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Cosmological concordance model

Concordance model of modern cosmology emerged recently with many cosmological
parameters constrained to high precision.

General description is of a Universe undergoing accelerated expansion, containing 4%
ordinary baryonic matter, 22% cold dark matter and 74% dark energy.

Structure and evolution of the Universe constrained through cosmological observations.

Credit: WMAP Science Team
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Cosmic microwave background (CMB)

Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

Compton scattering happened frequently⇒ mean free
path of photons extremely small.

Universe consisted of an opaque photon-baryon fluid.

As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

Recombination occurred when temperature of Universe
dropped to 3000K (∼400,000 years after the Big Bang).

Credit: Max Tegmark

Photons then free to propagate largely unhindered and observed today on celestial
sphere as CMB radiation.

CMB is highly uniform over the celestial sphere, however it contains small fluctuations
at a relative level of 10−5 due to acoustic oscillations in the early Universe.

CMB observed on spherical manifold, hence the geometry of the sphere must be
taken into account in any analysis.
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Cosmic microwave background (CMB)

Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

Provide the seeds of structure formation in our Universe.

Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

Credit: WMAP Science Team

Although a general cosmological concordance model is now established, many details remain
unclear. Study of more exotic cosmological models now important.
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Observations of the CMB

Full-sky observations of the CMB ongoing.

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

Figure: Full-sky CMB observations

Each new experiment provides dramatic improvement in precision and resolution of
observations (e.g. COBE to WMAP illustration).

Credit: WMAP Science Team
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(cobe 2 wmap movie)

Credit: WMAP Science Team
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Spherical harmonics

Consider the space of square integrable functions on the sphere L2(S2), with the inner
product of f , g ∈ L2(S2) defined by

〈f , g〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) g∗(θ, ϕ) ,

where dΩ(θ, ϕ) = sin θ dθ dϕ is the usual invariant measure on the sphere and (θ, ϕ) define
spherical coordinates with colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π). Complex
conjugation is denoted by the superscript ∗.

The scalar spherical harmonic functions form the canonical orthogonal basis for the space of
L2(S2) scalar functions on the sphere and are defined by

Y`m(θ, ϕ) =

√
2`+ 1

4π
(`− m)!

(`+ m)!
Pm
` (cos θ) eimϕ

,

for natural ` ∈ N and integer m ∈ Z, |m| ≤ `, where Pm
` (x) are the associated Legendre

functions.

Eigenfunctions of the Laplacian on the sphere: ∆S2 Y`m = −`(`+ 1)Y`m.

Orthogonality relation: 〈Y`m, Y`′m′ 〉 = δ``′δmm′ , where δij is the Kronecker delta symbol.

Completeness relation:

∞∑
`=0

∑̀
m=−`

Y`m(θ, ϕ) Y∗`m(θ
′
, ϕ
′
) = δ(cos θ − cos θ′) δ(ϕ− ϕ′) ,

where δ(x) is the Dirac delta function.
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Spherical harmonic transform

Any square integrable scalar function on the sphere f ∈ L2(S2) may be represented by its
spherical harmonic expansion:

f (θ, ϕ) =
∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

The spherical harmonic coefficients are given by the usual projection onto each basis function:

f`m = 〈f , Y`m〉 .

We consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L
⇒ summations may be truncated at L− 1.

For a band-limited signal, can we compute f`m exactly?
→ Sampling theorems on the sphere!

Aside: Generalise to spin functions on the sphere.
Square integrable spin functions on the sphere sf ∈ L2(S2), with integer spin s ∈ Z, are defined by their
behaviour under local rotations. By definition, a spin function transforms as

sf ′(θ, ϕ) = e−isχ
sf (θ, ϕ)

under a local rotation by χ, where the prime denotes the rotated function.
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Sampling theorems on the sphere: state-of-the-art

In-exact spherical harmonic transforms exist for a variety of pixelisations of the sphere.
HEALpix (Gorski et al. 2005)
IGLOO (Crittenden & Turok 1998)

→ Do NOT lead to sampling theorems on the sphere!

