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0 Wavelets on the sphere
@ Continuous wavelets via stereographic projection
@ Continuous wavelets via harmonic dilation
@ Scale-discretised wavelets

@ Wavelets on the ball
@ Harmonic transforms
@ Fourier-Laguerre convolution
@ Scale-discretised wavelets

e Cosmic strings
@ Observational signatures
@ Detection algorithm
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Wavelets on the Sphere Contini

utline

0 Wavelets on the sphere
@ Continuous wavelets via stereographic projection
@ Continuous wavelets via harmonic dilation
@ Scale-discretised wavelets
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Wavelets on the Sphere Continuous (stereographic) Contint harmonic)

Recall wavelet transform in Euclidean space

@ Project signal onto wavelets

W(a.t) = (o) =1l [ aerwt (0,

where

_ t—>b
Yap = |al I/Zw( a )
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Wavelets on the Sphere Continuous (stereographic) Contint

Recall wavelet transform in Euclidean space

@ Project signal onto wavelets

W(a.t) = (o) =1l [ aerwt (0,

where

_ t—>b
Yap = |al I/Zw( a )

@ Synthesis signal from wavelet coefficients

oo oo d
iy =cy' / db/ al W (a, b)tba.s (7).
J —co JO =

@ Admissibility condition to ensure perfect reconstruction

oo dk -
0< Cy E/ W [9(K)]* < oo.
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Wavelets on the Sphere Continuous (stereographic) Continuous (harmonic

Recall wavelet transform in Euclidean space

W(g-3K)

Repeat Shifting Operation

Wi{d/2)

Figure: Wavelet scaling and shifting (Credit: http: //www.waveletiorg/tatorial /)
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Wavelets on the Sphere Continuous (stereographic) Contint harmonic)

Continuous wavelets on the sphere

@ One of the first natural wavelet construction on the sphere was derived in the seminal work of
Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.
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Wavelets on the Sphere Continuous (stereographic) Contint

Continuous wavelets on the sphere

@ One of the first natural wavelet construction on the sphere was derived in the seminal work of
Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(0AIW) =f(p~" - w), w=(0,9) €S, p=(a,B,v) €SO(3).
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Wavelets on the Sphere Continuous (stereographic) Contint

Continuous wavelets on the sphere

@ One of the first natural wavelet construction on the sphere was derived in the seminal work of
Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(0AIW) =f(p~" - w), w=(0,9) €S, p=(a,B,v) €SO(3).

@ How define dilation on the sphere?
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Wavelets on the Sphere Continuous (stereographic) Contint

Continuous wavelets on the sphere

@ One of the first natural wavelet construction on the sphere was derived in the seminal work of
Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(p)(w) =f(p~" w), w=(0,9) €S, p=(x,p,7) €S0(3).

@ How define dilation on the sphere? P
North pole-{--

@ The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection II:

r = 2tan(2)

D) =11 'd(a)1I.

South pole

Figure; Stereographic-projection.
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Wavelets on the Sphere Continuous (stereographic) Continu

Continuous wavelet analysis

@ Wavelet family on the sphere constructed from rotations and dilations of a mother spherical
wavelet W:
{V,, =R(p)D(@)¥ : p € SO(3), a € R} }.
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Wavelets on the Sphere Continuous (stereographic) Contint harmonic)

Continuous wavelet analysis

@ Wavelet family on the sphere constructed from rotations and dilations of a mother spherical
wavelet W:
{V,, =R(p)D(@)¥ : p € SO(3), a € R} }.

@ The forward wavelet transform is given by

f e o : N £, E
Woa,p) = (. V) = [ 49() () ] ().

where dQ2(w) = sin 6 d0 de is the usual invariant measure on the sphere.
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Wavelets on the Sphere Continuous (stereographic) Contint

Continuous wavelet analysis

@ Wavelet family on the sphere constructed from rotations and dilations of a mother spherical
wavelet W:
{V,, =R(p)D(@)¥ : p € SO(3), a € R} }.

@ The forward wavelet transform is given by

f e o : N £, E
Woa,p) = (. V) = [ 49() () ] ().

where dQ2(w) = sin 6 d0 de is the usual invariant measure on the sphere.

