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Cosmological concordance model

Concordance model of modern cosmology emerged recently with many cosmological
parameters constrained to high precision.

General description is of a Universe undergoing accelerated expansion, containing 4%
ordinary baryonic matter, 22% cold dark matter and 74% dark energy.

Structure and evolution of the Universe constrained through cosmological observations.

[Credit: WMAP Science Team]
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Cosmic microwave background (CMB)

Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

Compton scattering happened frequently⇒ mean free
path of photons extremely small.

Universe consisted of an opaque photon-baryon fluid.

As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

Recombination occurred when temperature of Universe
dropped to 3000K (∼400,000 years after the Big Bang).

[Credit: Max Tegmark]

Photons then free to propagate largely unhindered and observed today on celestial
sphere as CMB radiation.

CMB is highly uniform over the celestial sphere, however it contains small fluctuations
at a relative level of 10−5 due to acoustic oscillations in the early Universe.

CMB observed on spherical manifold, hence the geometry of the sphere must be
taken into account in any analysis.
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Cosmic microwave background (CMB)

Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

Provide the seeds of structure formation in our Universe.

Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

[Credit: WMAP Science Team]

Although a general cosmological concordance model is now established, many details remain
unclear. Study of more exotic cosmological models now important.
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Observations of the CMB

Full-sky observations of the CMB ongoing.

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

Each new experiment provides dramatic improvement in precision and resolution of
observations.

(cobe 2 wmap movie)

(d) COBE to WMAP [Credit: WMAP Science Team]

(planck movie)

(e) Planck observing strategy [Credit: Planck Collaboration]
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Spherical harmonic transform

The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
∆S2 Y`m = −`(`+ 1)Y`m.

(f) ` = 4, m = 2 (g) ` = 4, m = 3

Figure: Spherical harmonic functions (real and imaginary parts).

Any square integrable scalar function on the sphere f ∈ L2(S2) may be represented by its
spherical harmonic expansion:

f (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

The spherical harmonic coefficients are given by the usual projection onto each basis function:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

We consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L.
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Sampling theorems on the sphere

For a band-limited signal, can we compute f`m exactly?
→ Sampling theorems on the sphere!

In-exact spherical harmonic transforms exist for a variety of pixelisations of the sphere.
HEALpix (Gorski et al. 2005)
IGLOO (Crittenden & Turok 1998)

→ Do NOT lead to sampling theorems on the sphere!

Gauss-Legendre sampling theorem.

Driscoll & Healy (1994) develop the canonical equiangular sampling theorem on the sphere.

From an information theoretic viewpoint, fundamental property of any sampling theorem is the
number of samples required to capture all of the information of a band-limited signal.

Develop new equiangular sampling theorem on the sphere with half as many samples as the
DH sampling theorem (JDM & Wiaux 2011).

Jason McEwen Spherical signal processing and the Multiverse
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Sampling theorems on the sphere

(a) HEALPix [Credit: Gorski et al. (2005)] (b) IGLOO [Credit: Crittenden & Turok (2003)]

Figure: Pixelisations of the sphere
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Sampling theorems on the sphere

Figure: Equiangular pixelisation of the sphere
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A novel sampling theorem

We have developed a new sampling theorem and corresponding fast algorithms by performing
a factoring of rotations and then by associating the sphere with the torus through a periodic
extension.

Similar (in flavour but not detail!) to making a periodic extension in θ of a function f on the
sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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A novel sampling theorem

By a factoring of rotations (Wigner decomposition), a reordering of summations and a
separation of variables, the inverse transform of sf may be written:

Inverse spherical harmonic transform

sf (θ, ϕ) =

L−1∑
m=−(L−1)

sFm(θ) eimϕ

sFm(θ) =

L−1∑
m′=−(L−1)

sFmm′ eim′θ

sFmm′ = (−1)
s i−(m+s)

L−1∑
`=0

√
2`+ 1

4π
∆
`
m′m ∆

`
m′,−s sf `m

where ∆`
mn ≡ d`mn(π/2) are the reduced Wigner functions evaluated at π/2.

