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Optical astronomical telescopes

Hubble Space Telescope (HST) has transformed our understanding of the Universe.

Hubble’s scientific successor, the James Webb Space Telescope (JWST), will lead to
further scientific advances.

But Hubble and JWST are extremely large and heavy, and expensive in cost and power
consumption.

(a) Hubble Space Telescope (HST) (b) James Web Space Telescope (JWST)

Figure: Optical telescopes
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Segmented Planar Imaging Detector for Electro-optical Reconnaissance
(SPIDER)

SPIDER imaging device developed by Prof. Ben Yoo and colleagues at UC Davis and
Lockheed Martin (Kendrick et al. 2013; Duncan et al. 2015).

SPIDER is a small-scale interferometric optical imaging device that first uses a lenslet
array to measure multiple interferometer baselines, then uses photonic integrated circuits
(PICs) to miniaturize the measurement acquisition.

Figure: SPIDER payload design [Credit: Kendrick et al. 2013]
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SPIDER

SPIDER reduces the weight, cost, and power consumption of optical telescopes.

SHRINKING THE TELESCOPE
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Figure: SPIDER advantages [Credit: Lockheed Martin]
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SPIDER

Unlike traditional optical interferometry, the SPIDER telescope can accurately retrieve both
phase and amplitude information, making the measurement process analogous to a radio
interferometer.

Accurate interferometric image reconstruction methods from radio astronomy can thus be
applied to image SPIDER observations.

Figure: SPIDER imaging is analogous to astronomical radio interferometry
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Next-generation of radio interferometry rapidly approaching

Next-generation of radio interferometric telescopes will provide orders of magnitude
improvement in sensitivity.

Unlock broad range of science goals.

(a) Dark energy (b) General relativity (c) Cosmic magnetism

(d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Square Kilometre Array (SKA)
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SKA sites
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The SKA poses a considerable big-data challenge

Jason McEwen Sparse imaging for SPIDER



RI Imaging UQ (MCMC) UQ (MAP) Online Imaging

The SKA poses a considerable big-data challenge

Jason McEwen Sparse imaging for SPIDER



RI Imaging UQ (MCMC) UQ (MAP) Online Imaging

Potential to transfer techniques from radio interferometry to SPIDER

Recent advances in radio interferometric imaging could be transferred to SPIDER imaging:

1 High-fidelity imaging

2 Efficient algorithms and implementations

3 Uncertainty quantification

4 Online imaging
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Outline

1 Radio interferometric imaging

2 Uncertainty quantification (MCMC sampling)

3 Uncertainty quantification (MAP estimation)

4 Online imaging
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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx+ n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator, e.g. Φ = GFA , may incorporate:

primary beam A of the telescope;

Fourier transform F;

convolutional de-gridding G to interpolate to continuous uv-coordinates;

direction-dependent effects (DDEs). . .

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Sparse regularisation
Synthesis and analysis frameworks

Sparse synthesis regularisation problem:

xsynthesis = Ψ× arg min
α

[∥∥y −ΦΨα
∥∥2

2
+ λ

∥∥α∥∥
1

]
Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: x = Ψα .

Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

xanalysis = arg min
x

[∥∥y −Φx
∥∥2

2
+ λ

∥∥Ψ†x
∥∥

1

]
Analysis framework

(For orthogonal bases the two approaches are identical but otherwise very different.)
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Sparse regularisation
SARA algorithm

Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

Overcomplete dictionary composed of a concatenation of orthonormal bases:

Ψ =
[
Ψ1,Ψ2, . . . ,Ψq

]
with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight ⇒ concatenation of 9 bases.

Promote average sparsity by solving the constrained reweighted `1 analysis problem:

min
x∈RN

‖WΨ†x‖1 subject to ‖y −Φx‖2 ≤ ε and x ≥ 0

SA
R
A
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Distributed and parallelised convex optimisation

Solve resulting convex optimisation problems by proximal splitting.