Driscoll & Healy (1994) sampling theorem
Equiangular pixelisation of the sphere
Require ∼ 4L2 samples on the sphere
Semi-naive algorithm with complexity O(L3)
(algorithms with lower scaling exist but they are not generally stable)

Require a precomputation or otherwise restricted use of Wigner recursions

Gauss-Legendre sampling theorem
Not generally so well-know (no published work)
Sample positions given by roots of Legendre functions
Require ∼ 2L2 samples on the sphere
Simple separation of variables gives algorithm with complexity O(L3)

Require a precomputation or otherwise restricted use of Wigner recursions

Jason McEwen Signal processing on the sphere
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Sampling theorems on the sphere: a novel sampling theorem

We have developed a new sampling theorem and corresponding fast algorithms by performing
a factoring of rotations and then by associating the sphere with the torus through a periodic
extension.

Similar (in flavour but not detail!) to making a periodic extension in θ of a function f on the
sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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Sampling theorems on the sphere: a novel sampling theorem

By a factoring of rotations (Wigner decomposition), a reordering of summations and a
separation of variables, the inverse transform of sf may be written:

Inverse spherical harmonic transform

sf (θ, ϕ) =

L−1∑
m=−(L−1)

sFm(θ) eimϕ

sFm(θ) =

L−1∑
m′=−(L−1)

sFmm′ eim′θ

sFmm′ = (−1)
s i−(m+s)

L−1∑
`=0

√
2`+ 1

4π
∆
`
m′m ∆

`
m′,−s sf `m

where ∆`
mn ≡ d`mn(π/2) are the reduced Wigner functions evaluated at π/2.
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Sampling theorems on the sphere: a novel sampling theorem

By a factoring of rotations (Wigner decomposition), a reordering of summations and a
separation of variables, the forward transform of sf may be written:

Forward spherical harmonic transform

sf `m = (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sGmm′

sGmm′ =

∫ π

0
dθ sin θ sGm(θ) e−im′θ

sGm(θ) =

∫ 2π

0
dϕ sf (θ, ϕ) e−imϕ

Recasting the forward and inverse spherical harmonic transforms in this manner is no more
efficient or accurate than the original formulation.

However, it highlights similarities with Fourier series representations and reduces the problem
of finding an exact quadrature rule to the calculation of sGmm′ only.

The Fourier series expansion is only defined for periodic functions; thus, to recast these
expressions in a form amenable to the application of Fourier transforms we must make a
periodic extension in colatitude θ.
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Sampling theorems on the sphere: a novel sampling theorem

Properties of our new sampling theorem
Equiangular pixelisation of the sphere
Require ∼ 2L2 samples on the sphere (and still fewer than Gauss-Legendre sampling)
Exploit fast Fourier transforms to yield a fast algorithm with complexity O(L3)

No precomputation and very flexible regarding use of Wigner recursions
Extends to spin function on the sphere with no change in complexity or computation time
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Figure: Performance of our sampling theorem (MW=red; DH=green; Gauss-Legendre=blue)
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Why wavelets?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (image from http://www.wavelet.org/tutorial/)
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Recall wavelet transform in Euclidean space

Project signal onto wavelets

W f
(a, b) = 〈f , ψa,b〉 = |a|−1/2

∫ ∞
−∞

dt f (t) ψ∗
( t − b

a

)
,

where ψa,b = |a|−1/2ψ( t−b
a ).

Synthesis signal from wavelet coefficients

f (t) = C−1
ψ

∫ ∞
−∞

db
∫ ∞

0

da
a2
W f

(a, b)ψa,b(t).

Admissibility condition to ensure perfect reconstruction

0 < Cψ ≡
∫ ∞
−∞

dk
|k|
|ψ̂(k)|2 <∞.

Construct on sphere in analogous manner.

Jason McEwen Signal processing on the sphere



Cosmology Harmonic analysis Wavelets Applications Why wavelets? Continuous wavelets Multiresolution analysis

Wavelets on the sphere

Follow construction derived by Antoine and Vandergheynst (1998)
(reintroduced by Wiaux (2005)).

Construct wavelet atoms from affine transformations (dilation, translation) on the
sphere of a mother wavelet.

The natural extension of translations to the sphere are rotations. Characterised by
the elements of the rotation group SO(3), which parameterise in terms of the three
Euler angles ρ = (α, β, γ). Rotation of a function f on the sphere is defined by

[R(ρ)f ](ω) = f (ρ−1ω), ρ ∈ SO(3) .

How define dilation and admissible wavelets on the sphere?
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[R(ρ)f ](ω) = f (ρ−1ω), ρ ∈ SO(3) .

How define dilation and admissible wavelets on the sphere?
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Stereographic projection

Apply stereographic projection to build an association with
the plane.

