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Optical astronomical telescopes

o Hubble Space Telescope (HST) has transformed our understanding of the Universe.

@ Hubble's scientific successor, the James Webb Space Telescope (JWST), will lead to
further scientific advances.

(a) Hubble Space Telescope (HST) (b) James Web Space Telescope (JWST)

Figure: Optical telescopes
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Optical astronomical telescopes

o Hubble Space Telescope (HST) has transformed our understanding of the Universe.

@ Hubble's scientific successor, the James Webb Space Telescope (JWST), will lead to
further scientific advances.

o But Hubble and JWST are extremely large and heavy, and expensive in cost and power
consumption.

(a) Hubble Space Telescope (HST) (b) James Web Space Telescope (JWST)

Figure: Optical telescopes
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Segmented Planar Imaging Detector for Electro-optical Reconnaissance
(SPIDER)

o SPIDER imaging device developed by Prof. Ben Yoo and colleagues at UC Davis and
Lockheed Martin (Kendrick et al. 2013; Duncan et al. 2015).

o SPIDER is a small-scale interferometric optical imaging device that first uses a lenslet
array to measure multiple interferometer baselines, then uses photonic integrated circuits
(PICs) to miniaturize the measurement acquisition.

Interferometer Tube Assy Array

Outer Align
Cylinder

Figure: SPIDER payload design [Credit: Kendrick et al. 2013]
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SPIDER

o SPIDER reduces the weight, cost, and power consumption of optical telescopes.
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Figure: SPIDER advantages [Credit: Lockheed Martin]
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__Rl Imaging_UQ (MCMC) _UQ (MAP) Online Imaging |
SPIDER

o Unlike traditional optical interferometry, the SPIDER telescope can accurately retrieve both
phase and amplitude information, making the measurement process analogous to a radio
interferometer.

@ Accurate interferometric image reconstruction methods from radio astronomy can thus be
applied to image SPIDER observations.

Figure: SPIDER imaging is analogous to astronomical radio interferometry
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Next-generation of radio interferometry rapidly approaching

@ Next-generation of radio interferometric telescopes will provide orders of magnitude
improvement in sensitivity.

@ Unlock broad range of science goals.

‘/‘/

(b) General relativity (c) Cosmic magnetism

(d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Square Kilometre Array (SKA)
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Rl Imaging
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The SKA poses a considerable big-data challenge

The SKA will use enough
optical fiber to wrap twice
around the Earth!

AN
&

The SKA will be so
sensitive that it will
be able to detect.
an airport radar on
a planet tens of
light years away.

The SKA will generate
enough raw data to fill 15
million 4GB iPods every day!

The dishes of the
SKA will produce
10 times the global
internet traffic.

The aperture arrays
in the SKA could
produce more than
100 times the global
internet traffic.

x 100,000,000
Personal C

Sparse imaging for SPIDER

The SKA
central
computer
will have the
processing
power of
about one
hundred
million PCs.
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The SKA poses a considerable big-data challenge

The dishes of the
SKA will produce
10 times the global
internet traffic.
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Potential to transfer techniques from radio interferometry to SPIDER

Recent advances in radio interferometric imaging could be transferred to SPIDER imaging:
@ High-fidelity imaging
@ Efficient algorithms and implementations

© Uncertainty quantification

@ Online imaging

Sparse imaging for SPIDER



Rl Imaging UQ (MCMC) UQ (MAP) Online Imaging |
Outline

© Radio interferometric imaging
© Uncertainty quantification (MCMC sampling)
© Uncertainty quantification (MAP estimation)

© Online imaging
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Rl Imaging Sparse regularisation Algorithms Results
Outline

© Radio interferometric imaging
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Rl Imaging Sparse regularisation Algorithms Results

Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

>
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Rl Imaging Sparse regularisation Algorithms Results

Radio interferometric inverse problem

o Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.
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Rl Imaging Sparse regularisation Algorithms Results

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..
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Rl Imaging Sparse regularisation Algorithms Results

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Rl Imaging Sparse regularisation Algorithms Results

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

msynthesis =W x argcinin[Hy - (D\Voc”; +A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .
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Rl Imaging Sparse regularisation Algorithms Results

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”; + A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Tanatysis = arg min [y — @23 + A [|v'z], |

Analysis framework
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Rl Imaging Sparse regularisation Algorithms Results

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”; + A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Tanatysis = arg min [y — @23 + A [|v'z], |

