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Observations on spherical manifolds
Earth

Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings
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Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings

Observations on spherical manifolds
Interior of the Earth
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Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings

Observations on spherical manifolds
Diffusion magnetic resonance imaging

Credit: http://neuroimages.tumblr.com/
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Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings

Observations on spherical manifolds
Comeuter graehics

Credit: http://www.pauldebevec.com
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Observations on spherical manifolds
Computer graphics

Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings
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Cosmology

ampling Wavelet:

Compressive Sensing Cosmic Strings
Observations on spherical manifolds
Cosmolo

Cosmic Spheres of Time

006 Abrams and Primack, Inc
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0 Cosmology
@ Concordance cosmology

@ Cosmological observations

e Sampling Theorems
@ Sphere
@ Ball

e Wavelets
@ Continuous wavelets on the sphere
@ Scale-discretised wavelets on the sphere
@ Scale-discretised wavelets on the ball

e Compressive Sensing
@ Introduction
@ Sparse reconstruction
@ Future

e Cosmic Strings

@ Observational signatures
@ Detection algorithm
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Cosmology Concordance Observations

Outline

0 Cosmology
@ Concordance cosmology

@ Cosmological observations
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Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings

Concordance Observations
Cosmological concordance model
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Credit: WMAP Science Team
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Cosmology

ampling Wavelet:

Compre:

ive Sensing Cosmic Strings Concordance Observations
Cosmic microwave background (CMB)
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Credit: WMAP
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Cosmology Observations

Observations of the cosmic microwave background (CMB)

@ Full-sky observations of the CMB ongoing.

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

@ Each new experiment provides dramatic improvement in precision and resolution of

observations.
(cobe 2 wmap movie) (planck movie)
(d) COBE to WMAP [Credit: WMAP Science Team] (e) Planck observing strategy [Credit: Planck Collaboration]
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cobe2wmap.mp4
Media File (video/mp4)


664_Planck_sky-scan_HD_350x198.mov
Media File (video/quicktime)


Cosmology Concordance Observations

Cosmic microwave background (CMB)

@ Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

@ Compton scattering happened frequently = mean free
path of photons extremely small.

@ Universe consisted of an opaque photon-baryon fluid.
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Cosmology Con nce Observations

Cosmic microwave background (CMB)

@ Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

@ Compton scattering happened frequently = mean free
path of photons extremely small.

@ Universe consisted of an opaque photon-baryon fluid.

@ As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

@ Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

@ Recombination occurred when temperature of Universe
dropped to 3000K (~400,000 years after the Big Bang).
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Cosmology on Observations

Cosmic microwave background (CMB)

@ Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

@ Compton scattering happened frequently = mean free
path of photons extremely small.

@ Universe consisted of an opaque photon-baryon fluid.

@ As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

@ Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

@ Recombination occurred when temperature of Universe Credit: Max Tegmark
dropped to 3000K (~400,000 years after the Big Bang).

@ Photons then free to propagate largely unhindered and observed today on celestial
sphere as CMB radiation.

@ CMB is highly uniform over the celestial sphere, however it contains small fluctuations
at a relative level of 10~° due to acoustic oscillations in the early Universe.

@ CMB observed on spherical manifold, hence the geometry of the sphere must be
taken into account in any analysis.
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Cosmology Cor e Observations

Cosmic microwave background (CMB)

@ Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

@ Provide the seeds of structure formation in our Universe.
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Cosmology Concordance Observations

Cosmic microwave background (CMB)

@ Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

@ Provide the seeds of structure formation in our Universe.

@ Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

Multipole moment ¢

10 100 500
6000 T T T —

5000 £

4000 F

3000

2000 F

1000 F

Temperature Fluctuations [uK?]

90° 2° 05° 0.2°
Angular Size
Credit: WMAP Science Team
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Cosmology Concordance Observations

Cosmic microwave background (CMB)

@ Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

@ Provide the seeds of structure formation in our Universe.

@ Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

Multipole moment ¢
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Credit: WMAP Science Team

@ Although a general cosmological concordance model is now established, many details remain
unclear. Study of more exotic cosmological models now important.
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Cosmology

ampling Wavelet:

Compressive Sensing Cosmic Strings Concordance Observations
Galaxy surveys
———B—P—P—M——i—_i——tttihm__——_—

Credit: SDSS
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Concordance Observations

Cosmology

A new era of observational cosmology

@ We are entering a new era of observational cosmology:
@ Planck will provide full-sky observations of the cosmic microwave background (CMB) at unprecedented

resolution, sensitivity and frequency coverage.
The Dark Energy Survey (DES) will survey of an order of magnitude more galaxies than the previous
state-of-the-art.
@ The Euclid mission will survey more than a billion galaxies over more than one third of the sky, with

unprecedented precision.
@ The Square Kilometre Array (SKA) will have a sensitivity 50x that of previous radio telescopes.
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Concordance Observations

Cosmology

A new era of observational cosmology

@ We are entering a new era of observational cosmology:
@ Planck will provide full-sky observations of the cosmic microwave background (CMB) at unprecedented

resolution, sensitivity and frequency coverage.
The Dark Energy Survey (DES) will survey of an order of magnitude more galaxies than the previous
state-of-the-art.
@ The Euclid mission will survey more than a billion galaxies over more than one third of the sky, with

unprecedented precision.
@ The Square Kilometre Array (SKA) will have a sensitivity 50x that of previous radio telescopes.