@ Wavelet coefficients (of, say, the CMB) live in SO(3) x R} ; thus, directional structure is
naturally incorporated.
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Wavelets on the Sphere Continuous (stereographic) Continuo

Continuous wavelet analysis

@ Wavelet family on the sphere constructed from rotations and dilations of a mother spherical
wavelet W:
{V,, =R(p)D(@)¥ : p € SO(3), a € R} }.

@ The forward wavelet transform is given by

f e o : N £, E
Woa,p) = (. V) = [ 49() () ] ().

where dQ2(w) = sin 6 d0 de is the usual invariant measure on the sphere.

@ Wavelet coefficients (of, say, the CMB) live in SO(3) x R} ; thus, directional structure is
naturally incorporated.

@ Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)

e Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001), Risbo (1996)
@ Separation of variables: Wiaux et al. (2005)

@ FastCSWT code available to download: http://www. jasonmcewen.org/
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Wavelets on the Sphere Continuous (stereographic) Continu

Mother wavelets

@ Correspondence principle between spherical and Euclidean wavelets: inverse stereographic
projection of an admissible wavelet on the plane yields an admissible wavelet on the sphere
(Wiaux et al. 2005).

@ Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:
U =1""0,,

where ¥, € L*(R?, d’) is an admissible wavelet in the plane.
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Wavelets on the Sphere Continuous (stereographic) Continu

Mother wavelets

@ Correspondence principle between spherical and Euclidean wavelets: inverse stereographic
projection of an admissible wavelet on the plane yields an admissible wavelet on the sphere
(Wiaux et al. 2005).

@ Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:
U =100,

where ¥, € L*(R?, d’) is an admissible wavelet in the plane.

@ Directional wavelets on sphere may be naturally constructed in this setting — they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(@) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Wavelets on the Sphere Continuous (stereographic) Continuous (harmonic)

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

Flw) = /090 da _/S.()(g) dg(p)Wfp (a, p) [R(/))Z\p\l’u](u}) s

a3

where do(p) = sin B da dS dv is the invariant measure on the rotation group SO(3).
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Wavelets on the Sphere Continuous (stereographic) Contint harmonic)

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

Flw) = /090 da _/S.()(g) dg(p)Wfp (a, p) [R(/))Z\p\l’u](u}) s

a3

where do(p) = sin B da dS dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

~ 87 2 £ "> da
L 2
0< Cy = - v, < o0, V¢ e N
v B ,,E :[/0 5 | (Wa)g, | )

"

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).
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Wavelets on the Sphere Continuous (stereographic) Continuo

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

Flw) = /090 da _/S'()(z) d@</’>W<TJ (a, p) [R(/))Z\p\PU](uJ) s

a3

where do(p) = sin B da dS dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

8 - "o da 7
— | (T, 2cco. WLEN
2+1 ,,;,/o a3 [ (Wa) g, |"< o0,

"

0<Ch =

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

@ Continuous wavelets used in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

@ BUT...
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Wavelets on the Sphere Continuous (stereographic) Continuo

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

Flw) = /090 da _/S'()(z) d@</’>W<TJ (a, p) [R(/))Z\p\PU](uJ) s

a3

where do(p) = sin B da dS dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

8 - "o da 7
— | (T, 2cco. WLEN
2+1 ,,;,/o a3 [ (Wa) g, |"< o0,

"

0<Ch =

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

@ Continuous wavelets used in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

@ BUT... exact reconstruction not feasible in practice!

Jason McEwen Signal processing on spherical manifolds



Wavelets on the Sphere Continu aphic) Continuous (harmonic) ¢

Continuous wavelets on the sphere via harmonic dilation

@ Define dilation by scaling in harmonic space (McEwen et al. 2006):

2041
Uy(a) = "/T; Yon(ta) ,
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Wavelets on the Sphere lic) Continuous (harmonic) S

Continuous wavelets on the sphere via harmonic dilation

@ Define dilation by scaling in harmonic space (McEwen et al. 2006):

20 1
Up(a) = 1/ 8; Y, (ta) .

@ Wavelet analysis and synthesis defined in the same manner as stereographic wavelets.