Analysis framework

(For orthogonal bases the two approaches are identical but otherwise very different.)
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Rl Imaging Sparse regularisation Algorithms Results

Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
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Rl Imaging Sparse regularisation Algorithms Results

Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

@ Overcomplete dictionary composed of a concatenation of orthonormal bases:

U= (W, Wy, ..., W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.
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Rl Imaging Sparse regularisation Algorithms Results

Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

@ Overcomplete dictionary composed of a concatenation of orthonormal bases:

U= (W, Wy, ..., W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.

o Promote average sparsity by solving the constrained reweighted ¢; analysis problem:

min [|[WWix|; subjectto |ly—®x|2<e and x>0
RN

SARA
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Rl Imaging Sparse regularisation Algorithms Results

Distributed and parallelised convex optimisation

@ Solve resulting convex optimisation problems by proximal splitting.

Distributed and parallelised sparse convex optimization for radio interferometry with
PURIFY (Pratley, McEwen, et al. 2019; arXiv:1903.04502)

Load balancing for distributed interferometric image reconstruction (Pratley, McEwen
2019; arXiv:1903.07621)

@ Image 2 billion visibilities (measurements) on 50 nodes of HPC cluster.

Sparse imaging for SPIDER
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Rl Imaging Sparse regularisation Algorithms Results

Standard algorithms
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Rl Imaging Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms
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Rl Imaging Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms
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Rl Imaging Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms
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Rl Imaging Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms
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Rl Imaging Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms
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Rl Imaging Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms

5o 5o

& g o Y

%o
L. o0 ko
’ ’ , (CPU, GPU, Xeon Phi) (

Jason McEwen Sparse imaging for SPIDER



Rl Imaging Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms

ﬂ

( (]
& < b m <

. 2 o Y

%o
L. o0 ko
’ ’ , (CPU, GPU, Xeon Phi) (

Jason McEwen Sparse imaging for SPIDER



Rl Imaging Sparse regularisation Algorithms Results

Public open-source codes

PURIFY code

http://astro-informatics.github.io/purify/

Next-generation radio interferometric imaging

d’'Avezac, Carrillo, Christidi, Guichard, McEwen, Perez-Suarez,
Pratley, Wiaux

Project lead: McEwen

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code

http://astro-informatics.github.io/sopt/

Sparse OPTimisation

d’Avezac, Carrillo, Christidi, Guichard, McEwen, Perez-Suarez,
Pratley, Wiaux

Project lead: McEwen

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

Sparse imaging for SPIDER



http://astro-informatics.github.io/purify/
http://astro-informatics.github.io/sopt/

Sparse regularisation Algorithms Results
Imaging observations from the VLA and ATCA with PURIFY

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered
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Rl Imaging UQ (MCMC) UQ (MAP) Online Imaging Sparse regularisation Algorithms Results

PURIFY reconstruction
VLA observation of 3C129

(a) CLEAN (uniform) (b) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing
Outline

© Uncertainty quantification (MCMC sampling)
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

MCMC sampling and uncertainty quantification

Observed visibilities in Rl imaging: y

EN

‘ SEGR (Ul Pesiier 1y HPD credible regions: C,

MCMC methods: p(x|y)

\

[ Pixel-wise credible }

intervals: (§—,&4)

( Point estimator: @* )———(  Hypothesis testing

Uncertainty quantification for radio interferometric imaging: I. proximal MCMC methods
(Cai, Pereyra &McEwen 2018a; arXiv:1711.04818)
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P-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).
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P-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
e Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
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P-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
e Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity priors, which shown to be highly effective.

Sparse imaging for SPIDER



uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(z|y) = - e exp(f)

Posterior Smooth

Sparse imaging for SPIDER



uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(z|y) = - e exp(f)

Posterior Smooth

o If g(x) differentiable can adopt MALA (Langevin dynamics).
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(z|y) = e exp(f)

Posterior Smooth
o If g(x) differentiable can adopt MALA (Langevin dynamics).

@ Based on Langevin diffusion process L£(t), with 7 as stationary distribution:
1
dL(t) = 5Vlog m(L(t))dt +dW(t), L£(0)=1lo

where W is Brownian motion.

Sparse imaging for SPIDER



uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

Consider posteriors of the following form:

P(z|y) = e exp(f)

Posterior Smooth

If g(x) differentiable can adopt MALA (Langevin dynamics).