(a) Planck (b) DES (c) Euclid (d) SKA

@ BUT... in order to develop a deeper understanding of cosmology, new instruments must be
complemented with novel scientific analyses.
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Sampling Sphere Ball

Outline

e Sampling Theorems
@ Sphere
@ Ball
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Sampling Sphere Ball

Spherical harmonic transform

@ The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
A Yo = —L(L+ 1)Yem.

I=4m=4  |=4,m=3

© e

Figure: Spherical harmonic functions.
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Sampling Sphere Ball

Spherical harmonic transform

@ A function on the sphere /' € L*(S*) may be represented by its spherical harmonic expansion:

o ¢
1o Z z fem Yem (0, ) -

where the spherical harmonic coefficients are given by:

fin = s Yeu) = [ 4626.) 16, 0) Vi 01 0)

@ Consider signals on the sphere band-limited at L, that is signals such that| /s, = 0, V¢ > L |.

@ For a band-limited signal, can we compute f;,, exactly?

Sampling theorems on the sphere
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Sampling Sphere Ball

Driscoll & Healy (DH) sampling theorem

@ Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994).

= ‘ Npu = (2L — 1)2L + 1 ~ 4L? samples on the sphere. ‘

Figure: Sample positions of the DH sampling theorem.
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Sampling Sphere Ball

McEwen & Wiaux (MW) sampling theorem

@ A new sampling theorem on the sphere (McEwen & Wiaux 2011).

= ‘ Nuw = (L — 1)(2L — 1) + 1 ~ 2L* samples on the sphere. ‘

@ Reduced the Nyquist rate on the sphere by a factor of two.

Figure: Sample positions of the MW sampling theorem.
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Sampling Sphere Ball

McEwen & Wiaux (MW) sampling theorem

@ New sampling theorem follows by associating the sphere with the torus through a periodic
extension.

@ Similar in flavour to making a periodic extension in 6 of a function  on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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Sampling Sphere Ball
pling P!

McEwen & Wiaux (MW) sampling theorem

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
inverse transform of ;/ may be written:

Inverse spherical harmonic transform

L—1

Sf(ea ‘P) = Z SFm(e) ei"w

m=—(L—1)

L—1

o)
Fu(8) = Z B & 0

m!=—(L—1)

L—1
_ 20+ 1
= Z / NN
sFomr = (_l)s 1 () = 47 m'm Sl —s ‘f@m

£ dé

mn = “mn

where A (7 /2) are the reduced Wigner functions evaluated at 7 /2.
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Sampling Sphere Ball

McEwen & Wiaux (MW) sampling theorem

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of ;f may be written:

Forward spherical harmonic transform
s [2EHT ¢ ¢
&fém = (71) 1 A Z Am'm Aml,7J sGmml

m! =—(L—1)

& 3 —im’ 0
Gt = / dOsin 0 ;G,,(0) e
0

27 .
G (6) = /0 dp F(8, ) e~
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Sampling Sphere Ball

Comparison
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Figure: Numerical accuracy (MW-=red; DH=green; GL=blue)
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Sampling Sphere Ball

Comparison

Computation time
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Figure: Computation time (MW=red; DH=green; GL=blue)
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Sampling Sphere Ball

Comparison
DH DH MW
Divide-and-conquer ~ Semi-naive

Pixelisation scheme equiangular equiangular  equiangular
Asymptotic complexity O(13*log)°L) o(L?) o(L?)
Precomputation Y N N
Stability N Y Y
Flexibility of Wigner recursion N N Y

N N Y

Spin functions

Number of samples 412 412 212
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Sampling Sphere Ball

Sampling theorem on the ball

@ Fourier-Bessel functions are the canonical orthogonal basis on the sphere — but do not admit
a sampling theorem.

@ Developed a new Fourier-Laguerre transform and the first sampling theorem on the ball
(Leistedt & McEwen 2012).
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Sampling Sphere Ball

Sampling theorem on the ball

@ Fourier-Bessel functions are the canonical orthogonal basis on the sphere — but do not admit
a sampling theorem.

@ Developed a new Fourier-Laguerre transform and the first sampling theorem on the ball
(Leistedt & McEwen 2012).