Distributed and parallelised sparse convex optimization for radio interferometry with
PURIFY (Pratley, McEwen, et al. 2019; arXiv:1903.04502)

Load balancing for distributed interferometric image reconstruction (Pratley, McEwen
2019; arXiv:1903.07621)

Image 2 billion visibilities (measurements) on 50 nodes of HPC cluster.
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Standard algorithms
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Public open-source codes

PURIFY code http://astro-informatics.github.io/purify/

Next-generation radio interferometric imaging
d’Avezac, Carrillo, Christidi, Guichard, McEwen, Perez-Suarez,
Pratley, Wiaux
Project lead: McEwen

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code http://astro-informatics.github.io/sopt/

Sparse OPTimisation
d’Avezac, Carrillo, Christidi, Guichard, McEwen, Perez-Suarez,
Pratley, Wiaux
Project lead: McEwen

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

Jason McEwen Sparse imaging for SPIDER
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Imaging observations from the VLA and ATCA with PURIFY

(a) NRAO Very Large Array (VLA)

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Outline

1 Radio interferometric imaging

2 Uncertainty quantification (MCMC sampling)

3 Uncertainty quantification (MAP estimation)

4 Online imaging
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MCMC sampling and uncertainty quantification

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: p(x|y)

HPD credible regions: Cα

Point estimator: x∗

Pixel-wise credible
intervals: (ξ−, ξ+)

Hypothesis testing

Uncertainty quantification for radio interferometric imaging: I. proximal MCMC methods
(Cai, Pereyra &McEwen 2018a; arXiv:1711.04818)
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MCMC sampling the full posterior distribution

Sample full posterior distribution P(x |y).

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity priors, which shown to be highly effective.

Jason McEwen Sparse imaging for SPIDER



RI Imaging UQ (MCMC) UQ (MAP) Online Imaging P-MALA MYULA Experiments Hypothesis testing

MCMC sampling the full posterior distribution

Sample full posterior distribution P(x |y).

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity priors, which shown to be highly effective.

Jason McEwen Sparse imaging for SPIDER



RI Imaging UQ (MCMC) UQ (MAP) Online Imaging P-MALA MYULA Experiments Hypothesis testing

MCMC sampling the full posterior distribution

Sample full posterior distribution P(x |y).

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity priors, which shown to be highly effective.

Jason McEwen Sparse imaging for SPIDER



RI Imaging UQ (MCMC) UQ (MAP) Online Imaging P-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients
Langevin dynamics

Consider posteriors of the following form:

P(x |y) = π(x)

Posterior

∝ exp
(
− g(x)

Smooth

)

If g(x) differentiable can adopt MALA (Langevin dynamics).

Based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so cannot support sparse priors.
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Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = arg min
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = arg min
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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Proximal MCMC methods

Exploit proximal calculus.

“Replace gradients with sub-gradients”.

Figure: Illustration of sub-gradients [Credit: Wikipedia (Maksim)]
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Proximal MALA
Moreau approximation

Moreau approximation of f(x) ∝ exp(−g(x)):

fMA
λ (x) = sup

u∈RN
f(u) exp

(
−‖u− x‖

2

2λ

)

Important properties of fMA
λ (x):

1 As λ→ 0, fMA
λ (x)→ f(x)

2 ∇ log fMA
λ (x) = (proxλg (x)− x)/λ

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
− g(x)

C
on

ve
x )

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau approximation to π:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw

(m)
.

Metropolis-Hastings accept-reject step.
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Proximal MALA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ḡ (x) = argmin

u∈RN

{
µ‖Ψ†u‖1 +

‖y −Φu‖22
2σ2

+
‖u− x‖22

δ

}
.

Taylor expansion at point x: ‖y −Φu‖22 ≈ ‖y −Φx‖22 + 2(u− x)>Φ†(Φx− y).

Then proximity operator approximated by

prox
δ/2
ḡ (x) ≈ prox

δ/2

f̄1

(
x− δΦ†(Φx− y)/2σ2

)
.