Stereographic projection operator is defined by
Π : ω → x = Πω = (r(θ), ϕ) where r = 2 tan(θ/2),
ω ≡ (θ, ϕ) ∈ S2 and x ∈ R2 is a point in the plane,
denoted here by the polar coordinates (r, ϕ). The inverse
operator is Π−1 : x→ ω = Π−1x = (θ(r), ϕ), where
θ(r) = 2 tan−1(r/2).
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Define the action of the stereographic projection operator on functions on the plane
and sphere. Consider the space of square integrable functions in L2(R2, d2x) on the
plane and L2(S2, dΩ(ω)) on the sphere.

The action of the stereographic projection operator
Π : f ∈ L2(S2, dΩ(ω))→ p = Πf ∈ L2(R2, d2x) on functions is defined as

p(r, ϕ) = (Πf )(r, ϕ) = (1 + r2
/4)
−1f (θ(r), ϕ) .

The inverse stereographic projection operator
Π−1 : p ∈ L2(R2, d2x)→ f = Π−1p ∈ L2(S2, dΩ(ω)) on functions is then

f (θ, ϕ) = (Π
−1p)(θ, ϕ) = [1 + tan2

(θ/2)]p(r(θ), ϕ) .
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Dilation on the sphere

The spherical dilation operator D(a) : f (ω)→ [D(a)f ](ω) in L2(S2, dΩ(ω)) is defined as the
conjugation by Π of the Euclidean dilation d(a) in L2(R2, d2x) on tangent plane at north pole:

D(a) ≡ Π
−1 d(a) Π .

Spherical dilation given by

[D(a)f ](ω) = [λ(a, θ, ϕ)]
1/2 f (ω1/a) ,

where ωa = (θa, ϕ) and tan(θa/2) = a tan(θ/2).

Cocycle of a spherical dilation is defined by

λ(a, θ, ϕ) ≡
4a2

[(a2 − 1) cos θ + (a2 + 1)]2 .

Jason McEwen Signal processing on the sphere



Cosmology Harmonic analysis Wavelets Applications Why wavelets? Continuous wavelets Multiresolution analysis

Wavelet analysis formula

Wavelets on the sphere may now be constructed from rotations and dilations of a mother
spherical wavelet Φ ∈ L2(S2, dΩ(ω)). The corresponding wavelet family
{Φa,ρ ≡ R(ρ)D(a)Φ : ρ ∈ SO(3), a ∈ R+

∗ } provides an over-complete set of functions in
L2(S2, dΩ(ω)).

The CSWT of f ∈ L2(S2, dΩ(ω)) is given by the projection on to each wavelet atom in the
usual manner:

Ŵ f
Φ(a, ρ) = 〈f ,Φa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Φ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux et al. 2007)
Factoring of rotations: JDM et al. 2007
Separation of variables: Wiaux et al. 2005

Jason McEwen Signal processing on the sphere



Cosmology Harmonic analysis Wavelets Applications Why wavelets? Continuous wavelets Multiresolution analysis

Wavelet analysis formula

Wavelets on the sphere may now be constructed from rotations and dilations of a mother
spherical wavelet Φ ∈ L2(S2, dΩ(ω)). The corresponding wavelet family
{Φa,ρ ≡ R(ρ)D(a)Φ : ρ ∈ SO(3), a ∈ R+

∗ } provides an over-complete set of functions in
L2(S2, dΩ(ω)).

The CSWT of f ∈ L2(S2, dΩ(ω)) is given by the projection on to each wavelet atom in the
usual manner:
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Wavelet synthesis formula

The synthesis of a signal on the sphere from its wavelet coefficients is given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)Ŵ f
Φ(a, ρ) [R(ρ)L̂ΦΦa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

The L̂Φ operator in L2(S2, dΩ(ω)) is defined by the action

(L̂Φg)`m ≡ g`m/Ĉ`Φ

on the spherical harmonic coefficients of functions g ∈ L2(S2, dΩ(ω)).

In order to ensure the perfect reconstruction of a signal synthesised from its wavelet
coefficients, the admissibility condition

0 < Ĉ`Φ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Φa)`m |

2
<∞

must be satisfied for all ` ∈ N, where (Φa)`m are the spherical harmonic coefficients of Φa(ω).
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Correspondence principle

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Φ = Π
−1

ΦR2 ,

where ΦR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Multiresolution analysis on the sphere

Define multiresolution analysis on the sphere in an analogous manner to Euclidean
framework.