@ Admissibility condition defined on the wavelet generating functions T

L
> dg
o<ch=3 / 7’ L) < oo

m=—¢"0
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Wavelets on the Sphere Contint raphic) Continuous (harmonic)

Continuous wavelets on the sphere via harmonic dilation

@ Define dilation by scaling in harmonic space (McEwen et al. 2006):

20 1
Up(a) = 1/ 8; Y, (ta) .

@ Wavelet analysis and synthesis defined in the same manner as stereographic wavelets.

@ Admissibility condition defined on the wavelet generating functions Y

L
> dg
o<ch=3 / 7’ L) < oo

m=—¢"0

@ Define admissible wavelet in harmonic space:

(La—1)%+(m—m)? (a)2+L2 + (m—m)?
- 2 - 2 .

Y, (la) =e

Figure: Harmonic-dilation Morlet wavelet.
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Wavelets on the Sphere Continuou ereographic) Continuous (harmonic) Scale-discretised

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!
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Wavelets on the Sphere Continuo raphic) Contint harmonic) Scale-discretised

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!

@ Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere

@ Alternatives: isotropic wavelets, pyramidal wavelets, ridgelets, curvelets (Starck et al. 2006);
needlets (Narcowich et al. 2006, Baldi et al. 2009, Marinucci et al. 2008)
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Wavelets on the Sphere Continuo raphic) Contint harmonic) Scale-discretised

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!

@ Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere

@ Alternatives: isotropic wavelets, pyramidal wavelets, ridgelets, curvelets (Starck et al. 2006);
needlets (Narcowich et al. 2006, Baldi et al. 2009, Marinucci et al. 2008)

@ Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).
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Wavelets on the Sphere Continuo raphic) Contint harmonic) Scale-discretised

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!
@ Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere

@ Alternatives: isotropic wavelets, pyramidal wavelets, ridgelets, curvelets (Starck et al. 2006);
needlets (Narcowich et al. 2006, Baldi et al. 2009, Marinucci et al. 2008)

, =2 j=3 j=5 @ Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).
0.8
@ The scale-discretised wavelet ¥ € L*(S?,dQ) is
0.6 defined in harmonic space:
04 Uy, = Ko (14)521',,, .
0.2
@ Construct wavelets to satisfy a resolution of the
identity for0 < ¢ < L:
12 4 8 16 32

J
' ®Y (a’0) + 3Ky (of
j=0

Figure: Harmonic tiling on the sphere.
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Wavelets on the Sphere

inuous (ste iic) Continuous (harmonic) Scale-discretised

Scale-discretised wavelets on the sphere
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Figure: Spherical scale-discretised wavelets.
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Wavelets on the Sphere t Continuous (harmonic) Scale-discretised

Scale-discretised wavelets

Figure: Spherical scale-discretised wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wo (0 /) = (.9, ) = [, 40) @) ¥ ().
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Wavelets on the Sphere

Scale-discretised wavelets o

Continuous (harmonic) Scale-discretised
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Figure: Spherical scale-discretised wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wo (0 /) = (.9, ) = [, 40) @) ¥ ().

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

@) = @] @)+ 3 / o 420 W (0:0) [RO) LY ] @) -
j=0 3
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Wavelets on the Sphere Continuous (stereographic) Continuous (harmonic) Scale-discretised

Steerability

@ The scale-discretised wavelet U € L*(S?, d2) is defined in harmonic space in factorised form:

Uy = K (£)Sy, .

@ Without loss of generality, impose

Z ‘SZH‘Z =1,

m

such that localisation governed largely by Ky (¢) and directionality by S} .
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Wavelets on the Sphere Continuo aphic) Contint harmonic) Scale-discretised

Steerability

@ The scale-discretised wavelet U € L*(S?, d2) is defined in harmonic space in factorised form:

Uy = K (£)Sy, .

@ Without loss of generality, impose

Z ‘SZH‘Z =1,

m

such that localisation governed largely by Ky (¢) and directionality by S} .

@ By imposing an azimuthal band-limit N, i.e. S}, = 0, Vm > N, we recover steerable wavelets

that satisfy
2N—-2

(REOOW) () = D k(x — xp) (R7(xp) V) (w) .

p=0
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Wavelets on the Sphere Continuo aphic) Contint harmonic) Scale-discretised

Steerability

@ The scale-discretised wavelet U € L*(S?, d2) is defined in harmonic space in factorised form:

Uy = K (£)Sy, .

