘o(g do(p) W(l, (p, (y’) {R (p) Ld\Ilaj] (w) .
=0 /s0(
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Motivation for using wavelets to detect cosmic strings

@ Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, JDM et al. 2008), where we
denote the wavelet coefficients of the data d by
0

/ for scale j € Z1 and position
p € SO(3).
@ Consider an even azimuthal band-limit N = 4 to

yield wavelet with odd azimuthal symmetry. .
Figure: Example wavelet.
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Motivation for using wavelets to detect cosmic strings

@ Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, JDM et al. 2008), where we
denote the wavelet coefficients of the data d by

Wi = (d, W)
p € SO(3).

for scale j € Z1 and position

@ Consider an even azimuthal band-limit N = 4 to
yield wavelet with odd azimuthal symmetry. .
Figure: Example wavelet.

@ Wavelet transform yields a sparse representation of the string signal — hope to effectively separate
the CMB and string signal in wavelet space.
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:

Py 1 LW\ cy2 <y
P/(MGP):i?exp<,i< CP) ), where (07)" = WmW/P ZC/\(‘IJ)M

9j m
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Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:

Py 1 LW\ cy2 <y
Pi(W,,) = 7‘exp<,£< CP) ), where (07)" = W Wi, ) ZC/\(‘IJ )M
J

o
J £m

@ Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):
7'/>

PI(W! | Gu) = Yi < Wi
" T exp ==
i (W, | G 2Gpuy (v =) P Guy;

with scale parameter »; and shape parameter v;.

7\

Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

@ Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).



String tension estimation
000000

Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1

(b) String2

Figure: Cosmic string simulations.

@ Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

@ Distributions in close agreement.

Probabilty density

10° ‘Wavelet coefficient distribution for scale | = 0

Test (string1)
Fitted (string2)

8 6 -4 2 0 2 4 6 8
Wavelet coefficient 6
x10

Figure: Distributions for wavelet scale j = 0.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

10° ‘Wavelet coefficient distribution for scale j = 1

Test (stringT)
Fitted (string2)

@ Compare distribution learnt from the training
simulation (string2) with the distribution of the 12
testing simulation (string1).

@ Distributions in close agreement.

Probabilty density

2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 1.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

10° ‘Wavelet coefficient distribution for scale | = 2

Test (stringT)
Fitted (string2)

@ Compare distribution learnt from the training
simulation (string2) with the distribution of the 12
testing simulation (string1).

@ Distributions in close agreement.

Probabilty density

2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 2.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

o
(a) String1 (b) String2
Figure: Cosmic string simulations.
1”55 Wavelet coefficient distribution for scale j = 3
@ Compare distribution learnt from the training - o)
simulation (string2) with the distribution of the o .
testing simulation (string1). 08
@ Distributions in close agreement. v
Z 06
i;ﬂﬁ
iéﬂ 04
03
02
01
D—Z -15 -1 05 0 0s 1 15 2

Wavelet coefficient 7
x 10

Figure: Distributions for wavelet scale j = 3.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

o
(a) String1 (b) String2
Figure: Cosmic string simulations.
5% 107 Wavelet coefficient distribution for scale j = 4
@ Compare distribution learnt from the training W Tes siing1)

Fitted (string?)

simulation (string2) with the distribution of the
testing simulation (string1).

IS

@ Distributions in close agreement.

Probabilty density

2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 4.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

$10° Wavelet coefficient distribution for scale j = 4

Test (stringT)
Fitted (string2)

@ Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

@ Distributions in close agreement. 4

@ We have accurately characterised the statistics of
string signals in wavelet space.

Probabilty density

2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 4.
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Spherical wavelet-Bayesian string tension estimation

@ We take a Bayesian approach to string tension estimation.

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.
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Spherical wavelet-Bayesian string tension estimation

@ We take a Bayesian approach to string tension estimation.