10 f i i i i i i i
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=

)

Figure: Numerical accuracy of Fourier-Laguerre transform
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Sampling Sphere Ball

Sampling theorem on the ball

@ Fourier-Bessel functions are the canonical orthogonal basis on the sphere — but do not admit
a sampling theorem.

@ Developed a new Fourier-Laguerre transform and the first sampling theorem on the ball
(Leistedt & McEwen 2012).
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Figure: Computation time of Fourier-Laguerre transform
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Sampling Si

Codes to compute harmonic transform

SSHT code: Spin spherical harmonic transforms
A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

FLAG code: Fourier-Laguerre transforms
Exact wavelets on the ball
Leistedt & McEwen (2012)

All codes available from: http://www. jasonmcewen.org/
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Wavelets Continuou:

Outline

e Wavelets
@ Continuous wavelets on the sphere
@ Scale-discretised wavelets on the sphere
@ Scale-discretised wavelets on the ball
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Wavelets Continuous Sphere  Ball

Wavelet transform in Euclidean space

W(g-3K)

Repeat Shifting Operation

Wi{d/2)

Figure: Wavelet scaling and shifting (Credit: http: //www.waveletiorg/tatorial /)
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Wavelets Continuous Sphere  Ball

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.
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Wavelets Continuous Sphere  Ball

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().
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Wavelets Continuous Sphere  Ball

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().

@ How define dilation on the sphere?
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Wavelets Continuous Sphere  Ball

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().

@ How define dilation on the sphere? P
North pole-{--

@ The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection II:

r = 2tan(2)..

D) =11 'd(a)1I.

South pole

Figure; Stereographic-projection.
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Wavelets Continuous Sphere  Ball

Continuous wavelet analysis

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet W:
{9, =R(P)D(@)¥ : p € SO3),a € R} }.

Jason McEwen Signal processing on spherical manifolds


http://www.jasonmcewen.org/

Wavelets Continuous Sphere  Ball

Continuous wavelet analysis

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet W:
{9, =R(P)D(@)¥ : p € SO3),a € R} }.

@ The forward wavelet transform is given by

Wi(ap) = . Vap) = [ 0900) ) ¥, @),

where dQ2(w) = sin 6 d6 dy is the usual invariant measure on the sphere.

@ Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Jason McEwen Signal processing on spherical manifolds


http://www.jasonmcewen.org/

Wavelets Continuous Sphere  Ball

Continuous wavelet analysis

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet W:
{9, =R(P)D(@)¥ : p € SO3),a € R} }.

@ The forward wavelet transform is given by

Wi(ap) = . Vap) = [ 0900) ) ¥, @),

where dQ2(w) = sin 6 d6 dy is the usual invariant measure on the sphere.

@ Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

@ Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)

e Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001)
@ Separation of variables: Wiaux et al. (2005)

@ FastCSWT code available to download: http://www. jasonmcewen.org/
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Wavelets Continuous Sphere  Ball

Mother wavelets

@ Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

@ Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:
U =1""0,,

where ¥, € L*(R?, d’) is an admissible wavelet in the plane.
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Wavelets Continuous

Mother wavelets

@ Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

@ Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:
U =100,

where ¥, € L*(R?, d’) is an admissible wavelet in the plane.

@ Directional wavelets on sphere may be naturally constructed in this setting — they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(@) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Wavelets Continuous Sphere  Ball

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

Flw) = /090 da _/S'()(z) d@</’>W<TJ (a, p) [R(/))Z\p\PU](uJ) s

a3

where do(p) = sin B da dS dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

8 - "o da 7
— | (T, 2o co. WLEN
2+1 ,,;,/o a3 [ (Wa) g, |"< o0,

"

0<Cy=

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).
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Wavelets Continuous  Spt

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

Flw) = /090 da _/S'()(z) d@</’>W<TJ (a, p) [R(/))Z\p\PU](uJ) s

a3

where do(p) = sin B da dS dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

4

"> da 5
3 /) (W) P< o0, VEEN
n=—1"C

8>

=~
0< Cy =
Y20+

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

@ Continuous wavelets used effectively in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

@ BUT...
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Wavelets Continuous Sphere  Ball

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

Flw) = /090 da _/S'()(z) d@</’>W<TJ (a, p) [R(/))Z\p\PU](uJ) s

a3

where do(p) = sin B da dS dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

8 - "o da 7
— | (T, 2o co. WLEN
2+1 ,,;,/o a3 [ (Wa) g, |"< o0,

"

0<Ch =

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

@ Continuous wavelets used effectively in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

@ BUT... exact reconstruction not feasible in practice!
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Wavelets Continuous  Sphere

Continuous harmonic-dilation wavelets on the sphere

@ Define dilation by scaling in harmonic space (McEwen et al. 2006):

20+ 1

\I/m,@) — 4 Py

Y (la) ,
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Wavelets Continuous Sphere  Ball

Continuous harmonic-dilation wavelets on the sphere

@ Define dilation by scaling in harmonic space (McEwen et al. 2006):

20 1
Up(a) = 1/ 8; Y, (ta) .