@ Without loss of generality, impose

Z ‘SZH‘Z =1,

m

such that localisation governed largely by Ky (¢) and directionality by S} .

@ By imposing an azimuthal band-limit N, i.e. S}, = 0, Vm > N, we recover steerable wavelets
that satisfy
2N—2

(REOOW) () = D k(x — xp) (R7(xp) V) (w) .

p=0

@ By the linearity of the wavelet transform, property extends to wavelet coefficients.
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Wavelets on the Sphere Continu ographic) Continu harmonic) Scale-discretised

Fast algorithms

@ Wavelet analysis can be posed as an inverse Wigner transform on SO(3):
20 + 1

W) = (f, W) ="

£mn

(W(I//)llmz mn (/’) 5

where

f \¢
(W\I/./)/mz - 2£+ lflm (” s

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski
2001).
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Wavelets on the Sphere Continuo raphic) Contint harmonic) Scale-discretised

Fast algorithms

@ Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

Wo(p) = (f, W) = 30 ]

£mn

(W(I//)llwz mn (/’) 5

where

W) = w W
( \I/./)/mz 2£+ lj[ (u

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski
2001).

@ Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

_ 2041 ;
fin =32 2 W)L,

jn

where

fye f ¢
W)t = o, 32600 Wy (0D (p)

which can be computed efficiently via a factoring of rotations (Risbo 1996) and exactly by
employing the Driscoll & Healy (1994) sampling theorem.
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Wavelets on the Sphere Cont c) Co (harmonic) Scale-discretised

Driscoll & Healy (DH) sampling theorem

@ Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994).

= ‘ Npu = (2L — 1)2L + 1 ~ 4L? samples on the sphere. ‘

Figure: Sample positions of the DH sampling theorem.
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Wavelets on the Sphere Continu iic) Continuous (harmonic) Scale-discretised

McEwen & Wiaux (MW) sampling theorem

@ A new sampling theorem on the sphere (McEwen & Wiaux 2011).

= ‘ Nuw = (L — 1)(2L — 1) + 1 ~ 2L* samples on the sphere.

@ Reduced the Nyquist rate on the sphere by a factor of two.

Figure: Sample positions of the MW sampling theorem.
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Wavelets on the Sphere Continu aphic u a Scale-discretised

Codes to compute harmonic transforms

SSHT code: Spin spherical harmonic transforms
A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

All codes available from: http://www. jasonmcewen.org/
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Wavelets on the Sphere Continu (harmonic) Scale-discretised

Codes to compute scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

@ Fortran
@ Parallelised

@ Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

@ C, Matlab, IDL, Java
@ Support only axisymmetric wavelets at present
@ Future extensions:

@ Directional, steerable wavelets
@ Faster algorithms to perform wavelet transforms
@ Spin wavelets

All codes available from: http://www. jasonmcewen.org/
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Wavelets on the Sphere Continuo ereographic) Continuous (harmonic) Scale-discretised

Scale-discretised wavelets on the sphere

10 1 1 1 1 1 1 1 1 1 1 1
16 32 64 128 256 512 1024 2048 4096
L

I
o

Figure: Computation time of the scale-discretised wavelet transform.
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Wavelets on the Sphere Continuc ereographic) Continuous (harmonic) Scale-discretised

Scale-discretised wavelets on the sphere

10" F . L0

<10° -

-2

4

10

4 8 16 32 64 128 256 512 1024 2048 4096
L

Figure: Numerical accuracy of the scale-discretised wavelet transform.
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Wavelets on the Sphere Continu Continu c) Scale-discretised

Scale-discretised wavelet transform of the Ea

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Wavelets on the Ball

@ Wavelets on the ball
@ Harmonic transforms
@ Fourier-Laguerre convolution
@ Scale-discretised wavelets
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Wavelets on the Sphere  Wavelets on the Ball Cosmic Strings Harmonic transforms G ion  Scale-di i
Galaxy surveys
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Credit: SDSS
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Wavelets on the Ball Harmonic transforms  Convolution sed wavelets

Fourier-Laguerre transform on the ball

@ Fourier-Bessel functions are the canonical orthogonal basis on the sphere — but do not admit
a sampling theorem.
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Wavelets on the Ball Harmonic transforms  Cc

Fourier-Laguerre transform on the ball

@ Fourier-Bessel functions are the canonical orthogonal basis on the sphere — but do not admit
a sampling theorem.