Jason McEwen Spherical signal processing and the Multiverse
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A novel sampling theorem

By a factoring of rotations (Wigner decomposition), a reordering of summations and a
separation of variables, the forward transform of sf may be written:

Forward spherical harmonic transform

sf `m = (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sGmm′

sGmm′ =

∫ π

0
dθ sin θ sGm(θ) e−im′θ

sGm(θ) =

∫ 2π

0
dϕ sf (θ, ϕ) e−imϕ

Recasting the forward and inverse spherical harmonic transforms in this manner is no more
efficient or accurate than the original formulation.

However, it highlights similarities with Fourier series representations and reduces the problem
of finding an exact quadrature rule to the calculation of sGmm′ only.

The Fourier series expansion is only defined for periodic functions; thus, to recast these
expressions in a form amenable to the application of Fourier transforms we must make a
periodic extension in colatitude θ.

Jason McEwen Spherical signal processing and the Multiverse
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Comparison

DH DH MW
Divide-and-conquer Semi-naive

Pixelisation scheme equiangular equiangular equiangular

Asymptotic complexity O(L5/2 log 1/2
2 L) O(L3) O(L3)

Precomputation Y N N

Stability N Y Y

Flexibility of Wigner recursion N N Y

Number of samples 4L2 4L2 2L2
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Figure: Number of samples (MW=red; DH=green; GL=blue)
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Why wavelets?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (image from http://www.wavelet.org/tutorial/)

Jason McEwen Spherical signal processing and the Multiverse

http://www.wavelet.org/tutorial/


Cosmology Harmonic Analysis Wavelets The Multiverse Why wavelets? Continuous wavelets Multiresolution analysis

Why wavelets?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (image from http://www.wavelet.org/tutorial/)

Jason McEwen Spherical signal processing and the Multiverse

http://www.wavelet.org/tutorial/


Cosmology Harmonic Analysis Wavelets The Multiverse Why wavelets? Continuous wavelets Multiresolution analysis

Wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting (image from http://www.wavelet.org/tutorial/)
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Wavelet transform in Euclidean space

Project signal onto wavelets

W f
(a, b) = 〈f , ψa,b〉 = |a|−1/2

∫ ∞
−∞

dt f (t) ψ∗
( t − b

a

)
,

where ψa,b = |a|−1/2ψ( t−b
a ).

Synthesis signal from wavelet coefficients

f (t) = C−1
ψ

∫ ∞
−∞

db
∫ ∞

0

da
a2
W f

(a, b)ψa,b(t).

Admissibility condition to ensure perfect reconstruction

0 < Cψ ≡
∫ ∞
−∞

dk
|k|
|ψ̂(k)|2 <∞.

Construct on sphere in analogous manner.

Jason McEwen Spherical signal processing and the Multiverse
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Wavelets on the sphere

Follow construction derived by Antoine and Vandergheynst (1998)
(reintroduced by Wiaux (2005)).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Characterised by the
elements of the rotation group SO(3), which parameterise in terms of the three Euler angles
ρ = (α, β, γ). Rotation of a function f on the sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ρ ∈ SO(3) .

How define dilation and admissible wavelets on the sphere?

Jason McEwen Spherical signal processing and the Multiverse
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Stereographic projection

Apply stereographic projection to build an association with
the plane.

Stereographic projection operator is defined by
Π : ω → x = Πω = (r(θ), ϕ) where r = 2 tan(θ/2),
ω ≡ (θ, ϕ) ∈ S2 and x ∈ R2 is a point in the plane,
denoted here by the polar coordinates (r, ϕ). The inverse
operator is Π−1 : x→ ω = Π−1x = (θ(r), ϕ), where
θ(r) = 2 tan−1(r/2).

PSfrag replacements

x

y

z

r = 2 tan( θ
2
)

θ

φ

θ
2

ω

x

North pole

South pole

Define the action of the stereographic projection operator on functions on the plane
and sphere. Consider the space of square integrable functions in L2(R2, d2x) on the
plane and L2(S2, dΩ(ω)) on the sphere.

The action of the stereographic projection operator
Π : f ∈ L2(S2, dΩ(ω))→ p = Πf ∈ L2(R2, d2x) on functions is defined as

p(r, ϕ) = (Πf )(r, ϕ) = (1 + r2
/4)
−1f (θ(r), ϕ) .