@ Wavelet analysis and synthesis defined in the same manner as stereographic wavelets.

@ Admissibility condition defined on the wavelet generating functions Y

L
> dg
o<ch=3 / 7’ L) < oo

m=—¢"0

@ Define admissible wavelet in harmonic space:

(La—1)%+(m—m)? (a)2+L2 + (m—m)?
- 2 - 2 .

Y, (la) =e

Figure: Harmonic-dilation Morlet wavelet.
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Wavelets Continuous Sphere Ball

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!

@ Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code
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Wavelets Continuous Sphere Ball

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!

@ Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code

@ Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).
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Wavelets Continuous Sphere Ball

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!

@ Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere

S2DW code
, 2 =3 j5 @ Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).
0.8
@ The scale-discretised wavelet ¥ € L(S?,d2) is
06 defined in harmonic space:
0.4 Uy, = Ko (é)SZ” .
0.2
@ Construct wavelets to satisfy a resolution of the
identity for 0 < ¢ < L:
12 4 8 16 32 P T )
¢ Py (@’0) + > Ky (o) = 1.

Jj=0
Figure: Harmonic tiling on the sphere.
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Wavelets

Scale-discretised wavelets on

Figure: Spherical scale-discretised wavelets.
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Wavelets

Scale-discretised wavelets o

Figure: Spherical scale-discretised wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wo (0 /) = (.9, ) = [, 40) @) ¥ ().
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Wavelets

Scale-discretised wavelets o

Figure: Spherical scale-discretised wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wo (0 /) = (.9, ) = [, 40) @) ¥ ().

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

@) = @] @)+ 3 / o 420 W (0:0) [RO) LY ] @) -
j=0 3
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Wavelets Continuous Sphere Ball

Scale-discretised wavelet transform of the Earth

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Wavelets Continuous Sphere Ball

Codes to compute scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

@ Fortran
@ Parallelised

@ Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

@ C, Matlab, IDL, Java
@ Support only axisymmetric wavelets at present
@ Future extensions:

@ Directional, steerable wavelets
@ Faster algorithms to perform wavelet transforms
@ Spin wavelets

All codes available from: http://www. jasonmcewen.org/
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Wavelets Continuous Sphere Ball

Translation and convolution on the radial line

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(T p)(¥) = b — 1) = ¢F, (W) s (x) -
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Wavelets Continuous Sphere Ball

Translation and convolution on the radial line

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(T p)(¥) = b — 1) = ¢F, (W) s (x) -

@ Define translation of the spherical Laguerre basis functions on the radial line by analogy:
(ToKp) (r) = Ky($)Ky(r) -
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Wavelets Continuous Sphere Ball

Translation and convolution on the radial line

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(T p)(¥) = b — 1) = ¢F, (W) s (x) -

@ Define translation of the spherical Laguerre basis functions on the radial line by analogy:
(ToKp) (r) = Ky($)Ky(r) -

@ Define convolution on the radial line of by
(f * ) (r) = (| Toh) = A L 4557 (s) (Toh) (5),

from which it follows that radial convolution in harmonic space is given by the product
(f * h), = (f % h|Kp) = fohp .
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Wavelets

Translation and convolution on the radial line

@ Translation corresponds to convolution with the Dirac delta:

(f % 8)(r) = D _fkp($)Ky(r) = (TS)(r) -

p=0

01 02 03 04

180
v

(a) Wavelet kernel translated by r = 0.2

10°

(EERSVAN

01 02 03 04

180

r

(b) Wavelet kernel translated by r = 0.4
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Wavelets Continuous Sphere Ball

Scale-discretised wavelets on the ball

@ Exact wavelets on the ball (Leistedt & McEwen 2012).

@ Define translation and convolution operators on the radial
line.

Jason McEwen Signal processing on spherical manifolds



Wavelets

Scale-discretised wavelets on the baII

@ Exact wavelets on the ball (Leistedt & McEwen 2012).

@ Define translation and convolution operators on the radial
line.

@ Dilation performed in harmonic space.