Single forward-backward iteration
Analytic approximation:

prox
δ/2
ḡ (x) ≈ v̄ + Ψ

(
softµδ/2(Ψ†v̄)−Ψ†v̄)

)
, where v̄ = x− δΦ†(Φx− y)/2σ2.
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Proximal MALA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ĝ (a) = argmin
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‖y −ΦΨu‖22
2σ2

+
‖u− a‖22

δ
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MYULA
Moreau-Yosida approximation

Moreau-Yosida approximation (Moreau envelope) of f :

fMY
λ (x) = inf

u∈RN
f(u) +

‖u− x‖2
2λ

Important properties of fMY
λ (x):

1 As λ→ 0, fMY
λ (x)→ f(x)

2 ∇fMY
λ (x) = (x− proxλf (x))/λ

Figure: Illustration of Moreau-Yosida envelope of |x| for varying λ [Credit: Stack exchange (ubpdqn)]
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MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
−g(x)

)
, where

g(x) = f1(x)

C
on

ve
x

+ f2(x)

Sm
oo

th

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau-Yosida approximation to f1:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log π(x) ≈
(
proxλf1

(x)− x
)
/λ−∇f2(x)

+
√
δw

(m)
.

No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
arbitrarily small. To achieve precision target ε requires:

Worst case: order N5 log2(ε−1)ε−2 iterations.
Strong convexity worst case: order N log(N) log2(ε−1)ε−2 iterations.
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MYULA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̄1
(x) = x+ Ψ

(
softµδ/2(Ψ†x)−Ψ†x)

)
.
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MYULA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̂1
(a) = softµδ/2(a) .
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Numerical experiments
MYULA with analysis model

(a) Ground truth

(b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: W28 Supernova remnant
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length
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Numerical experiments
Computation time

Table: CPU time in minutes for Proximal MCMC sampling

Image Method CPU time (min)
Analysis Synthesis

Cygnus A P-MALA 2274 1762
MYULA 1056 942

M31 P-MALA 1307 944
MYULA 618 581

W28 P-MALA 1122 879
MYULA 646 598

3C288 P-MALA 1144 881
MYULA 607 538

Jason McEwen Sparse imaging for SPIDER



RI Imaging UQ (MCMC) UQ (MAP) Online Imaging P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

Figure: HII region of M31
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Hypothesis testing
Numerical experiments
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Hypothesis testing
Numerical experiments
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Outline

1 Radio interferometric imaging

2 Uncertainty quantification (MCMC sampling)

3 Uncertainty quantification (MAP estimation)

4 Online imaging
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Proximal MCMC sampling and uncertainty quantification

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: p(x|y)

HPD credible regions: Cα

Point estimator: x∗

Pixel-wise credible
intervals: (ξ−, ξ+)

Hypothesis testing

Uncertainty quantification for radio interferometric imaging: I. proximal MCMC methods
(Cai, Pereyra &McEwen 2018a; arXiv:1711.04818)

Jason McEwen Sparse imaging for SPIDER
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MAP estimation and uncertainty quantification

Observed visibilities in RI imaging: y

MAP image
estimation: xmap

Approximate HPD
credible regions: C̃α

Approximate local credible
intervals: (ξ̃−, ξ̃+)

Hypothesis testing

Uncertainty quantification for radio interferometric imaging: II. MAP estimation
(Cai, Pereyra &McEwen 2018b; arXiv:1711.04819)

Jason McEwen Sparse imaging for SPIDER
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Approximate Bayesian credible regions for MAP estimation

Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

Recall Cα denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Analytic approximation of γα:

γ̃α = g(x?) +N(τα + 1)

where τα =
√

16 log(3/α)/N and α ∈ (4exp(−N/3), 1) (Pereyra 2016b).

Define approximate HPD regions by C̃α = {x : g(x) ≤ γ̃α}.

Compute x? by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.