Based on Langevin diffusion process L£(t), with 7 as stationary distribution:

dL(t):% Viogn(£(8) |dt +dW(r), £(0) =10

Gradient

where W is Brownian motion.

Need gradients so cannot support sparse priors.

Sparse imaging for SPIDER



uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]

o Generalisation of projection operator:
Pc(x) = arg min [zc(u) + ||lu — a:HQ/Q] ,
u

where 1¢(u) = oo if u ¢ C and zero otherwise.

Sparse imaging for SPIDER



uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]

o Generalisation of projection operator:
Pc(x) = arg min [zc(u) + ||lu — a:HQ/Q] ,
u

where 1¢(u) = oo if u ¢ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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P-MALA MYULA Experiments Hypothesis testing
Proximal MCMC methods

@ Exploit proximal calculus.

@ “Replace gradients with sub-gradients”.

Y

2

Figure: Illustration of sub-gradients [Credit: Wikipedia (Maksim)]
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P-MALA MYULA Experiments
Proximal MALA

Moreau approximation

Hypothesis testing

o Moreau approximation of f(x) o exp(—g(x)):

2
fMA@) = sup f(u) exp( 1=
uERN 2)\

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Moreau approximation

o Moreau approximation of f(x) o exp(—g(x)):

2
fMA@) = sup f(u) exp( 1=
uERN 2)\

@ Important properties of fRAA(m):
QO Asx—0, M (x) - f(x)

@ Viog fiM(2) = (prox;(x) — =)/A

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(x | y) = 7(x) exp(—

Convex
—

Sparse imaging for SPIDER



uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(z |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

dL(t) = %Vlogfr(ﬁ(t))dt +dW(t), L£(0)=1o.

Sparse imaging for SPIDER



uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(z |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

dL(t) = %Vlogfr(ﬁ(t))dt +dW(t), L£(0)=1o.

@ Euler discretisation and apply Moreau approximation to 7:

)
((m+1) — g (m) + 5 Vlogfr(l(m)) 4 Vow'™

Vlog mx(x) = (prox, (z) — x)/X

Sparse imaging for SPIDER



uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(z |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

1
dL(t) = 5v1og7r(z:(t))dt +dW(t), L(0)=1Io.
@ Euler discretisation and apply Moreau approximation to 7:

8
(m+D) — g(m) 5 Vieg (1) [+ Vow ™ .

Vlog mx(x) = (prox, (z) — x)/X

@ Metropolis-Hastings accept-reject step.

Sparse imaging for SPIDER



Proximal MALA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(x) = fi(x) + fa(x), where

P-MALA MYULA Experiments Hypothesis testing

fi(@) = plvie|

and | fa(x) = [ly — ®2|3/20

Prior

Likelihood

Sparse imaging for SPIDER



P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(@) = fi(@) + fo(a), where| fi(@) = ul|[W'z| |and| fa(z) = |ly — ®=|3/20°
Prior Likelihood

@ Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{u” ull1 + 552 3

ueRN
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g UQ (MCMC) UQ (MAP) Online In g P-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (:c — 5T (D — 'y)/202)

f1

Single forward-backward iteration

Sparse imaging for SPIDER



Rl Imaging UQ (MCMC) UQ (MAP) Online In g P-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (:c — 5T (D — 'y)/202)

f1

Single forward-backward iteration

@ Analytic approximation:

, where & = & — 6@T (dx — y)/202.

proxg/2(w) ~o+ W (softm;/Q(lllT'T;) = \IIT'T;))

Sparse imaging for SPIDER



P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

5]

o Let j(z(a)) = fi(a) + f2(a), where| fi(a) = ullals |and | f2(a) = ||y — ®Wall3/20°

Prior Likelihood

Sparse imaging for SPIDER



P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

o Let g(z(a)) = fi(a)+ fo(a), where

@ Must solve an optimisation problem for each iteration!

lly — W3 + |lu —all3 }
202 )

proxg/2(a) = argmin {u||u||1 4F
ueRL

Sparse imaging for SPIDER



g UQ (MCMC) UQ (MAP) Online In g P-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the synthesis case

Recall posterior: () o exp(—g(x)).

[
5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

Let §(z(a)) = fl (a)+ fz (a), where

@ Must solve an optimisation problem for each iteration!

lly — W3 + |lu —all3 }
202 )

proxg/Q(a) = argmin {u||u||1 IF
ueRL

o Taylor expansion at point a: ||y — ®Wu|j3 ~ ||y — ®Wa|? + 2(u — a) TWidf (dWa — y).