@ Scale-discretised wavelet U ¢ L*(B°) is defined in
harmonic space:

20+ 1 4 P -
” — J— JR—
‘II“”” o 47 A <)\f) o <u/’ Omo-

@ Construct wavelets to satisfy a resolution of the identity:

J
Figure: Tiling of Fourier-Laguerre space. (\(I) Jji 2 _
oopl” + Z Z \\I’mp =1, V¢, p.
2+1 J=hj' =44
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Wavelets

Scale-discretised wavelets on the ball

180 180

@ G.J") = 4,9 ®) (G,") = (4,6)

0 0

180 180

© G,i") = (5,5) @) G,j") = (5,6)

Figure: Scale-discretised wavelets on the ball.
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Wavelets Continuou:

Scale-discretised wavelets on the ball

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W ) = (% U () = (FITRLE Y

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

) = /B EFWE (TR <I))(r)+z Z/ W (TR W ) ()

i=Jo j! =1
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Wavelets

Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.
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Wavelets

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.
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Wavelets

Codes for scale-dis

FLAG code
Exact wavelets on the ball
Leistedt & McEwen (2012)

@ C, Matlab, IDL, Java
@ Exact Fourier-LAGuerre transform on the ball

FLAGLET code
Exact wavelets on the ball
Leistedt & McEwen (2012)

@ C, Matlab, IDL, Java
@ Exact (Fourier-LAGuerre) wavelets on the ball — coined flaglets!

All codes available from: http://www. jasonmcewen.org/
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Outline

e Compressive Sensing
@ Introduction
@ Sparse reconstruction
@ Future
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Compressive Sensing Introduction S econstr n Future

An introduction to compressive sensing

@ “Nothing short of revolutionary.”
— National Science Foundation

@ Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho
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Compressive Sensing Introduction  Sparse reconstruction Future

An introduction to compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.

@ Move compression to the acquisition stage — compressive sensing.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
for reconstruction

<<(l,—m

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Image encoded by DMD
‘and random basis

Figure: Single pixel camera
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Compressive Sensing Introduction  Sparse reconstruction Future

An introduction to compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ Move compression to the acquisition stage — compressive sensing.

@ Acquisition versus imaging.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
for reconstruction

<<(l,—m

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Image encoded by DMD
‘and random basis

Figure: Single pixel camera
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An introduction to compressive sensing

@ lll-posed inverse problem:
y=%&x+n=>oVx +n.
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An introduction to compressive sensing

@ lll-posed inverse problem:
y=%&x+n=>oVx +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in 7, i.e. solve
the following ¢, optimisation problem:

a” = argmin||a||p suchthat [y — ®T |, < e,
(82
where the signal is synthesising by x* = Ta*.
@ Recall norms given by:

1/2
|||l = no. non-zero elements lee|h = § | [|ee|l, = (E \a,\z)
i i
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Compressive Sensing Introduction ction  Future

An introduction to compressive sensing

@ lll-posed inverse problem:
y=%&x+n=>oVx +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in 7, i.e. solve
the following ¢, optimisation problem:

a” = argmin||a||p suchthat [y — ®T |, < e,
(82
where the signal is synthesising by x* = Ta*.
@ Recall norms given by:

1/2
|||l = no. non-zero elements lee|h = § | [|ee|l, = (E \a,\z)
i i

@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢, optimisation problem (convex):

a” = argmin||«||; suchthat [y — PV, < €.
o
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An introduction to compressive sensing

@ The solutions of the ¢, and ¢, problems are often the same.

@ Restricted isometry property (RIP):
(1= d0)llell; < l0all; < (1+ )l ,

for K-sparse o, where © = &,

RN

(a) (b) (©)

Figure: Geometry of (a) £y (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]
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Sparse signal reconstruction on the sphere

@ Consider sparse reconstruction on the sphere.

@ More efficient sampling theorem — implications for sparse signal reconstruction.

@ Improves both the dimensionality and sparsity signals in the spatial domain.

@ Improves the fidelity of sparse signal reconstruction.

Jason McEwen Signal processing on spherical manifolds



Compressive Sensing Introduction  Sparse reconstruction Future

Sparse signal reconstruction on the sphere

@ Consider sparse reconstruction on the sphere.

@ More efficient sampling theorem — implications for sparse signal reconstruction.

@ Improves both the dimensionality and sparsity signals in the spatial domain.

@ Improves the fidelity of sparse signal reconstruction.

@ Consider the inverse problem

where:
@ x ¢ R denotes the samples of f;
N is the number of samples on the sphere of the adopted sampling theorem;
& € RM*N denotes the measurement operator, representing a random masking of the signal;
M noisy measurements y € RM are acquired;
n € RM denotes iid Gaussian noise with zero mean.
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TV inpainting on the sphere

@ Develop a framework for total variation (TV) inpainting on the sphere as illustrative example to
study implications of sampling theorems (McEwen et al. 2013).
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TV inpainting on the sphere

@ Develop a framework for total variation (TV) inpainting on the sphere as illustrative example to
study implications of sampling theorems (McEwen et al. 2013).