Jason McEwen Sparse imaging for SPIDER
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2018b)

Let Ω define the area (or pixel) over which to compute the credible interval (ξ̃−, ξ̃+) and ζ be an index
vector describing Ω (i.e. ζi = 1 if i ∈ Ω and 0 otherwise).

Consider the test image with the Ω region replaced by constant value ξ:

x
′

= x
?
(I − ζ) + ξζ .

Given γ̃α and x?, compute the credible interval by

ξ̃− = min
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

ξ̃+ = max
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
.
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Numerical experiments
P
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P
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(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10× 10 pixels) (grid size 20× 20 pixels) (grid size 30× 30 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Figure: Length of local credible intervals for W28 for the analysis model.
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Figure: Length of local credible intervals for 3C288 for the analysis model.

Jason McEwen Sparse imaging for SPIDER



RI Imaging UQ (MCMC) UQ (MAP) Online Imaging Local credible intervals Experiments Hypothesis testing

Numerical experiments
P
-M

A
LA

M
A
P

(a) point estimators
(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10× 10 pixels) (grid size 20× 20 pixels) (grid size 30× 30 pixels)
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Jason McEwen Sparse imaging for SPIDER



RI Imaging UQ (MCMC) UQ (MAP) Online Imaging Local credible intervals Experiments Hypothesis testing

Numerical experiments
P
-M

A
LA

M
A
P

(a) point estimators
(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10× 10 pixels) (grid size 20× 20 pixels) (grid size 30× 30 pixels)
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Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

Image Method CPU time
Analysis Synthesis

Cygnus A
P-MALA 2274 1762
MYULA 1056 942
MAP .07 .04

M31
P-MALA 1307 944
MYULA 618 581
MAP .03 .02

W28
P-MALA 1122 879
MYULA 646 598
MAP .06 .04

3C288
P-MALA 1144 881
MYULA 607 538
MAP .03 .02
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Hypothesis testing
Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Image Test Ground Method Hypothesis
area truth test

M31 1 3
P-MALA 3
MYULA 3
MAP 3

Cygnus A 1 3
P-MALA 7
MYULA∗ 7
MAP 7

W28 1 3
P-MALA 3
MYULA 3
MAP 3

3C288

1 3
P-MALA 3
MYULA 3
MAP 3

2 7
P-MALA 7
MYULA 7
MAP 7

(∗ Can correctly detect physical structure if use median point estimator.)
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Outline

1 Radio interferometric imaging

2 Uncertainty quantification (MCMC sampling)

3 Uncertainty quantification (MAP estimation)

4 Online imaging
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Online imaging

Online radio interferometric imaging (Cai, Pratley & McEwen 2019; arXiv:1712.04462)

Perform image reconstruction simultaneously with data acquisition.

Assimilate data on arrival and then discard.

Dramatically reduces data storage requirements.

Additional computational savings.

Theoretical guarantee that recover same fidelity as offline approach.
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Figure: Online radio interferometric imaging.
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Online imaging
Storage and computational savings

8 Cai, Pratley, and McEwen
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Figure 2. Comparison between the standard algorithm and the online algorithm (this work) in terms of visibility storage requirements and computational
cost. In the plots, the left vertical-axis represents the ratio of visibility storage requirements (described in the text as ⌘s = 1/B when all blocks have the
same size) between the online algorithm with different number of visibility blocks and the standard algorithm (blue solid curve); the right vertical-axis
represents the approximate ratio of computational cost between the online algorithm and the standard algorithm with different maximum iteration numbers,
i.e., imax = 50, 100, 300 and 500 (brown dashed lines). In particular, panels (a) and (b) correspond to a maximum number of visibility blocks set to 100 and
600, respectively. These plots show that as the number of visibility blocks increases the online method needs significantly less storage than the offline method.
The computational cost can also be reduced by approximately a half using the online method when both methods execute similar number of iterations.

for RI imaging, as illustrated in Algorithms 2 and 3, can dramati-
cally reduce storage requirements. In essence, if all blocks are the
same size, the storage requirement for our online algorithm is 1/B
of the total number of visibilities. In the following we analyse the
general storage requirements of our proposed online method in fur-
ther detail and discuss some more subtle points.