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

@ For each wavelet coefficient the likelihood is given by

JP P P

i s c WS pe s\ Sy
P(W;p\Gu):P(W + W, |Gu) = /p aw;, P (W, — W;,) P;(W;, | Gp) .

@ The overall likelihood of the data is given by
P(W! |Gy = T]Pwi, G,
N

where we have assumed each wavelet coefficient is independent.
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Spherical wavelet-Bayesian string tension estimation

@ We take a Bayesian approach to string tension estimation.

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

@ For each wavelet coefficient the likelihood is given by

! s ¢ s e 5N\ B (18
POV, | Gi) = P(W), + 1, 1Gp) = [ W, B, — W) BV, |G

@ The overall likelihood of the data is given by

d ~ d ~
P(W' | Gu) = [ P(W,, | G) ,
N

where we have assumed each wavelet coefficient is independent.

@ The wavelet coefficients are not independent but to incorporate the covariance of wavelet
coefficients would be computationally infeasible.

@ Instead, we compute the correlation length of wavelet coefficients, and only fold into the
likelihood calculation wavelet coefficients that are at least a correlation length apart.

@ Empirically we have found this approach to work well.
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Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W| Gp) P(Gp)

dy _ d
P(Gu | W) = POW) ox P(W* | Gu) P(Gp) .
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Figure: Posterior distribution of the string tension (true Gu = 9 x 1077).
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Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W| Gp) P(Gp)

d
POW) ox P(W* | Gu) P(Gp) .

P(Gu | W) =

1000

Propability density

-1500

Log probability density

-zooo

-zs00

] 05 1 15 2
Gmu s

3000
o

Figure: Posterior distribution of the string tension (true Gu = 8 x 107 ).
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Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W| Gp) P(Gp)

dy _ d
P(Gu | W) = POW) ox P(W* | Gu) P(Gp) .
1500 1
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Gmu 16

Figure: Posterior distribution of the string tension (true Gu = 7 x 107 7).
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Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W| Gp) P(Gp)

P(Gu | W) = POW)

o P(W* | Gu) P(Gp) .
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Figure: Posterior distribution of the string tension (true Gu = 6 x 1077).
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Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W| Gp) P(Gp)

dy d
P(Gu | W) = POW) ox P(W* | Gu) P(Gp) .
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Figure: Posterior distribution of the string tension (true Gu = 5 x 1077).
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Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gu) P(Gp)

d d
P(Gu | W) = ; ox P(W* | Gu) P(Gp) .
P(W9)
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i
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Figure: Posterior distribution of the string tension (true Gu = 4 x 1077).
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Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M* discussed so far to the
alternative model M¢ that the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

E =P(W M) = /P d(Gu) P(W! | Gp) P(Gp) .

@ The Bayesian evidence of the CMB model is given by

E*PW\M)*HP(

@ Compute the Bayes factor to determine the preferred model:
AInE =In(E'/E°) = InE’ — InE°.
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Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M* discussed so far to the
alternative model M¢ that the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

E = p(W! | M) = /p d(Gp) POW? | Gu) P(Gpa) -

@ The Bayesian evidence of the CMB model is given by

ES = P(W* \M)*HP(

@ Compute the Bayes factor to determine the preferred model:
AInE =In(E'/E°) = InE’ — InE°.

Table: Log-evidence differences for a particular simulation.

Gu/1077 2 3 4 5 6 7 8 9
AInE —278 —233 —164 —56 104 341 677 1132




Summary

@ Developed a hybrid wavelet-Bayesian method to test for the existence of cosmic strings.

@ Perform analysis in wavelet space where the string and CMB signals have very different
statistical distributions.



Summary

Developed a hybrid wavelet-Bayesian method to test for the existence of cosmic strings.

Perform analysis in wavelet space where the string and CMB signals have very different
statistical distributions.

ToDo: Recover denoised string maps (cf. Wiaux et al. 2009).
ToDo: Assess the sensitivity of our approach on more realistic simulations.

ToDo: Apply to Planck observations to test for the existence of cosmic strings!
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