@ Define TV norm on the sphere:

Ng—1 Ny Ng—1 N

—1
2 2(0:)
[7 4Q |Vf| =~ Z Z |Vf] q(6;) ~ Z Z a2 (0:) (8gx)” + Zin(z ;) (5px)% = Il py g2
J§2 E t

=0 p=0 =0  p=0
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TV inpainting on the sphere

@ Develop a framework for total variation (TV) inpainting on the sphere as illustrative example to
study implications of sampling theorems (McEwen et al. 2013).

@ Define TV norm on the sphere:

Ng—1 Nyp—1 Ng—1 Np—1
2] ® 2] P ql( /)

5 o) .
/ A [V~ >0 ST IVAla0) = DT DT 4 [d2(00)(dex)7 + 7o (35%)* = II*llpy 2 -

=0 p=0 t=0 p=0

@ TV inpainting problem solved directly on the sphere:

x* = argmin [[x||, & suchthat |ly — ®x[[ <e.
N 5

@ TV inpainting problem solved in harmonic space:

NES

&7 = argmin ||A%||;y 2 suchthat [y — ®A%|> < e,
x

where A represents the inverse spherical harmonic transform.

@ Solve using convex optimisation techniques adapted to the sphere
(Douglas-Rachford splitting).
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M /2L* = 1/4
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Compressive Sensing Introduction  Sparse reconstruction Future

TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M /2L* = 1/4
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/2L* = 1/4
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TV inpainting: low-resolution simulations

Do @

) DH harmonic fcr = 1 ) MW spatial for = 4 ) MW harmonic for = 4

) DH spatial for M
L

(e) DH spatial for LMZ = (f) DH harmonic for LMZ = % (g) MW spatial for LMZ = % (h) MW harmonic for LMZ =

=
o=

(i) DH spatial for LMZ =1 (j) DH harmonic for LMZ

(k) MW spatial for LMZ =1 () MW harmonic for LMZ =1

i M _
(m) DH spatial for 5=

[

(n) DH harmonic for LM7 = (0) MW spatial for LMZ = 3 (p) MW harmonic for LMZ =

ol
[
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TV inpainting: low-resolution simulations

40,
-4- DH spatial
35/ -o- MW spatial
=—9— DH harmonic
=®— MW harmonic
301 e T
251
Z 20f
15- ‘ s
A ¢
.
10} ¢ .
.
.
sl %
0 1 1 1 1 1 1 1 1
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

M/L2

Figure: Reconstruction performance for the DH and MW sampling theorems
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TV inpainting: high-resolution simulations

@ Previously limited to low-resolution simulations.

@ To solve high-resolution problem we require fast adjoint spherical harmonic transform
operators in addition to fast forward spherical harmonic transforms to solve optimisation
problems.

@ Develop fast adjoints for the McEwen & Wiaux (2011) sampling theorem only.

Fast adjoint inverse spherical harmonic transform

i _ .J(eraWp)’ te{o’l""’Lil}
of (9“‘:011)_{07 te{L,...,2L -2}

2L—2 2L—-2 _ iy
’me/f — Z Z JT(eh le) efl(m Or+mep)
t=0 p=0
, 2+1
! = () Al AL Py’

*(L*I)
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TV inpainting: high-resolution simulations

Fast adjoint forward spherical harmonic transform
= 2t
.mam’T = (71): =) Z “an Aﬁr’m Afz’,fx Sem
£=0

L—1
Sme//Jr =27 Z SGmm/f W(m/ = m”)
m! =—(L—1)
- 1 L=l o1
mewL(et) = oL — 1 Z Sme’T e o
m! =—(L—1)

Fal(6)) = Ful(6:) + (=1)"F sF T (0r—2-1), t€{0,1,...,L—2}
S Sl (8 t=L—1

L—1

1 im
o) =— > )"
=1 m=—(L—1)

v
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TV inpainting: high-resolution simulations

@ Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: Ground truth at L = 128.
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TV inpainting: high-resolution simulations

@ Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: Measurements at L = 128 for M/2L* = 1/8.
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TV inpainting: high-resolution simulations

@ Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: MW reconstruction in the harmonic domain at L = 128 for M/2L> = 1/8 (SNR; = 20dB).
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Future extensions

@ Perform sparse signal recovery on the sphere using wavelets .

@ Consider the synthesis-based framework:

a” = argmin ||a|, »» suchthat ||y — ®Wea|, <e.
~

where we synthesise the signal from its recovered wavelet coefficients by x* = Yo *.

@ Consider the analysis-based framework:

x* = arg min H\I/TxHI.Sz such that ||y — ®x|, < e,
x

where the signal x* is recovered directly.
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Future extensions

@ Perform sparse signal recovery on the sphere using wavelets .

@ Consider the synthesis-based framework:

a” = argmin ||a|, »» suchthat ||y — ®Wea|, <e.
~

where we synthesise the signal from its recovered wavelet coefficients by x* = Yo *.