The online method only needs to deal with a single block of
visibilities (i.e., a subset of the visibilities) at one time. The size of
each block can be controlled as required: when a large storage vol-
ume is available, a large visibility block can be considered; other-
wise, any arbitrarily small block can be considered, to the extreme
case of just a single visibility in each block (see lines 7 and 8 re-
spectively in Algorithms 2 and 3 about the visibility block loading
and assimilation). Note that after loading and assimilating a block
by the online method, the storage used to store that block will be
released for storing another block (see line 9 in Algorithms 2 and
3 about the visibility block storage releasing). The ratio of visi-
bility storage required for the online method relative to the offline
method, which must store all M visibilities, is therefore

⌘s =
maxk{Mk}

M
. (50)

When all blocks are the same size, the storage requirement is
⌘s = 1/B of the total visibilities, which means less than 1 percent
of visibilities need to be stored when B > 100. Figure 2 (the blue
solid curve) shows the ratio of visibility storage requirements be-
tween the online algorithm and the standard algorithm for different
number of visibility blocks.

Another important advantage of the online method in terms of
storage requirement is that, due to its independence with respect
to the number of visibility blocks, it has the ability of tackling RI
imaging problems encountered with an arbitrarily large amount of
visibilities – just divide the entire visibilities into individual visibil-
ities blocks and then conquer them one-by-one online.

Finally, since the standard offline methods can only deal with
a complete set of visibilities, when new visibilities are available it is

not possible for standard methods to use the new input to improve
their reconstruction quality in a principled manner (unless the com-
putation is restarted). The online method, on the contrary, is able to
immediately process any new observed visibilities – just treat the
new input as a normal visibility block and assimilate it to update
the reconstruction.

It should be noted that storage during the image reconstruc-
tion process is not only burdened by the measurements, but also
by storing the baseline coordinates and weights, which are compa-
rable. Furthermore, the interpolation kernel for performing a two
dimensional non-uniform fast Fourier Transform can take up to 16
or more times the amount of storage from the measurements alone
(Fessler & Sutton 2003; Offringa et al. 2014; Pratley et al. 2018).
However, methods exist to reduce this storage cost. For example, it
is possible for the interpolation kernel to be calculated on-the-fly,
or to prune the interpolation kernel. Furthermore, alternative effi-
cient methods can be developed to reduce these storage costs, e.g.
by precomputing �†�.

4.3 Computational cost

We now compare the computational cost between the online
method and the standard method. Comparing to the standard
method, in addition to dramatically reducing storage costs, the on-
line method can provide considerable computational savings when
the number of visibility blocks considered is not much larger than
the number of iterations necessary for the standard method.

For both the online and standard methods, at each iteration, the
most computationally demanding part is to apply the measurement
operator {�†

k�k}b
k=1 on an image (refer to line 10 in Algorithms 2

and 3), in that the rest of the computations are highly dominated by
this step. In particular, for this step the standard method needs all
the B blocks, i.e., {�†

k�k}B
k=1, to be involved in the computation

for each iteration, whereas only the first b blocks, b < B, are used
at the b-th iteration in the online method. In other words, for the on-

MNRAS 000, 1–14 (2017)