The inverse stereographic projection operator
Π−1 : p ∈ L2(R2, d2x)→ f = Π−1p ∈ L2(S2, dΩ(ω)) on functions is then

f (θ, ϕ) = (Π
−1p)(θ, ϕ) = [1 + tan2

(θ/2)]p(r(θ), ϕ) .

Jason McEwen Spherical signal processing and the Multiverse
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Π : f ∈ L2(S2, dΩ(ω))→ p = Πf ∈ L2(R2, d2x) on functions is defined as

p(r, ϕ) = (Πf )(r, ϕ) = (1 + r2
/4)
−1f (θ(r), ϕ) .

The inverse stereographic projection operator
Π−1 : p ∈ L2(R2, d2x)→ f = Π−1p ∈ L2(S2, dΩ(ω)) on functions is then

f (θ, ϕ) = (Π
−1p)(θ, ϕ) = [1 + tan2

(θ/2)]p(r(θ), ϕ) .
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Dilation on the sphere

The spherical dilation operator D(a) : f (ω)→ [D(a)f ](ω) in L2(S2, dΩ(ω)) is defined as the
conjugation by Π of the Euclidean dilation d(a) in L2(R2, d2x) on tangent plane at north pole:

D(a) ≡ Π
−1 d(a) Π .

Spherical dilation given by

[D(a)f ](ω) = [λ(a, θ, ϕ)]
1/2 f (ω1/a) ,

where ωa = (θa, ϕ) and tan(θa/2) = a tan(θ/2).

Cocycle of a spherical dilation is defined by

λ(a, θ, ϕ) ≡
4a2

[(a2 − 1) cos θ + (a2 + 1)]2 .
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Wavelet analysis

Wavelets on the sphere may now be constructed from rotations and dilations of a mother
spherical wavelet Φ ∈ L2(S2, dΩ(ω)). The corresponding wavelet family
{Φa,ρ ≡ R(ρ)D(a)Φ : ρ ∈ SO(3), a ∈ R+

∗ } provides an over-complete set of functions in
L2(S2, dΩ(ω)).

The CSWT of f ∈ L2(S2, dΩ(ω)) is given by the projection on to each wavelet atom in the
usual manner:

Ŵ f
Φ(a, ρ) = 〈f ,Φa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Φ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux, JDM et al. 2007)
Factoring of rotations: JDM et al. (2007)
Separation of variables: Wiaux et al. (2005)
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Wavelet synthesis

The synthesis of a signal on the sphere from its wavelet coefficients is given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)Ŵ f
Φ(a, ρ) [R(ρ)L̂ΦΦa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

The L̂Φ operator in L2(S2, dΩ(ω)) is defined by the action

(L̂Φg)`m ≡ g`m/Ĉ`Φ

on the spherical harmonic coefficients of functions g ∈ L2(S2, dΩ(ω)).

In order to ensure the perfect reconstruction of a signal synthesised from its wavelet
coefficients, the admissibility condition

0 < Ĉ`Φ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Φa)`m |

2
<∞

must be satisfied for all ` ∈ N, where (Φa)`m are the spherical harmonic coefficients of Φa(ω).
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Correspondence principle

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Φ = Π
−1

ΦR2 ,

where ΦR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Multiresolution analysis on the sphere

Define multiresolution analysis on the sphere in an analogous manner to Euclidean
framework.

Define approximation spaces on the sphere Vj ⊂ L2(S2)

Construct the nested hierarchy of approximation spaces

V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ L2
(S2

) ,

where coarser (finer) approximation spaces correspond to a lower (higher) resolution level j.

For each space Vj we define a basis with basis elements given by the scaling functions
ϕj,k ∈ Vj, where the k index corresponds to a translation on the sphere.

Define detail space Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj+1 = Vj ⊕ Wj.

For each space Wj we define a basis with basis elements given by the wavelets ψj,k ∈ Wj.

Expanding the hierarchy of approximation spaces:

VJ = V1 ⊕
J−1⊕
j=1

Wj .
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Hierarchical pixelisation of the sphere

Relate generic multiresolution decomposition to HEALPix hierarchical pixelisation of the
sphere.