@ Developed a Fourier-Laguerre transform and corresponding sampling theorem on the ball
(Leistedt & McEwen 2012).
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Wavelets on the Ball Harmonic transforms  Cc

Fourier-Laguerre transform on the ball

@ Fourier-Bessel functions are the canonical orthogonal basis on the sphere — but do not admit
a sampling theorem.

@ Developed a Fourier-Laguerre transform and corresponding sampling theorem on the ball
(Leistedt & McEwen 2012).

@ Define the radial basis functions by

—r/2r .
- pl e 0] I)

K,(r) = —_— L -,

=G v

where Lf,z) is the p-th generalised Laguerre polynomial of order two.

@ Define the Fourier-Laguerre basis functions by Zy,,,,(r) = K, (r)Y s, (w).
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Wavelets on the Ball Harmonic transforms  Convolution sed wavelets

Fourier-Laguerre transform on the ball

@ For a band-limited signal, we can compute the Fourier-Laguerre transform exactly.

@ Compute Fourier-Bessel coefficients exactly from Fourier-Laguerre coefficients.

1 0_1 6 1 1 1 1 1 1 1 1
27 21“ -21.‘5 2]1) 215\ 222 223 223
N

Figure: Numerical accuracy of Fourier-Laguerre transform
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Wavelets on the Ball Harmonic transforms Convolution Scale-discretise:

Fourier-Laguerre transform on the ball

@ Fast algorithms to compute the Fourier-Laguerre transform.

)
2%

210 215 916 210 222 925 22!»‘

Figure: Computation time of Fourier-Laguerre transform
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Wavelets on the Ball

Codes to compute

FLAG code: Fourier-Laguerre transforms
Exact wavelets on the ball
Leistedt & McEwen (2012)

SSHT code: Spin spherical harmonic transforms
A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

All codes available from: http://www. jasonmcewen.org/

Jason McEwen Signal processing on spherical manifolds


http://www.jasonmcewen.org/

Wavelets on the Ball Harmonic s Convolution S

Fourier-Laguerre translation and convolution

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(T p)(¥) = b — 1) = ¢F, (W) s (x) -
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Wavelets on the Ball Harmonic s Convolution S

Fourier-Laguerre translation and convolution

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(77}{(),“,)()() = g (x —u) = ¢ (U)o (x) .

@ Define translation of the spherical Laguerre basis functions on the radial line by analogy:
(ToKp) (r) = Ky($)Ky(r) -
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Wavelets on the Ball Harmonic s Convolution S

Fourier-Laguerre translation and convolution

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(T p)(¥) = b — 1) = ¢F, (W) s (x) -

@ Define translation of the spherical Laguerre basis functions on the radial line by analogy:
(ToKp) (r) = Ky($)Ky(r) -

@ Define convolution on the radial line of by
(=m0 = G170 = [ a5 5(s) (T (),

from which it follows that radial convolution in harmonic space is given by the product
(f *h), = (f * h|Kp) = fohp .
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Wavelets on the Ball Harmon s Convolution

Fourier-Laguerre translation and convolution

@ Translation corresponds to convolution with the Dirac delta:

% 8)0) = SO HK K () = (TN -

p=0

Jason McEwen Signal processing on spherical manifolds



Wavelets on the Ball Harmonic rms  Convolution  Si

Fourier-Laguerre translation and convolution

@ Translation corresponds to convolution with the Dirac delta:

% 8)0) = SO HK K () = (TN -

p=0

1048 . T T T . T
3
R 1
2
g
0.1 015 02 025 03 035 04 045 05

T

Figure: Band limited translated Dirac delta functions
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Wavelets on the Ball Harmonic transforms Convolution Scale-discretised w

Fourier-Laguerre translation and convolution

@ Translation corresponds to convolution with the Dirac delta:

(f % 8)(r) = D _fkp($)Ky(r) = (TS)(r) -

p=0

180

r 180
(a) Wavelet kernel translated by r = 0.2 (b) Wavelet kernel translated by r = 042

Figure: Slices of an axisymmetric flaglet wavelet kernel plotted on the ball of radius R = 0.5.
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Wavelets on the Ball Harmonic transforms  Convolution Scale-discretised wavelets

Fourier-Laguerre translation and convolution

@ Translation corresponds to convolution with the Dirac delta:

(f % 8)(r) = D _fkp($)Ky(r) = (TS)(r) -

p=0

@ Angular aperture of localised functions (and flaglets) is invariant under radial translation.

180

180

(a) Wavelet kernel translated by r = 0.2 (b) Wavelet kernel translated by r = 042
Figure: Slices of an axisymmetric flaglet wavelet kernel plotted on the ball of radius R = 0.5.
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Wavelets on the Ball Harmonic S ition  Scale-discretised wavelets

Scale-discretised wavelets on the ball

@ Exact wavelets on the ball (Leistedt & McEwen 2012).

@ Define translation and convolution operators on the radial
line.
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Wavelets on the Ball Harmonic tion Scale-discretised wavelets

Scale-discretised wavelets on the ball

@ Exact wavelets on the ball (Leistedt & McEwen 2012).

@ Define translation and convolution operators on the radial
line.

@ Dilation performed in harmonic space.

@ Scale-discretised wavelet U ¢ L*(B°) is defined in
harmonic space:

VAR P £ P\
‘Il/g,,,p = r KX Y, Ky G Smo-

@ Construct wavelets to satisfy a resolution of the identity:

g 7
5 ol
(\fbm,,\“ +> > \\pgop\z) =1, V¢, p.

j=Jo il =’
J=J0 j —J(J

Figure: Tiling of Fourier-Laguerre space. 4m
2041
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Wavelets on the Ball Scale-discretised wavelets

Scale-discretised wavelets on the ball

180 180

@ G.J") = 4,9 ®) (G,") = (4,6)

0 0

180 180

© G,i") = (5,5) @) G,j") = (5,6)

Figure: Scale-discretised wavelets on the ball.
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Wavelets on the Ball Harmonic transforms  C ution Scale-discretised wavelets

Scale-discretised wavelets on the ball

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

\y//

0= (W)@ = (TR = [ o) TR ).

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

fr) = /35 W) (TR ®) (r +Z Z/ er‘w TR ) () .

i=Jo j' =i

@ Alternatives: Spherical 3D isotropic wavelets (Lanusse, Rassat & Starck 2012)
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Wavelets on the Ball E r 1 Scale-discretised wavelets

Code for scale-discretised wavelet on the ball

FLAGLET code
Exact wavelets on the ball
Leistedt & McEwen (2012)

@ C, Matlab, IDL, Java
@ Exact (Fourier-LAGuerre) wavelets on the ball — coined flaglets!

Available from: http://www. jasonmcewen.org/
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Wavelets on the Ball Harmonic trans s Convolution Scale-discretised wavelets

Scale-discretised wavelets on the ball

107 o : . . . , , ,
107" 1
<107 .
107" 1
1070k . . . : . : :
7 210 21 216 219 22 2% 2%
N

Figure: Numerical accuracy of the flaglet transform.
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Wavelets on the Ball Harmonic trans s Convolution Scale-discretised wavelets

Scale-discretised wavelets on the ball

i
27 210 215 216 210 222 225 22f<

Figure: Computation time of the flaglet transform.
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Wavelets on the Ball Harmonic transforms  Convolution Scale-discretised wavelets

Scale-discretised wavelet transform of N-body simulation

(d) Scaling coefficients e) (j,j') = (6,7) " G,J) = (7,7

Figure: Wavelet transform of of an N-body simulation.
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Wavelets on the Ball Harmonic transforms  Convolution Scale-discretised wavelets

Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.
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Wavelets on the Ball Harmonic transforms  Convolution Scale-discretised wavelets

Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.
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Cosmic Strings servational signatures Detection algorithm

