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Observations on spherical manifolds
Earth
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Observations on spherical manifolds
Diffusion magnetic resonance imaging
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Cosmological concordance model

Credit: WMAP Science Team
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Cosmic microwave background (CMB)

Credit: WMAP
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Observations of the cosmic microwave background (CMB)

Full-sky observations of the CMB ongoing.

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

Each new experiment provides dramatic improvement in precision and resolution of
observations.

(cobe 2 wmap movie)

(d) COBE to WMAP [Credit: WMAP Science Team]

(planck movie)

(e) Planck observing strategy [Credit: Planck Collaboration]
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Cosmic microwave background (CMB)

Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

Compton scattering happened frequently⇒ mean free
path of photons extremely small.

Universe consisted of an opaque photon-baryon fluid.

As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

Recombination occurred when temperature of Universe
dropped to 3000K (∼400,000 years after the Big Bang).

Credit: Max Tegmark

Photons then free to propagate largely unhindered and observed today on celestial
sphere as CMB radiation.

CMB is highly uniform over the celestial sphere, however it contains small fluctuations
at a relative level of 10−5 due to acoustic oscillations in the early Universe.

CMB observed on spherical manifold, hence the geometry of the sphere must be
taken into account in any analysis.
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Cosmic microwave background (CMB)

Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

Provide the seeds of structure formation in our Universe.

Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

Credit: WMAP Science Team

Although a general cosmological concordance model is now established, many details remain
unclear. Study of more exotic cosmological models now important.
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Galaxy surveys

Credit: SDSS
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A new era of observational cosmology

We are entering a new era of observational cosmology:

Planck will provide full-sky observations of the cosmic microwave background (CMB) at unprecedented
resolution, sensitivity and frequency coverage.
The Dark Energy Survey (DES) will survey of an order of magnitude more galaxies than the previous
state-of-the-art.
The Euclid mission will survey more than a billion galaxies over more than one third of the sky, with
unprecedented precision.
The Square Kilometre Array (SKA) will have a sensitivity 50x that of previous radio telescopes.

(a) Planck (b) DES (c) Euclid (d) SKA

BUT... in order to develop a deeper understanding of cosmology, new instruments must be
complemented with novel scientific analyses.
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Spherical harmonic transform

The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
∆S2 Y`m = −`(`+ 1)Y`m.

Figure: Spherical harmonic functions.
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Spherical harmonic transform

A function on the sphere f ∈ L2(S2) may be represented by its spherical harmonic expansion:

f (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

where the spherical harmonic coefficients are given by:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

Consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L .

For a band-limited signal, can we compute f`m exactly?

→ Sampling theorems on the sphere

Jason McEwen Signal processing on spherical manifolds
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Driscoll & Healy (DH) sampling theorem

Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994).

⇒ NDH = (2L− 1)2L + 1 ∼ 4L2 samples on the sphere.

Figure: Sample positions of the DH sampling theorem.
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McEwen & Wiaux (MW) sampling theorem

A new sampling theorem on the sphere (McEwen & Wiaux 2011).

⇒ NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere.

Reduced the Nyquist rate on the sphere by a factor of two.

Figure: Sample positions of the MW sampling theorem.
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McEwen & Wiaux (MW) sampling theorem

New sampling theorem follows by associating the sphere with the torus through a periodic
extension.

Similar in flavour to making a periodic extension in θ of a function f on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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McEwen & Wiaux (MW) sampling theorem

By a factoring of rotations, a reordering of summations and a separation of variables, the
inverse transform of sf may be written:

Inverse spherical harmonic transform

sf (θ, ϕ) =

L−1∑
m=−(L−1)

sFm(θ) eimϕ

sFm(θ) =

L−1∑
m′=−(L−1)

sFmm′ eim′θ

sFmm′ = (−1)
s i−(m+s)

L−1∑
`=0

√
2`+ 1

4π
∆
`
m′m ∆

`
m′,−s sf `m

where ∆`
mn ≡ d`mn(π/2) are the reduced Wigner functions evaluated at π/2.
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McEwen & Wiaux (MW) sampling theorem

By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of sf may be written:

Forward spherical harmonic transform

sf `m = (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sGmm′

sGmm′ =

∫ π

0
dθ sin θ sGm(θ) e−im′θ

sGm(θ) =

∫ 2π

0
dϕ sf (θ, ϕ) e−imϕ
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Comparison
Numerical accuracy

32 64 128 256 512 1024 2048 4096
1e−15

1e−14

1e−13

1e−12

1e−11

1e−10

1e−09

1e−08

ǫ

L

Figure: Numerical accuracy (MW=red; DH=green; GL=blue)
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Comparison
Computation time
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Figure: Computation time (MW=red; DH=green; GL=blue)
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Comparison

DH DH MW
Divide-and-conquer Semi-naive

Pixelisation scheme equiangular equiangular equiangular

Asymptotic complexity O(L5/2 log 1/2
2 L) O(L3) O(L3)

Precomputation Y N N

Stability N Y Y

Flexibility of Wigner recursion N N Y

Spin functions N N Y

Number of samples 4L2 4L2 2L2
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Sampling theorem on the ball

Fourier-Bessel functions are the canonical orthogonal basis on the sphere→ but do not admit
a sampling theorem.