Then proximity operator approximated by

proxg/2(a) = prox:i/Z (a —swiof(owa — y)/202)

1

Single forward-backward iteration
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Proximal MALA

Computing proximity operators for the synthesis case

Recall posterior: () o exp(—g(x)).

[
5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

Let §(z(a)) = fl (a)+ fz (a), where

@ Must solve an optimisation problem for each iteration!

— OWyl2 u — a2
lly I3 + I Hz}

5/2, \ :
prox, (@) = argmin {p||u||1 —+ 252 3

u€eRL

o Taylor expansion at point a: ||y — ®Wu|j3 ~ ||y — ®Wa|? + 2(u — a) TWidf (dWa — y).

Then proximity operator approximated by

proxg/2(a) = prox:i/Z (a —swiof(owa — y)/202)

1

Single forward-backward iteration

o Analytic approximation:

proxg/Q(a) ~ soft 5 /2 (a —swiof(owa — y)/2a2)
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Moreau-Yosida approximation

@ Moreau-Yosida approximation (Moreau envelope) of f:

lu — 2|

(@)= inf f(u)+ 7

z ; o ; :
Figure: lllustration of Moreau-Yosida envelope of |z| for varying A [Credit: Stack exchange (ubpdqn)]
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Moreau-Yosida approximation

o Moreau-Yosida approximation (Moreau envelope) of f:

lu — 2|

(@)= inf f(u)+ 7

o Important properties of f&"Y(m)
O As)— 0, fW(z) = f(z)

Q@ VAY(x) = (z — prox}(z))/A

z ; o ; :
Figure: lllustration of Moreau-Yosida envelope of |z| for varying A [Credit: Stack exchange (ubpdqn)]
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

9@ = [ 1@ ] +[ @ ]i
) [%p]
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MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

5 k=
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogﬂ(ﬁ(t))dt +dw(t), £(0)=1Io .
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MYULA
MCMC sampling

P-MALA MYULA Experiments Hypothesis testing

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

x
(4
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):
1
dL(t) = 5v10g7r(L(t))dt +dw(t), £(0)=1Io .
@ Euler discretisation and apply Moreau-Yosida approximation to fi:

pmH) — glm) g Viegw(@™) |+ vVEw™ .

Viogn(x) ~ (prox?l () — :1:)//\ — Vfa(x)
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

5 S
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogw(ﬁ(t))dt +dw(t), £(0)=1Io .

@ Euler discretisation and apply Moreau-Yosida approximation to fi:

Viogn(x) ~ (prox?l () — :1:)//\ — Vfa(x)

@ No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
arbitrarily small. To achieve precision target e requires:
o Worst case: order N°log?(e~1)e~? iterations.

o Strong convexity worst case: order N log(N) log?(e~!)e~2 iterations.
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Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(z) = fi(@) + f2(@), where | fi(x) = p|W'z||; |and [ fo(@) = |ly — &3 /257
Prior Likelihood
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(x) = fi(x) + fa(x), where

fi(@) = pl|Wiz|; |and [ fo(@) = |ly — &3 /257
Prior Likelihood

@ Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox{/z(w) =z+W (softﬂa/Q(WTw) “’Tw)) ’
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Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(a(a) = fi(a) + fa(a), where| fi(a) = plalls |and | fa(a) = [ly — ®Wal3/20°

Prior Likelihood
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

fi(a) = ullalls {and| fa(a) = ||y — ®Wal3/20°

Prior Likelihood

o Let g(z(a)) = fi(a)+ fa(a), where

@ Only need to compute proximity operator of fi, which can be computed analytically
without any approximation:

prox‘;{Q(a,) = soft,,5/2(a)

Sparse imaging for SPIDER
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Numerical experiments
MYULA with analysis model

(a) Ground truth

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image

Figure: Cygnus A
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uQ (MCMCQC) P-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: Cygnus A
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Rl Ima uQ (MCMC) UQ (MAP) Online Ima P-MALA MYULA Experiments Hypothesis testing

a1 6 |
| .I .Y

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Numerical experiments
MYULA with analysis model

Figure: HII region of M31
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Rl Imaging UQ (MCMC) UQ (MAP) Online Imaging P-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: W28 Supernova remnant
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uQ (MCMC) UQ (MAP) Online Ima P-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

- { .
| nl |

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: 3C288
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Numerical experiments
Computation time

Table: CPU time in minutes for Proximal MCMC sampling

CPU time (min)

Image Method Analysis  Synthesis
Cvenus A P-MALA 2274 1762
ygnu MYULA 1056 942
M31 P-MALA 1307 944
MYULA 618 581

P-MALA 1122 879

W28 MYULA 646 598
P-MALA 1144 881

3C288 MYULA 607 538
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.