Outline

e Cosmic strings
@ Observational signatures
@ Detection algorithm
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Wavelets on the Sphere  Wavelets on the Ball Cosmic Strings _
-IC structure

Cosmic Spheres of Time

2006 Abrams and Primack, Inc.
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Cosmic Strings Observational signatures Detection algorithm

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

it £

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmic Strings Observational signatures Detection algorithm

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmic Strings Observational signatures Detection algorithm

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

@ The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmic Strings Observational signatures Detection algorithm

Observational signatures of cosmic strings

@ Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).
Light rays

@ Strings moving transverse to the line of sight induce

line-like discontinuities in the CMB (Kaiser & Stebbins M
1984). soor < T[T[[f |||
%LV

@ The amplitude of the induced contribution scales with G,
the string tension.

H
Observer

s

Spacetime around a cosmic string. [Credit: Kaiser
& Stebbins 1984, DAMTP]

Jason McEwen Signal processing on spherical manifolds



Cosmic Strings Observational signatures Detection algorithm

Observational signatures of cosmic strings

@ Make contact between theory and data using high-resolution simulations.
@ Amplitude of the signal is given by the string tension Gp.

@ Search for a weak string signal s embedded in the CMB ¢, with observations d given by
d=c+s.

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Cosmic Strings Obs onal signatures  Detection algorithm

Using wavelets to detect cosmic strings

@ Ongoing work of McEwen, Feeney, Peiris, Wiaux,
Ringeval & Bouchet.

Figure: Example wavelet.
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Cosmic Strings Obs onal signatures  Detection algorithm

Using wavelets to detect cosmic strings

@ Ongoing work of McEwen, Feeney, Peiris, Wiaux,
Ringeval & Bouchet.

@ Adopt the scale-discretised wavelet transform on [0
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

(d, W;,) |forscalej € Z* and
P

osition SO(3). )
p P €50(3) Figure: Example wavelet.
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Cosmic Strings Ob: al signa s Detection algorithm

Using wavelets to detect cosmic strings

@ Ongoing work of McEwen, Feeney, Peiris, Wiaux,
Ringeval & Bouchet.

@ Adopt the scale-discretised wavelet transform on [0
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by | W, ) |for scale j € ZT and

position p € SO(3).

Figure: Example wavelet.

@ Wavelet transform yields a sparse representation of the string signal — hope to effectively separate
the CMB and string signal in wavelet space.

=
5 10

cmB
Cosmic strings

@ N

Probability density
N

Probability density

.

200 400 -40 40

0 -200

'
B0

0 -20 0 20
Pixel values ( 1K) Wavelet coefficients (k)

Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Cosmic Strings

s Detection algorithm
Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:

o\ 2
(%)
C C o = of
P./<Wi/)>_ ¢

J

) ., where (0})’ = (
2m(a})?

W;/) W/L/7x> = Z Ce [(¥))g,, 1"
m
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Cosmic Strings O ational signatures  Detection algorithm

Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:
R CTC DR
Pi(Wj,) = ———=e\ "\ where (o]) = (W, W,,") = 3 Cel(W),, -
2m(o¢)?

J £m

@ Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):
ﬂ,-)

-
“p
Gpv;

PW | Gu) Yj (7
N N = -
A Yo Y )

with scale parameter v; and shape parameter v;.

Figure: Generalised Gaussian distribution (GGD).
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

e
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale | =
@ Compare distribution learnt from the training * " " " : " e ara)
simulation (string2) with the distribution of the —— Fited (sting2)

testing simulation (string1).

@ Distributions in close agreement.

Probabilty density

8 6 -4 -2 0 2 4 6 8
Wavelet coefficient 6
x10

Figure: Distributions for wavelet scale j = 0.
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

*
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale j = 1
@ Compare distribution learnt from the training ™ " " " ' " e aral)
simulation (string2) with the distribution of the 2 — Fited (sting2)
testing simulation (string1).
1
@ Distributions in close agreement.
%DE
E 06
04
02
0
-2 -15 -1 -05 0 0s 1 15 2

Wavelet coefficient

Figure: Distributions for wavelet scale j = 1.

x10’
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

e
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale | = 2
@ Compare distribution learnt from the training ™ " " " " " e aral)
simulation (string2) with the distribution of the — Fited (sting2)

testing simulation (string1).