Figure: Storage and computational savings.
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Figure 4. Image reconstruction results of the standard (offline) algorithm and the online algorithm (our work) for images M31 (first row), Cygnus A (second
row), W28 (third row), and 3C288 (fourth row). The number of iterations for the tested methods is set to 50, and all images are shown in log10 scale.
Panels (a) and (b): results of the standard algorithm correspond to 100% and 2% of all acquired visibilities, respectively, where 10% of discrete visibilities are
acquired in our simple discrete simulations. Panel (c): result of the online algorithm, with visibilities gradually increased from 2% to 100% block-by-block
(each visibility block contains 2% of all acquired visibilities), according to the distance of the visibilities to the origin of the Fourier domain. Clearly, when
using all visibilities similar reconstruction quality is obtained by both the standard offline and online methods (panels (a) and (c), respectively), which achieve
the same SNR (14.2946 dB) for M31, for example. However, the online method requires storage for only 2% of the acquired visibilities, whereas the offline
method must store them all. Panel (b) shows reconstructions when using the the same amount of storage for the standard offline method as required by the
online method. In this setting there are too few visibilities to produce a reasonable reconstruction. We emphasise that the online algorithm combines the
reconstruction task with the visibility acquisition stage, which can significantly improve the reconstruction speed and dramatically reduce storage costs.
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Figure: Comparison between images reconstructed by the offline and online algorithms for M31.
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Figure 4. Image reconstruction results of the standard (offline) algorithm and the online algorithm (our work) for images M31 (first row), Cygnus A (second
row), W28 (third row), and 3C288 (fourth row). The number of iterations for the tested methods is set to 50, and all images are shown in log10 scale.
Panels (a) and (b): results of the standard algorithm correspond to 100% and 2% of all acquired visibilities, respectively, where 10% of discrete visibilities are
acquired in our simple discrete simulations. Panel (c): result of the online algorithm, with visibilities gradually increased from 2% to 100% block-by-block
(each visibility block contains 2% of all acquired visibilities), according to the distance of the visibilities to the origin of the Fourier domain. Clearly, when
using all visibilities similar reconstruction quality is obtained by both the standard offline and online methods (panels (a) and (c), respectively), which achieve
the same SNR (14.2946 dB) for M31, for example. However, the online method requires storage for only 2% of the acquired visibilities, whereas the offline
method must store them all. Panel (b) shows reconstructions when using the the same amount of storage for the standard offline method as required by the
online method. In this setting there are too few visibilities to produce a reasonable reconstruction. We emphasise that the online algorithm combines the
reconstruction task with the visibility acquisition stage, which can significantly improve the reconstruction speed and dramatically reduce storage costs.
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Figure: Comparison between images reconstructed by the offline and online algorithms for Cygnus A.
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Figure 4. Image reconstruction results of the standard (offline) algorithm and the online algorithm (our work) for images M31 (first row), Cygnus A (second
row), W28 (third row), and 3C288 (fourth row). The number of iterations for the tested methods is set to 50, and all images are shown in log10 scale.
Panels (a) and (b): results of the standard algorithm correspond to 100% and 2% of all acquired visibilities, respectively, where 10% of discrete visibilities are
acquired in our simple discrete simulations. Panel (c): result of the online algorithm, with visibilities gradually increased from 2% to 100% block-by-block
(each visibility block contains 2% of all acquired visibilities), according to the distance of the visibilities to the origin of the Fourier domain. Clearly, when
using all visibilities similar reconstruction quality is obtained by both the standard offline and online methods (panels (a) and (c), respectively), which achieve
the same SNR (14.2946 dB) for M31, for example. However, the online method requires storage for only 2% of the acquired visibilities, whereas the offline
method must store them all. Panel (b) shows reconstructions when using the the same amount of storage for the standard offline method as required by the
online method. In this setting there are too few visibilities to produce a reasonable reconstruction. We emphasise that the online algorithm combines the
reconstruction task with the visibility acquisition stage, which can significantly improve the reconstruction speed and dramatically reduce storage costs.
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Figure: Comparison between images reconstructed by the offline and online algorithms for W28.