Define approximation spaces on the sphere Vj ⊂ L2(S2)

Construct the nested hierarchy of approximation spaces

V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ L2
(S2

) ,

where coarser (finer) approximation spaces correspond to a lower (higher) resolution level j.

For each space Vj we define a basis with basis elements given by the scaling functions
ϕj,k ∈ Vj, where the k index corresponds to a translation on the sphere.

Define detail space Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj+1 = Vj ⊕ Wj.

For each space Wj we define a basis with basis elements given by the wavelets ψj,k ∈ Wj.

Expanding the hierarchy of approximation spaces:

VJ = V1 ⊕
J−1⊕
j=1

Wj .
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Hierarchical pixelisation of the sphere

Relate generic multiresolution decomposition to HEALPix hierarchical pixelisation of the
sphere.

Credit: Krzysztof Gorski
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Haar wavelets on the sphere

Let Vj correspond to a HEALPix pixelised sphere with resolution parameter Nside = 2j−1.

Define the scaling function ϕj,k at level j to be constant for pixel k and zero elsewhere:

ϕj,k(ω) ≡
{

1/
√

Aj ω ∈ Pj,k

0 elsewhere .

Orthonormal basis for the wavelet space Wj given by the following wavelets:

ψ
0
j,k(ω) ≡

[
ϕj+1,k0 (ω)− ϕj+1,k1 (ω) + ϕj+1,k2 (ω)− ϕj+1,k3 (ω)

]
/2 ;

ψ
1
j,k(ω) ≡

[
ϕj+1,k0 (ω) + ϕj+1,k1 (ω)− ϕj+1,k2 (ω)− ϕj+1,k3 (ω)

]
/2 ;

ψ
2
j,k(ω) ≡

[
ϕj+1,k0 (ω)− ϕj+1,k1 (ω)− ϕj+1,k2 (ω) + ϕj+1,k3 (ω)

]
/2 .

Figure: Haar scaling function ϕj,k(ω) and wavelets ψm
j,k(ω)
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Haar wavelets on the sphere

Multiresolution decomposition of a function
defined on a HEALPix data-sphere at
resolution J, i.e. fJ ∈ VJ proceeds as follows.

Approximation coefficients at the coarser
level j are given by the projection of fj+1 onto
the scaling functions ϕj,k :

λj,k =

∫
S2

fj+1(ω) ϕj,k(ω) dΩ .

Detail coefficients at level j are given by the
projection of fj+1 onto the wavelets ψm

j,k :

γ
m
j,k =

∫
S2

fj+1(ω) ψ
m
j,k(ω) dΩ .

Figure: Haar multiresolution decomposition

The function fJ ∈ VJ may then be synthesised from its approximation and detail coefficients:

fJ(ω) =

NJ0
−1∑

k=0

λJ0kϕJ0k(ω) +

J−1∑
j=J0

Nj−1∑
k=0

2∑
m=0

γ
m
j,kψ

m
j,k(ω) .
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Gaussianity of the CMB

Statistics of primordial fluctuations provide a useful mechanism for distinguishing between
various scenarios of the early Universe, such as various models of inflation.

Primordial fluctuations give rise to the CMB anisotropies.

In the simplest inflationary scenarios, primordial perturbations seed Gaussian temperature
fluctuations in the CMB.

However, this is not the case for non-standard inflationary models.

Evidence of non-Gaussianity in the CMB anisotropies would therefore have profound
implications for the standard cosmological concordance model.

Probe WMAP observations of the CMB for evidence of non-Gaussianity.
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Wavelet analysis of Gaussianity of the CMB

Various physical processes manifest at different scales and locations, hence employ wavelet
analysis to probe CMB.

Wavelet coefficients of Gaussian signal remain Gaussian distributed (due to linearity of
wavelet transform).

Examine the skewness and kurtosis of wavelet coefficients.

Compare to Monte Carlo simulations of Gaussian CMB realisations.

Significant non-Gaussian signal detected in the skewness of wavelet coefficients.

Figure: Skewness of wavelet coefficients
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Wavelet analysis of Gaussianity of the CMB

Various physical processes manifest at different scales and locations, hence employ wavelet
analysis to probe CMB.

Wavelet coefficients of Gaussian signal remain Gaussian distributed (due to linearity of
wavelet transform).

Examine the skewness and kurtosis of wavelet coefficients.

Compare to Monte Carlo simulations of Gaussian CMB realisations.