@ Distributions in close agreement.

Probabilty density

2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 2.
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

x10° ‘Wavelet coefficient distribution for scale | = 3

@ Compare distribution learnt from the training ! = Towymm
simulation (string2) with the distribution of the 03 —— Fited (string?)
testing simulation (string1).

@ Distributions in close agreement.

=

Probabilty density

2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 3.
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
%107 Wavelet coefficient distribution for scale j = 4
@ Compare distribution learnt from the training ° ‘ ‘ ‘ ‘ ‘ ot
simulation (string2) with the distribution of the —— Fitied (sting?)
testing simulation (string1). 5

IS

@ Distributions in close agreement.

Probabilty density

-2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 4.
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
%107 Wavelet coefficient distribution for scale j = 4
@ Compare distribution learnt from the training s ‘ ‘ ‘ ‘ ‘ ety
simulation (string2) with the distribution of the —— Fitied (sting?)
testing simulation (string1). 5

IS

@ Distributions in close agreement.

@ We have accurately characterised the statistics of
string signals in wavelet space.

Probabilty density

-2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 4.
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Cosmic Strings s Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.
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Cosmic Strings (0] onal signatures  Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

@ For each wavelet coefficient the likelihood is given by

P

i s , ' 5 e d s
P(W, | Gu) = P(W, +W/-p|GN):/p aw;, Pi(W), — W) P;(W,, | Gp) .

@ The overall likelihood of the data is given by

P(W'|Gu) = [ P(Wy, |G)

ip

where we have assumed independence.
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Cosmic Strings al signatures  Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o o
L D (o)

Probability density

o
[N}

Whesssesssssssssnaannnmmnm s

o 1 2 4
Gu x107°

Figure: Posterior distribution of the string tension (true Gu = 3 x 107°).
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Cosmic Strings al signatures  Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o
D (o)

I
N

Probability density

0.2r

=
<
-
o

Figure: Posterior distribution of the string tension (true Gu. = 2 x 10°).
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Cosmic Strings al signatures  Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o o
L D (o)
‘

Probability density

o
[N}

I e ————

2 3 4
Gu x107°

Figure: Posterior distribution of the string tension (true Gu. = 1 x 107°).
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Cosmic Strings ional signatures  Detection algorithm

Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M’ to the alternative model M* that
the observed data is comprised of just a CMB contribution.
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Cosmic Strings ional signatures  Detection algorithm

Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M’ to the alternative model M* that
the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

E =P(W! M) = /L d(Gp) P(W! | Gp) P(Gp) .

@ The Bayesian evidence of the CMB model is given by
EC=pPw! M) = [P(W,).

jp

@ Compute the Bayes factor to determine the preferred model:
AInE = In(E'/E°) .

Table: Tension estimates and log-evidence differences for simulations.

Gu/107° 0.7 0.8 0.9 1.0 2.0 3.0

Gu/107% 1.1 1.2 1.2 1.3 21 3.1
AlnE -13 —11 —09 —07 55 29
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Cosmic Strings ional signatures  Detection algorithm

Recovering string maps

@ Our best inference of the wavelet coefficients of the underlying string map is encoded in the
posterior probability distribution P(W? | w?).

JpP
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Cosmic Strings ional signatures  Detection algorithm

Recovering string maps

@ Our best inference of the wavelet coefflments of the underlying string map is encoded in the
posterior probability distribution P(W? | w?).

j/’

@ Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:
S d
W/p / dW/p ip P(W ip ‘ wo)
= [ 4(Gu) P(Gu 1) Wy (G
JR
where

W(Gl’):_/ dWw W P( //>‘ /P Gu)

P (W s
- P(W" ‘C'P«)/ io Wi B Wmfwm) P/(W

@ Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

@ Work in progress. ..

Jason McEwen Signal processing on spherical manifolds



Summary

@ Observations on spherical manifolds are prevalent.

@ Necessitate rigorous signal processing techniques on spherical manifolds:

@ Sampling theorems
o Wavelets
e Compressive sensing

@ In cosmology, sensitive methods are required to extract the weak signatures of new physics
from next-generation observations.
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