Developed a new Fourier-Laguerre transform and the first sampling theorem on the ball
(Leistedt & McEwen 2012).
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Figure: Numerical accuracy of Fourier-Laguerre transform
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Codes to compute harmonic transforms

SSHT code: Spin spherical harmonic transforms
A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

FLAG code: Fourier-Laguerre transforms
Exact wavelets on the ball
Leistedt & McEwen (2012)

All codes available from: http://www.jasonmcewen.org/
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Wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting (Credit: http://www.wavelet.org/tutorial/)

Jason McEwen Signal processing on spherical manifolds
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Continuous wavelets on the sphere

First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ω = (θ, ϕ) ∈ S2

, ρ = (α, β, γ) ∈ SO(3) .

How define dilation on the sphere?

The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection Π:

D(a) ≡ Π
−1 d(a) Π .

PSfrag replacements
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y

z

r = 2 tan( θ
2
)

θ

φ

θ
2

ω

x

North pole

South pole

Figure: Stereographic projection.
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Continuous wavelet analysis

Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet Ψ:

{Ψa,ρ ≡ R(ρ)D(a)Ψ : ρ ∈ SO(3), a ∈ R+
∗ }.

The forward wavelet transform is given by

W f
Ψ(a, ρ) = 〈f ,Ψa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001)
Separation of variables: Wiaux et al. (2005)

FastCSWT code available to download: http://www.jasonmcewen.org/

Jason McEwen Signal processing on spherical manifolds
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Mother wavelets

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Ψ = Π
−1

ΨR2 ,

where ΨR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Continuous wavelet synthesis (reconstruction)

The inverse wavelet transform given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)W f
Ψ(a, ρ) [R(ρ)L̂ΨΨa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0 < Ĉ`Ψ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Ψa)`m |

2
<∞, ∀` ∈ N

where (Ψa)`m are the spherical harmonic coefficients of Ψa(ω).

Continuous wavelets used effectively in many cosmological studies, for example:
Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

BUT...

exact reconstruction not feasible in practice!
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Continuous harmonic-dilation wavelets on the sphere

Define dilation by scaling in harmonic space (McEwen et al. 2006):

Ψ`m(a) =

√
2`+ 1

8π2
Υm(`a) ,

Wavelet analysis and synthesis defined in the same manner as stereographic wavelets.

Admissibility condition defined on the wavelet generating functions Υ

0 < C`Υ =
∑̀

m=−`

∫ ∞
0

dq
q
|Υm(q)|2 <∞ .

Define admissible wavelet in harmonic space:

Υm(`a) = e−
(`a−L)2+(m−M)2

2 − e−
(`a)2+L2+(m−M)2

2 .

Figure: Harmonic-dilation Morlet wavelet.
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Scale-discretised wavelets on the sphere

Exact reconstruction not feasible in practice with continuous wavelets!

Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code

1 2 4 8 16 32
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ℓ

Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ̂`m = K̃Ψ(`)SΨ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Ψ(α

J
`) +

J∑
j=0

K̃2
Ψ(α

j
`) = 1.
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Scale-discretised wavelets on the sphere

Figure: Spherical scale-discretised wavelets.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W f
Ψ(ρ, α

j
) = 〈f ,Ψρ,αj 〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
ρ,αj (ω) .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (ω) =
[
ΦαJ f

]
(ω) +

J∑
j=0

∫
SO(3)

d%(ρ) W f
Ψ

(
ρ, α

j
) [

R (ρ) Ld
Ψαj

]
(ω) .
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Scale-discretised wavelet transform of the Earth

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Codes to compute scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

Fortran

Parallelised

Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

C, Matlab, IDL, Java

Support only axisymmetric wavelets at present

Future extensions:

Directional, steerable wavelets
Faster algorithms to perform wavelet transforms
Spin wavelets

All codes available from: http://www.jasonmcewen.org/
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Translation and convolution on the radial line

We construct translation and convolution operators on the radial line by analogy with the
infinite line.

For the standard orthogonal basis φω(x) = eiωx translation of the basis functions defined by
the shift of coordinates:

(T R
u φω)(x) ≡ φω(x− u) = φ

∗
ω(u)φω(x) .