Significant non-Gaussian signal detected in the skewness of wavelet coefficients.
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Localisation of non-Gaussian features in the CMB

Localise regions that contribute most significantly to the non-Gaussian signal.

Detection of the “cold spot” anomaly in the CMB.

Various new cosmology models constructed in attempt to explain the cold spot.

(a) SMHW coefficients

(b) SMW coefficients

Figure: Spherical wavelet coefficient maps (left) and thresholded maps (right)
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Dark energy

Universe consists of ordinary baryonic matter, cold dark
matter and dark energy.

Dark energy represents energy density of empty space.
Modelled by a cosmological fluid with negative pressure
acting as a repulsive force.

Evidence for dark energy provided by observations of
CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

However, a consistent model in the framework of particle physics lacking. Indeed, attempts to
predict a cosmological constant obtain a value that is too large by a factor of ∼ 10120.

Dark energy dominates our Universe but yet we know very little about its nature and origin.

Verification of dark energy by independent physical methods of considerable interest.

Independent methods may also prove more sensitive probes of properties of dark energy.
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Integrated Sachs-Wolfe (ISW) effect

(ball sim constant movie) (ball sim evolving movie)

Figure: ISW effect analogy

CMB photons blue (red) shifted when fall into (out of) potential wells.

Evolution of potential during photon propagation→ net change in photon energy.

Gravitation potentials constant w.r.t. conformal time in matter dominated universe.

Deviation from matter domination due to curvature or dark energy causes potentials to evolve
with time→ secondary anisotropy induced in CMB.
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Detecting the ISW effect

WMAP shown universe is (nearly) flat.

Detection of ISW effect⇒ direct evidence for dark energy.

Cannot isolate the ISW signal from CMB anisotropies easily.

Instead, detect by cross-correlating CMB anisotropies with tracers of large scale structure.
(Crittenden & Turok 1996

Wavelets ideal analysis tool to search for correlation induced by ISW effect since signal
manifest at different scales and locations.
(Pioneered by Vielva et al. 2005, followed by JDM et al. 2006, JDM et al. 2007 and others.)

Compute correlation of WMAP and NVSS radio galaxy survey and compare to Monte Carlo
simulations to determine significance of any candidate detections.

(a) WMAP (b) NVSS

Figure: WMAP and NVSS maps after application of the joint mask
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Detection of the ISW effect with wavelets

Significant correlation detected between the WMAP and NVSS data.

Foreground contamination and instrumental systematics ruled out as source of the correlation
⇒ correlation due to ISW effect.

Direct observational evidence for dark energy.
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Figure: Wavelet correlation
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Constraining dark energy with wavelets

Possible to use positive detection of the ISW effect to constrain parameters of cosmological
models that describe dark energy:

Proportional energy density ΩΛ.
Equation of state parameter w relating pressure and density of cosmological fluid that models dark
energy, i.e. p = wρ.

Parameter estimates of ΩΛ = 0.63+0.18
−0.17 and w = −0.77+0.35

−0.36 computed from the mean of the
marginalised distributions (consistent with other analysis techniques and data sets).
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Figure: Dark energy likelihoods
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Compression of data on the sphere

Current and forthcoming observations of the CMB of
considerable size.

Haar wavelet transform to compress energy content.

Lossless compression algorithm

1 Haar wavelet transform on sphere
2 Quantise detail coefficients to numerical precision

(precision parameter p)
3 Huffman encoding

Lossy compression algorithm

1 Haar wavelet transform on sphere
2 Thresholding
3 Quantise detail coefficients to numerical precision
4 Run-length encoding (RLE)
5 Huffman encoding
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Figure: Histograms
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Compression of CMB data

Lossless to a user specified numerical precision only.

(a) Original for Nside = 512 (13MB) (b) Compressed for Nside = 512 (2.5MB)

(c) Original for Nside = 1024 (50MB) (d) Compressed for Nside = 1024 (9.1MB)

Figure: Lossless compression of simulated Gaussian CMB data
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Lossy compression applications

(a) Earth: original (13MB) (b) Galileo: original (3.2MB) (c) St Peter’s: original (3.2MB) (d) Uffizi: original (3.2MB)

(e) Earth: lossless (1.4MB) (f) Galileo: lossless (0.21MB) (g) St Peter’s: lossless (0.20MB) (h) Uffizi: lossless (0.19MB)

(i) Earth: lossy (0.33MB) (j) Galileo: lossy (0.07MB) (k) St Peter’s: lossy (0.08MB) (l) Uffizi: lossy (0.10MB)

Figure: Compressed data for lossy compression applications

Jason McEwen Signal processing on the sphere



Cosmology Harmonic analysis Wavelets Applications Gaussianity of the CMB Dark energy Compression Reflectance

Reflectance recovery

Functions encountered in computer graphics are typically defined over directions
→ data on the sphere.