@ Inpaint background (noise) into region, yielding surrogate image x'.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:
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uQ (MCMC) P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.
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uQ (MCMC) P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.

o If &’ € C, uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: HII region of M31
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Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: Cygnus A
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(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: Cygnus A
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. 1. Cannot reject null
‘ hypothesis
' = cannot make strong
statistical statement about
origin of structure

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: Cygnus A
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Rl Imaging UQ (MCMC) UQ (MAP) Online Imaging

Hypothesis testing

Numerical experiments

(a) Recovered image

P-MALA MYULA Experiments Hypothesis testing

Figure: Supernova remnant W28
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Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28
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Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28
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Hypothesis testing

Numerical experiments

2[ ]
- ‘
1 :

(a) Recovered image

Figure: 3C288
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Hypothesis testing

Numerical experiments
(a) Recovered image (b) Surrogate with region removed

Figure: 3C288
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Rl Imaging UQ (MCMC) UQ (MAP) Online Imaging P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing

Numerical experiments
1. Reject null hypothesis
(a) Recovered image (b) Surrogate with region removed

= structure physical

2. Cannot reject null
hypothesis

= cannot make strong
statistical statement about
origin of structure

Figure: 3C288
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Outline

© Uncertainty quantification (MAP estimation)
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Proximal MCMC sampling and uncertainty quantification

Observed visibilities in Rl imaging: y

EN

‘ SEGR (Ul Pesiier 1y HPD credible regions: C,

MCMC methods: p(x|y)

\

[ Pixel-wise credible }

intervals: (§—,&4)

( Point estimator: @* )———(  Hypothesis testing

Uncertainty quantification for radio interferometric imaging: I. proximal MCMC methods
(Cai, Pereyra &McEwen 2018a; arXiv:1711.04818)

Sparse imaging for SPIDER
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

MAP estimation and uncertainty quantification

Observed visibilities in Rl imaging: y

MAP image Approximate HPD
estimation: Tmap credible regions: Cy

Approximate local credible
intervals: (£—,&4)

Hypothesis testing

Uncertainty quantification for radio interferometric imaging: 1l. MAP estimation
(Cai, Pereyra &McEwen 2018b; arXiv:1711.04819)
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Approximate Bayesian credible regions for MAP estimation

Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Analytic approximation of ~y4:

Yo = g(®*) + N(1a + 1)

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b).

where 7o, =

o Define approximate HPD regions by Co = {@ : g(x) < Fa}.
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

o Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

@ Analytic approximation of vq:

Yo = g(®*) + N(1a + 1)

where 7o, =

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b).

o Define approximate HPD regions by Co = {@ : g(x) < Fa}.

o Compute x* by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.

Sparse imaging for SPIDER
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2018b)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2018b)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).

Consider the test image with the 2 region replaced by constant value &:

' =x"(T-¢)+& |
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2018b)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).

Consider the test image with the 2 region replaced by constant value &:

' =x"(T-¢)+& |

Given 7, and x*, compute the credible interval by

é— = mEin {f ‘ gy(m/) < Ao, V€ € [—o0, +OO)} B

Ee = mgx{s | 9y(x') < Aa, V€ € [—00,+00)} .
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Numerical experiments

P-MALA

MAP

o |
Ed

() point estimat (b) local credible interval (c) local credible interval (d) local credible interval
a) point estimators

(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments
| .

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

P-MALA

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

P-MALA

& |

G 5
4 |

&d £

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

R
.| R
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d
-,ﬁg‘ B
. _
<
] | |

(b) local credible interval (c) local credible interval (d) local credible interval

(a) point estimators L R . ) N .
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.

Sparse imaging for SPIDER



Rl Imag UQ (MCMC) UQ (MAP) Online Imaging Local credible intervals Experiments Hypothesis testing

Numerical experiments

A |
Ed &1
El

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

P-MALA

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.