Define translation of the spherical Laguerre basis functions on the radial line by analogy:

(TsKp)(r) ≡ Kp(s)Kp(r) .

Define convolution on the radial line of by

(f ? h)(r) ≡ 〈f |Trh〉 =

∫
R+

dss2f (s) (Trh) (s),

from which it follows that radial convolution in harmonic space is given by the product

(f ? h)p = 〈f ? h|Kp〉 = fphp .

Jason McEwen Signal processing on spherical manifolds



Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings Continuous Sphere Ball

Translation and convolution on the radial line

We construct translation and convolution operators on the radial line by analogy with the
infinite line.

For the standard orthogonal basis φω(x) = eiωx translation of the basis functions defined by
the shift of coordinates:

(T R
u φω)(x) ≡ φω(x− u) = φ

∗
ω(u)φω(x) .

Define translation of the spherical Laguerre basis functions on the radial line by analogy:

(TsKp)(r) ≡ Kp(s)Kp(r) .

Define convolution on the radial line of by

(f ? h)(r) ≡ 〈f |Trh〉 =

∫
R+

dss2f (s) (Trh) (s),

from which it follows that radial convolution in harmonic space is given by the product

(f ? h)p = 〈f ? h|Kp〉 = fphp .

Jason McEwen Signal processing on spherical manifolds



Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings Continuous Sphere Ball

Translation and convolution on the radial line

We construct translation and convolution operators on the radial line by analogy with the
infinite line.

For the standard orthogonal basis φω(x) = eiωx translation of the basis functions defined by
the shift of coordinates:

(T R
u φω)(x) ≡ φω(x− u) = φ

∗
ω(u)φω(x) .

Define translation of the spherical Laguerre basis functions on the radial line by analogy:

(TsKp)(r) ≡ Kp(s)Kp(r) .

Define convolution on the radial line of by

(f ? h)(r) ≡ 〈f |Trh〉 =

∫
R+

dss2f (s) (Trh) (s),

from which it follows that radial convolution in harmonic space is given by the product

(f ? h)p = 〈f ? h|Kp〉 = fphp .

Jason McEwen Signal processing on spherical manifolds



Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings Continuous Sphere Ball

Translation and convolution on the radial line
Translation corresponds to convolution with the Dirac delta:

(f ? δs)(r) =
∞∑

p=0

fpKp(s)Kp(r) = (Tsf )(r) .
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(b) Wavelet kernel translated by r = 0.4

Figure: Slices of an axisymmetric flaglet wavelet kernel plotted on the ball of radius R = 0.5.
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Scale-discretised wavelets on the ball

Figure: Tiling of Fourier-Laguerre space.

Exact wavelets on the ball (Leistedt & McEwen 2012).

Define translation and convolution operators on the radial
line.

Dilation performed in harmonic space.

Scale-discretised wavelet Ψ ∈ L2(B3) is defined in
harmonic space:

Ψ
jj′
`mp ≡

√
2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

ν j′

)
δm0.

Construct wavelets to satisfy a resolution of the identity:

4π
2`+ 1

(
|Φ`0p|2 +

J∑
j=J0

J′∑
j′=J′0

|Ψjj′
`0p|

2

)
= 1, ∀`, p.
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Scale-discretised wavelets on the ball

(a) (j, j′) = (4, 5) (b) (j, j′) = (4, 6)

(c) (j, j′) = (5, 5) (d) (j, j′) = (5, 6)

Figure: Scale-discretised wavelets on the ball.
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Scale-discretised wavelets on the ball

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WΨjj′
(r) ≡ (f ?Ψ

jj′
)(r) = 〈f |TrRωΨ

jj′ 〉 .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (r) =

∫
B3

d3r′WΦ
(r′)(TrRωΦ)(r′) +

J∑
j=J0

J′∑
j′=J′0

∫
B3

d3r′WΨjj′
(r′)(TrRωΨ

jj′
)(r′) .
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Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.
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Codes for scale-discretised wavelet on the ball

FLAG code
Exact wavelets on the ball
Leistedt & McEwen (2012)

C, Matlab, IDL, Java

Exact Fourier-LAGuerre transform on the ball

FLAGLET code
Exact wavelets on the ball
Leistedt & McEwen (2012)

C, Matlab, IDL, Java

Exact (Fourier-LAGuerre) wavelets on the ball – coined flaglets!

All codes available from: http://www.jasonmcewen.org/
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An introduction to compressive sensing

“Nothing short of revolutionary.”
– National Science Foundation

Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho
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An introduction to compressive sensing

Next evolution of wavelet analysis→ wavelets are a key ingredient.

Move compression to the acquisition stage→ compressive sensing.

Acquisition versus imaging.

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing

Ill-posed inverse problem:
y = Φx + n = ΦΨα + n.