Haar wavelets on the sphere first constructed in this manner by Barreiro et al. (2000).

[Credit: Gorski et al. (2005)]
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Haar wavelets on the sphere

Let Vj correspond to a HEALPix pixelised sphere with resolution parameter Nside = 2j−1.

Define the scaling function ϕj,k at level j to be constant for pixel k and zero elsewhere:

ϕj,k(ω) ≡
{

1/
√

Aj ω ∈ Pj,k

0 elsewhere .

Orthonormal basis for the wavelet space Wj given by the following wavelets:

ψ
0
j,k(ω) ≡

[
ϕj+1,k0 (ω)− ϕj+1,k1 (ω) + ϕj+1,k2 (ω)− ϕj+1,k3 (ω)

]
/2 ;

ψ
1
j,k(ω) ≡

[
ϕj+1,k0 (ω) + ϕj+1,k1 (ω)− ϕj+1,k2 (ω)− ϕj+1,k3 (ω)

]
/2 ;

ψ
2
j,k(ω) ≡

[
ϕj+1,k0 (ω)− ϕj+1,k1 (ω)− ϕj+1,k2 (ω) + ϕj+1,k3 (ω)

]
/2 .

Figure: Haar scaling function ϕj,k(ω) and wavelets ψm
j,k(ω)
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Haar wavelets on the sphere

Multiresolution decomposition of a function
defined on a HEALPix data-sphere at
resolution J, i.e. fJ ∈ VJ proceeds as follows.

Approximation coefficients at the coarser
level j are given by the projection of fj+1 onto
the scaling functions ϕj,k :

λj,k =

∫
S2

fj+1(ω) ϕj,k(ω) dΩ .

Detail coefficients at level j are given by the
projection of fj+1 onto the wavelets ψm

j,k :

γ
m
j,k =

∫
S2

fj+1(ω) ψ
m
j,k(ω) dΩ .

Figure: Haar multiresolution decomposition

The function fJ ∈ VJ may then be synthesised from its approximation and detail coefficients:

fJ(ω) =

NJ0
−1∑

k=0

λJ0kϕJ0k(ω) +

J−1∑
j=J0

Nj−1∑
k=0

2∑
m=0

γ
m
j,kψ

m
j,k(ω) .
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Bubble universes

In collaboration with: Stephen Feeney, Matthew Johnson, Daniel Mortlock & Hiranya Peiris
(see Feeney et al. (2011a,2011b))

Inflation: period of exponential expansion in the very early Universe, invoked to solve many
fine-tuning problems.

Strong observational evidence for inflation.
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Slow-roll inflation

Standard/simplest descriptions of inflation are slow-roll.

However, this is a phenomenological description only and is not well motivated.

We would like inflation to be a consequence of high-energy physics!
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Eternal inflation

Theories of inflation with a unique vacuum are difficult to come by.

For example, string theories give landscape of 4D vacua, all of which are occupied.

Field trapped in false vacuum⇒ inflates forever!

Tunneling creates a bubble!

If nucleation rate less than bulk expansion, then inflation is eternal.
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The Multiverse

Jason McEwen Spherical signal processing and the Multiverse



Cosmology Harmonic Analysis Wavelets The Multiverse Bubble universes Detection algorithm WMAP7

The Multiverse
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Bubble universes

(bubble movie)

[Credit: Anthony Aguirre]

Jason McEwen Spherical signal processing and the Multiverse


bubble_inflation.mov
Media File (video/quicktime)



Cosmology Harmonic Analysis Wavelets The Multiverse Bubble universes Detection algorithm WMAP7

Bubble collisions

Bubble collisions may have left observational signatures in the CMB.
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Full-sky object detection

Bayesian objection detection would provide a rigorous statistical framework for comparing
models with differing numbers of bubble collisions.

However, such an analysis is computationally intractable!
Requires the inversion of a 3 million × 3 million matrix for WMAP data.
Requires the inversion of a 50 million × 50 million matrix for Planck data.

Alternatively, perform a preprocessing to detect candidate bubble collisions, followed by a
local Bayesian analysis.

This approach has been pioneered by Feeney et al. (2011a,2011b), using wavelets (needlets)
on the sphere.