Sparse imaging for SPIDER



Rl Imaging UQ (MCMC) UQ (MAP) Online Imaging Local credible intervals Experiments Hypothesis testing

Numerical experiments

P-MALA

o | '
<121 1
N

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

P-MALA

& | *
<121 1 |
5 |
<4y | |

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Rl Imaging UQ (MCMC) UQ (MAP) Online Imaging Local credible intervals Experiments Hypothesis testing

Numerical experiments

P-MALA

MAP

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

(a) point estimators

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Numerical experiments

P-MALA

i

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Numerical experiments

P-MALA

MAP

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

(a) point estimators

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Numerical experiments

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

P-MALA

MAP

(a) point estimators

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Numerical experiments

P-MALA

MAP

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

(a) point estimators

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

P-MALA

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

P-MALA

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

P-MALA

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

P-MALA

MAP

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

(a) point estimators

Figure: Length of local credible intervals for 3C288 for the analysis model.
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uQ (MAP) Local credible intervals Experiments Hypothesis testing
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uQ (MAP) Local credible intervals Experiments Hypothesis testing

Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

CPU time

Image  Method Analysis Synthesis

P-MALA 2274 1762

Cygnus A MYULA 1056 942
MAP .07 .04

P-MALA 1307 944

M31  MYULA 618 581
MAP .03 .02

P-MALA 1122 879

W28  MYULA 646 598
MAP .06 .04

P-MALA 1144 881

3C288 MYULA 607 538
MAP .03 .02

Sparse imaging for SPIDER



Local credible intervals Experiments Hypothesis testing
Hypothesis testing

Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Test Ground Hypothesis
Image area truth Method test

P-MALA

M31 1 v MYULA
MAP

P-MALA

Cygnus A 1 v MYULA*
MAP

P-MALA

W28 1 v MYULA
MAP

P-MALA

1 v MYULA
MAP

P-MALA

2 X MYULA
MAP

3C288

3 X XN N NN N N[X X XSS

(* Can correctly detect physical structure if use median point estimator.)
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Online imaging

@ Online radio interferometric imaging (Cai, Pratley & McEwen 2019; arXiv:1712.04462)

@ Perform image reconstruction simultaneously with data acquisition.

o Assimilate data on arrival and then discard.
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Online Imaging

Online imaging

@ Online radio interferometric imaging (Cai, Pratley & McEwen 2019; arXiv:1712.04462)
@ Perform image reconstruction simultaneously with data acquisition.

o Assimilate data on arrival and then discard.

o Dramatically reduces data storage requirements.

o Additional computational savings.

o Theoretical guarantee that recover same fidelity as offline approach.
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Online imaging
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Figure: Online radio interferometric imaging.
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Online imaging

Storage and computational savings
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Figure: Comparison between images reconstructed by the offline and online algorithms for M31.
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Figure: Comparison between images reconstructed by the offline and online algorithms for Cygnus A.
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Figure: Comparison between images reconstructed by the offline and online algorithms for W28.
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Figure: Comparison between images reconstructed by the offline and online algorithms for 3C288.
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Online imaging
Reconstruction fidelity
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Figure: SNR vs iteration number for M31.

Sparse imaging for SPIDER



Online Imaging

Online imaging
Reconstruction fidelity
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Figure: SNR vs iteration number for Cygnus A.
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Online imaging
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Figure: SNR vs iteration number for W28.
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Online imaging
Reconstruction fidelity
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Figure: SNR vs iteration number for 3C288.
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Conclusions

@ Sparse priors for radio interferometry highly effective, with efficient implementations.

o PURIFY code provides robust framework for imaging interferometric observations
(http: //astro-informatics.github. io/purify/).

o SOPT code for efficient and distributed sparse regularisation
(http://astro-informatics.github.io/sopt/).
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@ Uncertainty quantification to support sparse priors efficiently in full Bayesian framework:
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© Online imaging to perform imaging simultaneously with data acquisition:
o Dramatically reduce storage requirements.

o Additional computational savings.
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Conclusions

@ Sparse priors for radio interferometry highly effective, with efficient implementations.

o PURIFY code provides robust framework for imaging interferometric observations
(http: //astro-informatics.github. io/purify/).

o SOPT code for efficient and distributed sparse regularisation
(http://astro-informatics.github.io/sopt/).

@ Uncertainty quantification to support sparse priors efficiently in full Bayesian framework:
o Recover Bayesian credible intervals.

o Perform hypothesis testing to test whether structure physical.

© Online imaging to perform imaging simultaneously with data acquisition:
o Dramatically reduce storage requirements.

o Additional computational savings.

[ Potential to apply to SPIDER imaging.
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