@ Consider the analysis-based framework:

x* = arg min H\IlTlelsz such that ||y — ®x|, < e,
x

where the signal x* is recovered directly.

@ Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, McEwen &
Wiaux 2013)

W= [T, Vo, -, ).

@ Dictionary learning (cf. Aharon et al. 2006).
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Cosmic Strings

e Cosmic Strings
@ Observational signatures
@ Detection algorithm
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Cosmic Strings Observational signatures Detection algorithm

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

it £

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmic Strings Observational signatures Detection algorithm

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmic Strings Observational signatures Detection algorithm

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

@ The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmic Strings Observational signatures Detection algorithm

Observational signatures of cosmic strings

@ Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).
Light rays

@ Strings moving transverse to the line of sight induce

line-like discontinuities in the CMB (Kaiser & Stebbins M
1984). soor < T[T[[f |||
%LV

@ The amplitude of the induced contribution scales with G,
the string tension.

H
Observer

s

Spacetime around a cosmic string. [Credit: Kaiser
& Stebbins 1984, DAMTP]
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Cosmic Strings Observational signatures Detection algorithm

Observational signatures of cosmic strings

@ Make contact between theory and data using high-resolution simulations.
@ Amplitude of the signal is given by the string tension Gp.

@ Search for a weak string signal s embedded in the CMB ¢, with observations d given by
d=c+s.

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Cosmic Strings Ol onal signatures  Detection algorithm

Motivation for using wavelets to detect cosmic strings

@ Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by | Wi, = (d, ¥;,) |for scale j € Z* and "
position p € SO(3).

@ Consider an even azimuthal band-limit N = 4 to

yield wavelet with odd azimuthal symmetry. Figure: Example wavelet
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Cosmic Strings ional signatures  Detection algorithm

Motivation for using wavelets to detect cosmic strings

@ Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by | Wi, = (d, ¥;,) |for scale j € Z* and
position p € SO(3).

@ Consider an even azimuthal band-limit N = 4 to

yield wavelet with odd azimuthal symmetry. Figure: Example wavelet

@ Wavelet transform yields a sparse representation of the string signal — hope to effectively separate
the CMB and string signal in wavelet space.

-
5x 10
VB 0.25

— Cosmic strings

---CmB
— Cosmic strings

@ N

Probability density
o

Probability density

.

200 200 -40

0 -200

'
B0

40

0 -20 0 20
Pixel values ( 1K) Wavelet coefficients (k)

Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Cosmic Strings

s Detection algorithm
Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:

we N\ 2
)
C N 2\ o
P./<Wi/)>_ ¢

J

) ., where (0})’ = (
2m(aj)?

¢ e x 2
Wi, W, ") = Z Ce |(¥)) gl
m
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Cosmic Strings (0] ational signatures  Detection algorithm

Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:
R CTC DR
Pi(Wj,) = ———=e\ "\ where (o]) = (W, W,,") = 3 Cel(W),, -
2m(o¢)?

J £m

@ Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):
ﬂ,-)

-
“p
Gpv;

PW | Gu) Yj (7
N N = -
A Yo Y )

with scale parameter v; and shape parameter v;.

Figure: Generalised Gaussian distribution (GGD).
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

e
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale | =
@ Compare distribution learnt from the training * " " " : " e ara)
simulation (string2) with the distribution of the —— Fited (sting2)

testing simulation (string1).

@ Distributions in close agreement.

Probabilty density

8 6 -4 -2 0 2 4 6 8
Wavelet coefficient 6
x10

Figure: Distributions for wavelet scale j = 0.
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

*
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale j = 1
@ Compare distribution learnt from the training ™ " " " ' " e aral)
simulation (string2) with the distribution of the 2 — Fited (sting2)
testing simulation (string1).
1
@ Distributions in close agreement.
%DE
E 06
04
02
0
-2 -15 -1 -05 0 0s 1 15 2

Wavelet coefficient

Figure: Distributions for wavelet scale j = 1.

x10’
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

e
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale | = 2
@ Compare distribution learnt from the training ™ " " " " " e aral)
simulation (string2) with the distribution of the — Fited (sting2)

testing simulation (string1).

@ Distributions in close agreement.

Probabilty density

2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 2.

Jason McEwen Signal processing on spherical manifolds



Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

x10° ‘Wavelet coefficient distribution for scale | = 3

@ Compare distribution learnt from the training ! = Towymm
simulation (string2) with the distribution of the 03 —— Fited (string?)
testing simulation (string1).

@ Distributions in close agreement.

=

Probabilty density

2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 3.
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
%107 Wavelet coefficient distribution for scale j = 4
@ Compare distribution learnt from the training ° ‘ ‘ ‘ ‘ ‘ ot
simulation (string2) with the distribution of the —— Fitied (sting?)
testing simulation (string1). 5

IS

@ Distributions in close agreement.