However, we know signature of candidate bubble collisions→ exploit this knowledge!

Build optimal filters tailored to the expected bubble collision signatures.

Replace the wavelet (needlet) preprocessing stage with optimal filters.
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Filtering for full-sky object detection

The observed field may be represented by

y(ω) =
∑

i

si(ω) + n(ω) .

Each source may be represented in terms of its amplitude Ai and source profile:

si(ω) = Ai τi(ω)

where τi(ω) is a dilated and rotated version of the source profile τ(ω) of default dilation
centred on the north pole, i.e. τi(ω) = R(ρi)D(Ri|p) τ(ω).

One wishes to recover the parameters {Ai, Ri, ρi} that describe each source amplitude, scale
and position/orientation respectively.

Filter the signal on the sphere to enhance the source profile relative to the background noise
process n(ω):

w(ρ, R|p) =

∫
S2

f (ω) [R(ρ)ΨR|p]
∗
(ω) dΩ(ω) ,

where Ψ ∈ L2(S2, dΩ(ω)) is the filter kernel and p denotes the p-norm that the scaling R is
defined to perserve.
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Filtering for full-sky object detection

The observed field may be represented by

y(ω) =
∑

i

si(ω) + n(ω) .

Each source may be represented in terms of its amplitude Ai and source profile:

si(ω) = Ai τi(ω)

where τi(ω) is a dilated and rotated version of the source profile τ(ω) of default dilation
centred on the north pole, i.e. τi(ω) = R(ρi)D(Ri|p) τ(ω).

One wishes to recover the parameters {Ai, Ri, ρi} that describe each source amplitude, scale
and position/orientation respectively.

Filter the signal on the sphere to enhance the source profile relative to the background noise
process n(ω):
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S2

f (ω) [R(ρ)ΨR|p]
∗
(ω) dΩ(ω) ,
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Matched filter (MF)

Matched filtering has been considered extensively in Euclidean space (e.g. the plane) to
enhance a source profile in a background noise process (e.g. Sanz et al. (2001), Herranz
et al. (2002)).

Extend matching filtering to the sphere (JDM et al. (2008)).

Matched filter (MF) on the sphere

The optimal MF defined on the sphere is obtained by solving the constrained optimisation
problem:

min
w.r.t. (ΨR|p)

`m

σ
2
w(0, R|p) such that 〈w(0, R|p)〉 = A .

The spherical harmonic coefficients of the resultant MF are given by

(ΨR|p)`m
=

τ`m

a C`
,

where
a =

∑
`m

C−1
` |τ`m|2 .
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Scale adaptive filter (SAF)
Scale adaptive filter derived in Euclidean space by Sanz et al. (2001) and Herranz et al.
(2002), not only to enhance the source profile, but also to impose an extreme in scale.

Extended to the sphere (JDM et al. (2008)).

Scale adaptive filter (SAF) on the sphere

The optimal SAF defined on the sphere is obtained by by solving the constrained
optimisation problem:

min
w.r.t. (ΨR0|p

)
`m

σ
2
w(0, R|p)

such that

〈w(0, R|p)〉 = A and
∂

∂R
〈w(0, R|p)〉

∣∣∣∣
R=R0

= 0 .

The spherical harmonic coefficients of the resultant SAF are given by

(ΨR0|p)`m
=

cτ`m − b(A`pτ`m − B`mτ`−1,m)

∆C`
,

where
b =

∑
`m

C−1
` τ`m(A`pτ

∗
`m − B`mτ

∗
`−1,m) ,

c =
∑
`m

C−1
`

∣∣A`pτ`m − B`mτ`−1,m
∣∣2 ,

∆ = ac− |b|2, a is defined as before, A`p ≡ `+ 2/p− 1 and B`m ≡ (`2 − m2)1/2.
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Optimal filters for bubble signatures

(a) Spectra

(b) Template (c) MF (d) SAF

Figure: Optimal filters for bubble template with size θcrit = 20◦.
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Optimal filters for bubble signatures

(a) θcrit = 30◦ (b) θcrit = 60◦ (c) θcrit = 90◦

Figure: MF for various template sizes
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Theoretical signal-to-noise ratios (SNRs)

Predict the expected SNR for a given filter:

Γ ≡
〈w(0, R|p)〉
σw(0, R|p)

.