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Figure 4. Image reconstruction results of the standard (offline) algorithm and the online algorithm (our work) for images M31 (first row), Cygnus A (second
row), W28 (third row), and 3C288 (fourth row). The number of iterations for the tested methods is set to 50, and all images are shown in log10 scale.
Panels (a) and (b): results of the standard algorithm correspond to 100% and 2% of all acquired visibilities, respectively, where 10% of discrete visibilities are
acquired in our simple discrete simulations. Panel (c): result of the online algorithm, with visibilities gradually increased from 2% to 100% block-by-block
(each visibility block contains 2% of all acquired visibilities), according to the distance of the visibilities to the origin of the Fourier domain. Clearly, when
using all visibilities similar reconstruction quality is obtained by both the standard offline and online methods (panels (a) and (c), respectively), which achieve
the same SNR (14.2946 dB) for M31, for example. However, the online method requires storage for only 2% of the acquired visibilities, whereas the offline
method must store them all. Panel (b) shows reconstructions when using the the same amount of storage for the standard offline method as required by the
online method. In this setting there are too few visibilities to produce a reasonable reconstruction. We emphasise that the online algorithm combines the
reconstruction task with the visibility acquisition stage, which can significantly improve the reconstruction speed and dramatically reduce storage costs.
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Figure: Comparison between images reconstructed by the offline and online algorithms for 3C288.
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Figure 5. Image reconstruction results in SNR against iteration number. The blue line and the red dot-dashed line represent the results of the standard algorithm
and the online algorithm (our work), respectively. The magenta line with cross marks represent the 5 extra iterations of the online algorithm. In particular, for
the online algorithm, 50, 100, 200, 300 and 500 visibility blocks are tested. When the SNR of the online algorithm is less than that of the standard algorithm
after the final visibility block is assimilated, 5 extra iterations are executed (see the magenta line with cross marks). Panels (a)–(d): results for images of M31,
Cygnus A, W28 and 3C288, respectively. Panels (e)–(h): zoomed in areas of the rectangles in (a)–(d), respectively. These plots show that both the standard
and online algorithms provide reconstructed images with very similar SNR. Moreover, the results of the online algorithm with respect to differing numbers of
visibility blocks reveal that the online algorithm converges stably and is robust with respect to arbitrary numbers of visibility blocks. We emphasise again that,
for the online algorithm, the larger the number of blocks, the lower the visibility storage requirements. Even though a large number of blocks requires lots
of iterations, the first iterations are very fast due to the small amount of data used. Also, since almost all the computation is done before the data acquisition
finishes, the online method always ends its reconstruction task much faster than the standard method. In this sense, the computation time of the online method
is independent of the number of blocks. Finally, the results of the extra iterations for the online algorithm show that an improvement can indeed be achieved
but is not dramatic and therefore optional; the standard iterations of the online algorithm, basically, can ensure excellent reconstructions already.
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Figure: SNR vs iteration number for M31.
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Figure 5. Image reconstruction results in SNR against iteration number. The blue line and the red dot-dashed line represent the results of the standard algorithm
and the online algorithm (our work), respectively. The magenta line with cross marks represent the 5 extra iterations of the online algorithm. In particular, for
the online algorithm, 50, 100, 200, 300 and 500 visibility blocks are tested. When the SNR of the online algorithm is less than that of the standard algorithm
after the final visibility block is assimilated, 5 extra iterations are executed (see the magenta line with cross marks). Panels (a)–(d): results for images of M31,
Cygnus A, W28 and 3C288, respectively. Panels (e)–(h): zoomed in areas of the rectangles in (a)–(d), respectively. These plots show that both the standard
and online algorithms provide reconstructed images with very similar SNR. Moreover, the results of the online algorithm with respect to differing numbers of
visibility blocks reveal that the online algorithm converges stably and is robust with respect to arbitrary numbers of visibility blocks. We emphasise again that,
for the online algorithm, the larger the number of blocks, the lower the visibility storage requirements. Even though a large number of blocks requires lots
of iterations, the first iterations are very fast due to the small amount of data used. Also, since almost all the computation is done before the data acquisition
finishes, the online method always ends its reconstruction task much faster than the standard method. In this sense, the computation time of the online method