Probabilty density

-2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 4.
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Cosmic Strings s Detection algorithm

he statistics of the CMB and strlng signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
%107 Wavelet coefficient distribution for scale j = 4
@ Compare distribution learnt from the training s ‘ ‘ ‘ ‘ ‘ ety
simulation (string2) with the distribution of the —— Fitied (sting?)
testing simulation (string1). 5

IS

@ Distributions in close agreement.

@ We have accurately characterised the statistics of
string signals in wavelet space.

Probabilty density

-2 -15 -1 05 0 05 1 15 2
Wavelet coefficient <10

Figure: Distributions for wavelet scale j = 4.
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Cosmic Strings s Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.
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Cosmic Strings (0] onal signatures  Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

@ For each wavelet coefficient the likelihood is given by

P

i s , ' 5 e d s
P(W, | Gu) = P(W, +W/-p|GN):/p aw;, Pi(W), — W) P;(W,, | Gp) .

@ The overall likelihood of the data is given by

P(W'|Gu) = [ P(Wy, |G)

ip

where we have assumed independence.
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Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o o
L D (o)

Probability density

o
[N}

Whesssesssssssssnaannnmmnm s

o 1 2 4
Gu x107°

Figure: Posterior distribution of the string tension (true Gu = 3 x 107°).
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Cosmic Strings al signatures  Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o
D (o)

I
N

Probability density

0.2r

=
<
-
o

Figure: Posterior distribution of the string tension (true Gu. = 2 x 10°).
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Cosmic Strings al signatures  Detection algorithm

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o o
L D (o)
‘

Probability density

o
[N}

I e ————

2 3 4
Gu x107°

Figure: Posterior distribution of the string tension (true Gu. = 1 x 107°).
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Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M’ to the alternative model M* that
the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

E =P(W! M) = /L d(Gp) P(W! | Gp) P(Gp) .

@ The Bayesian evidence of the CMB model is given by
EC=pw! M) = [P(W,).

jp

@ Compute the Bayes factor to determine the preferred model:
AInE = In(E'JE°) .

Table: Tension estimates and log-evidence differences for simulations.

Gu/107° 0.7 0.8 0.9 1.0 2.0 3.0

Gup/107° 1.1 1.2 1.2 1.3 21 3.1
AInE -13 —11 —09 —07 55 29

Jason McEwen Signal processing on spherical manifolds



Cosmic Strings al signatures  Detection algorithm

Recovering string maps

@ Our best inference of the wavelet coefficients of the underlying string map is encoded in the
posterior probability distribution P(W? | w?).

JpP

@ Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

| w?)

W/p = [R dep W./r) HWM
= [ 4(Gu) P(Gu 1) Wy (G
JR
where

s ' R s i
W, (Gu) = /F dw;, W, P(W;, | W,,. Gpu)

| : : :
= [ AW, W PS(WL — W) PY(W
P(VV;L, ‘ GN’) R P P P P J P

Gp) .
@ Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

@ Work in progress. ..
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Summary

@ Observations on spherical manifolds are prevalent.

@ Necessitate rigorous signal processing techniques on spherical manifolds:

@ Sampling theorems
o Wavelets
e Compressive sensing

@ In cosmology, sensitive methods are required to extract the weak signatures of new physics
from next-generation observations.
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Introduction to the theory of compressive sensing

@ Linear operator (linear algebra) representation of wavelet decomposition:
| |
X(I) = ZO{,'\I/[(I) - x= Z‘I/,-a[ =Py | ap+ |V | a4+ - - x=Va«
i i | |

@ Linear operator (linear algebra) representation of measurement:
— By —

yi={x®) — y= - o - x — y=ox

@ Putting it together: y = &x = PV

r = Wq
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Introduction to the theory of compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > cpi’KlogN
where K is the sparsity and ~ the dimensionality.
@ The coherence between the measurement and sparsity basis is given by

p= VN max |(¥;, ;)] .
L)

@ Robust to noise.

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity) and new
applications.
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SARA for radio interferometric imaging

@ Sparsity averaging reweighted analysis (SARA) algorithm (Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
Vi

= — [0, Ty, T

thus ¥ € RY*? with D = ¢N.

@ We consider the following bases:
e Dirac, i.e. pixel basis
e Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min |W¥ ||, subjectto |y— ®x|,<e and x>0,
XeRrN

RDXD

where W € is a diagonal matrix with positive weights.

@ Solve a sequence of reweighted ¢; problems using the solution of the previous problem as the
inverse weights — approximate the ¢, problem.
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RA for radio interferometric imagin

(d) BPDb8 (SNR=24.53 dB) (e) TV (SNR=26.47 dB) (f) SARA (SNR=29.08 dB)

Figure: Reconstruction example of 30Dor from 30% of visibilities.
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