Illumination maps inherently defined on the sphere (i.e. over directions):

Let L(ω) denote the illumination function, where ω = (θ, ϕ) ∈ S2.

(a) Galileo’s Tomb (b) St Peter’s Basilica (c) Uffizi Gallery

Figure: Illumination maps [http://www.debevec.org/Probes]

Bidirectional reflectance distributions functions (BRDFs) inherently defined on the product of
spheres:

Let Γ̃(ωi, ωo) denote the BRDF, where ωi and ωo are incoming and outgoing directions respectively.

Jason McEwen Signal processing on the sphere
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Theoretical framework for reflection

Adopt the framework of Ramamoorthi & Hanrahan (2001).

Outgoing radiance given by

B(ρ, ωo) =

∫
S2

L(ω
′
i ) Γ̃(ωi, ωo) cos(θi) dΩ(ωi) ,

where the prime denotes global coordinates, ρ = (α, β, γ) ∈ SO(3) is the orientation of the
surface element (cf. surface normal) and dΩ(ω) = sin(θ) dθ dϕ is the usual rotation invariant
measure on the sphere.

Local coordinates and global coordinates related through rotationR about surface element
ω′ = R(ρ) ω, hence in a consistent coordinate frame we obtain

B(ρ, ωo) =

∫
S2

(R−1
(ρ)L)(ωi) Γ(ωi, ωo) dΩ(ωi) .

Through the rotation invariance of the measure on the sphere we obtain the
reflection equation

B(ρ, ωo) =

∫
S2

L(ωi) (R(ρ)Γ)(ωi, ωo) dΩ(ωi) .

Assumptions: homogenous object; known geometry; distant illumination; no inter-reflection.
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Precomputed radiance transfer (PRT) using wavelets on the sphere

Consider the forward rending problem.

Adopt the framework of Ng et al. (2004).

Compute the outgoing radiance for each vertex of the object x and incorporate a visibility
function V(x, ωi). In this setting the reflection equation becomes

B(x, ωo) =

∫
S2

L(ωi)
(
R(ρ(x))Γ

)
(ωi, ωo) V(x, ωi) dΩ(ωi) .

Very high computational complexity→ infeasible for practical purposes.

Ng et al. resolve this issue by using planar wavelets.

Adapted this approach to use wavelets on the sphere (Geomerics Ltd. 2006).
http://www.geomerics.com

Take geometry of the sphere into account→ greater accuracy and efficiency.

Jason McEwen Signal processing on the sphere
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Reflectance recovery: current approaches

Consider the inverse rendering problem, i.e. recover the BRDF from known outgoing radiance
and known background illumination.

Reflection equation again:

B(ρ, ωo) =

∫
S2

L(ωi) (R(ρ)Γ)(ωi, ωo) dΩ(ωi)

Many reflectance acquisition systems involve specialised lighting configurations which
considerably simplify the inverse problem.

For example, point light source: L(ωi) = δ(ωi − ω̄)⇒ B(ρ, ωo) = (R(ρ)Γ)(ω̄, ωo) .

Disadvantages of current acquisition systems:
Slow
Specialised apparatus
Carefully controlled environment
→ Painstaking and expensive process
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Reflectance recovery: proposed approach

Reflection equation again:

B(ρ, ωo) =

∫
S2

L(ωi) (R(ρ)Γ)(ωi, ωo) dΩ(ωi)

Solve the reflection equation directly, under natural environmental illumination.

Difficult inverse problem.

Shift the complexity from elaborate experiment apparatus and procedures to more
complicated algorithms but much simpler acquisition.

Considered previously by Ramamoorthi & Hanrahan but limited to very low frequencies due to
computational complexity→ focused on theoretical implications.

Fast, spherical wavelet based methods.
→ much higher frequencies computationally tractable
→ greater accuracy and performance

Proposed acquisition system.

Advantages of proposed acquisition system:
Fast acquisition
Standard apparatus
Acquisition performed in natural environment, e.g. on set/site (provided some conditions met)

→ Flexible, fast and inexpensive process
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