is independent of the number of blocks. Finally, the results of the extra iterations for the online algorithm show that an improvement can indeed be achieved
but is not dramatic and therefore optional; the standard iterations of the online algorithm, basically, can ensure excellent reconstructions already.
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Figure: SNR vs iteration number for Cygnus A.
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Figure 5. Image reconstruction results in SNR against iteration number. The blue line and the red dot-dashed line represent the results of the standard algorithm
and the online algorithm (our work), respectively. The magenta line with cross marks represent the 5 extra iterations of the online algorithm. In particular, for
the online algorithm, 50, 100, 200, 300 and 500 visibility blocks are tested. When the SNR of the online algorithm is less than that of the standard algorithm
after the final visibility block is assimilated, 5 extra iterations are executed (see the magenta line with cross marks). Panels (a)–(d): results for images of M31,
Cygnus A, W28 and 3C288, respectively. Panels (e)–(h): zoomed in areas of the rectangles in (a)–(d), respectively. These plots show that both the standard
and online algorithms provide reconstructed images with very similar SNR. Moreover, the results of the online algorithm with respect to differing numbers of
visibility blocks reveal that the online algorithm converges stably and is robust with respect to arbitrary numbers of visibility blocks. We emphasise again that,
for the online algorithm, the larger the number of blocks, the lower the visibility storage requirements. Even though a large number of blocks requires lots
of iterations, the first iterations are very fast due to the small amount of data used. Also, since almost all the computation is done before the data acquisition
finishes, the online method always ends its reconstruction task much faster than the standard method. In this sense, the computation time of the online method
is independent of the number of blocks. Finally, the results of the extra iterations for the online algorithm show that an improvement can indeed be achieved
but is not dramatic and therefore optional; the standard iterations of the online algorithm, basically, can ensure excellent reconstructions already.
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Figure: SNR vs iteration number for W28.
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Figure 5. Image reconstruction results in SNR against iteration number. The blue line and the red dot-dashed line represent the results of the standard algorithm
and the online algorithm (our work), respectively. The magenta line with cross marks represent the 5 extra iterations of the online algorithm. In particular, for
the online algorithm, 50, 100, 200, 300 and 500 visibility blocks are tested. When the SNR of the online algorithm is less than that of the standard algorithm
after the final visibility block is assimilated, 5 extra iterations are executed (see the magenta line with cross marks). Panels (a)–(d): results for images of M31,
Cygnus A, W28 and 3C288, respectively. Panels (e)–(h): zoomed in areas of the rectangles in (a)–(d), respectively. These plots show that both the standard
and online algorithms provide reconstructed images with very similar SNR. Moreover, the results of the online algorithm with respect to differing numbers of
visibility blocks reveal that the online algorithm converges stably and is robust with respect to arbitrary numbers of visibility blocks. We emphasise again that,
for the online algorithm, the larger the number of blocks, the lower the visibility storage requirements. Even though a large number of blocks requires lots
of iterations, the first iterations are very fast due to the small amount of data used. Also, since almost all the computation is done before the data acquisition
finishes, the online method always ends its reconstruction task much faster than the standard method. In this sense, the computation time of the online method
is independent of the number of blocks. Finally, the results of the extra iterations for the online algorithm show that an improvement can indeed be achieved
but is not dramatic and therefore optional; the standard iterations of the online algorithm, basically, can ensure excellent reconstructions already.
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Figure: SNR vs iteration number for 3C288.
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Conclusions

1 Sparse priors for radio interferometry highly effective, with efficient implementations.
PURIFY code provides robust framework for imaging interferometric observations
(http://astro-informatics.github.io/purify/).

SOPT code for efficient and distributed sparse regularisation
(http://astro-informatics.github.io/sopt/).

2 Uncertainty quantification to support sparse priors efficiently in full Bayesian framework:
Recover Bayesian credible intervals.

Perform hypothesis testing to test whether structure physical.

3 Online imaging to perform imaging simultaneously with data acquisition:
Dramatically reduce storage requirements.

Additional computational savings.

Potential to apply to SPIDER imaging.

Supported by:
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