For the MF, SAF and any a arbitrary filter Ψ we find, respectively,

ΓMF = a1/2 A ,

ΓSAF = c−1/2
∆

1/2A ,

and

ΓΨ =
A
∑
`m τ`mΨ∗`m√∑
`m C`

∣∣Ψ`m
∣∣2 .

We can also predict the expected SNR of the unfiltered field:

Γorig =
A
∑
`m

√
2`+1

4π
(`−m)!
(`+m)!

τ`m√∑
`

2`+1
4π C`

.
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Theoretical signal-to-noise ratios (SNRs)

Figure: Theoretical SNRs versus template size θcrit.
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Detection algorithm for bubble signatures of unknown size

Consider a discrete set of candidate θcrit scales.

Ensure grid sufficiently coarse that SNR not significantly hampered.

Figure: Theoretical SNRs for filters matched to given scale θ′crit.
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Detection algorithm for bubble signatures of unknown size

Bubble collision detection algorithm

1 Filter the sky with the matched filter for each scale (i.e. for each candidate θcrit).

2 Compute significance maps for each filter scale, where the significance is given by the
number of standard deviations that the filtered field deviates from the mean (3,000
Gaussian CMB simulations are used to determined the filtered field mean and
variance).

3 Threshold the significance maps for each filter scale (the Nσ threshold for each filter
will subsequently be calibrated from WMAP end-to-end simulations).

4 Find localised peaks in the thresholded significance maps for each filter scale.

5 Consider the local peak found at each scale. Look across adjacent scales and if a
nearby region in an adjacent scale has a greater peak in the filtered field, then discard
the current local peak. Otherwise retain the local peak as a detected source.

6 For all detected sources, estimate parameters of the source size, location and
amplitude from the filter scale, peak position of the significance map and amplitude of
the filtered field respectively.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Embedded bubble collision signatures.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Simulated data.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Filtered field for θcrit = 5◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Filtered field for θcrit = 10◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Filtered field for θcrit = 20◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Filtered field for θcrit = 30◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Significance map for θcrit = 5◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Significance map for θcrit = 30◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Detected regions for θcrit = 5◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
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Figure: Detected regions for θcrit = 20◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Detected regions for θcrit = 30◦.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Detected regions.
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Detection algorithm illustrated

Embed bubble signatures at sizes θtruth
crit ∈ {10◦, 13◦, 20◦} but consider discretised grid of

θcrit ∈ {5◦, 10◦, 20◦, 30◦}.

Figure: Ground truth.
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Detection algorithm illustrated

All objects detected successfully with no false detections (as expected for the intense bubble
signatures considered in this illustration).

Bubble collision template parameters estimated reasonably accurately for the preprocessing
stage.

Performed an extensive comparison and optimal filters found to be approximately twice as
sensitive as needlets.

Source Original size Detected size Original amplitude Detected amplitude
(mK) (mK)

1 10◦ 10◦ 0.34 0.36
2 10◦ 10◦ 0.30 0.31
3 13◦ 10◦ 0.23 0.15
4 10◦ 10◦ 0.19 0.24
5 20◦ 20◦ 0.29 0.25
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Candidate bubble collisions in WMAP 7-year observations
Applied candidate bubble collision detection algorithm to WMAP W-band 7-year data.

First calibrated Nσ thresholds on WMAP end-to-end simulations (without bubble collisions),
resulting in 13 false detections (allow a manageable number of false detections since
preprocessing).

16 candidate bubble collisions detected in WMAP 7-year data for follow-up analysis
(8 new regions not detected previously)!

Figure: WMAP W-band 7-year data.
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Summary

Although a general cosmological concordance model is now established, many details remain
unclear.

Cosmological signals are inherently observed on the celestial sphere
→ we must respect this geometry in any subsequent analysis.

Developed new spherical signal processing methods, including: sampling theorems, wavelets,
compressive sensing and optimal filters.

The power of these techniques will help to unlock the secrets of the Universe.

Detected potential observational signatures in the CMB of collisions between bubble
universes.

First observational evidence for eternal inflation?
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