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e. solve
the following `0 optimisation problem:

α
?

= arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Recall norms given by:

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α
?

= arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .
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An introduction to compressive sensing
The solutions of the `0 and `1 problems are often the same.

Restricted isometry property (RIP):

(1− δK)‖α‖2
2 ≤ ‖Θα‖2

2 ≤ (1 + δK)‖α‖2
2 ,

for K-sparse α, where Θ = ΦΨ.[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why !2
reconstruction fails to find the sparse
solution that can be identified by !1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K " 3, so
any intuition based on three dimensions
may be misleading.) The !2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the !2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the !1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the !1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.
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[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.
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Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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Sparse signal reconstruction on the sphere

Consider sparse reconstruction on the sphere.

More efficient sampling theorem→ implications for sparse signal reconstruction.

Improves both the dimensionality and sparsity signals in the spatial domain.

Improves the fidelity of sparse signal reconstruction.

Consider the inverse problem

y = Φx + n

where:
x ∈ RN denotes the samples of f ;
N is the number of samples on the sphere of the adopted sampling theorem;

Φ ∈ RM×N denotes the measurement operator, representing a random masking of the signal;

M noisy measurements y ∈ RM are acquired;

n ∈ RM denotes iid Gaussian noise with zero mean.
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TV inpainting on the sphere

Develop a framework for total variation (TV) inpainting on the sphere as illustrative example to
study implications of sampling theorems (McEwen et al. 2013).

Define TV norm on the sphere:

∫
S2

dΩ |∇f | '
Nθ−1∑

t=0

Nϕ−1∑
p=0

|∇f | q(θt) '
Nθ−1∑

t=0

Nϕ−1∑
p=0

√
q2(θt)

(
δθx
)2 +

q2(θt)

sin2 θt

(
δϕx

)2 ≡ ‖x‖TV,S2 .

TV inpainting problem solved directly on the sphere:

x? = arg min
x
‖x‖TV,S2 such that ‖y− Φx‖2 ≤ ε .

TV inpainting problem solved in harmonic space:

x̂′? = arg min
x̂
‖Λx̂‖TV,S2 such that ‖y− ΦΛx̂‖2 ≤ ε ,

where Λ represents the inverse spherical harmonic transform.

Solve using convex optimisation techniques adapted to the sphere
(Douglas-Rachford splitting).
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/2L2 = 1/4
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/2L2 = 1/4
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/2L2 = 1/4
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TV inpainting: low-resolution simulations
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TV inpainting: low-resolution simulations
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Figure: Reconstruction performance for the DH and MW sampling theorems
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TV inpainting: high-resolution simulations

Previously limited to low-resolution simulations.

To solve high-resolution problem we require fast adjoint spherical harmonic transform
operators in addition to fast forward spherical harmonic transforms to solve optimisation
problems.

Develop fast adjoints for the McEwen & Wiaux (2011) sampling theorem only.

Fast adjoint inverse spherical harmonic transform

s f̃
†
(θt, ϕp) =

{
sf (θt, ϕp) , t ∈ {0, 1, . . . , L− 1}
0 , t ∈ {L, . . . , 2L− 2}

sFmm′
†

=

2L−2∑
t=0

2L−2∑
p=0

s f̃
†
(θt, ϕp) e−i(m′θt+mϕp)

sf`m
†

= (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sFmm′

†
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TV inpainting: high-resolution simulations

Fast adjoint forward spherical harmonic transform

sGmm′
†

= (−1)
s i−(m+s)

L−1∑
`=0

√
2`+ 1

4π
∆
`
m′m ∆

`
m′,−s sf`m

sFmm′′
†

= 2π
L−1∑

m′=−(L−1)

sGmm′
† w(m′ − m′′)

sF̃m
†
(θt) =

1
2L− 1

L−1∑
m′=−(L−1)

sFmm′
† eim′θt

sFm
†
(θt) =

{
sF̃m
†(θt) + (−1)m+s

sF̃m
†(θ2L−2−t) , t ∈ {0, 1, . . . , L− 2}

sF̃m
†(θt) , t = L− 1

sf
†
(θt, ϕp) =

1
2L− 1

L−1∑
m=−(L−1)

sFm
†
(θt) eimϕp
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TV inpainting: high-resolution simulations

Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: Ground truth at L = 128.
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TV inpainting: high-resolution simulations

Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: Measurements at L = 128 for M/2L2 = 1/8.
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TV inpainting: high-resolution simulations

Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: MW reconstruction in the harmonic domain at L = 128 for M/2L2 = 1/8 (SNRI = 20dB).
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Future extensions

Perform sparse signal recovery on the sphere using wavelets Ψ.

Consider the synthesis-based framework:

α
?

= arg min
α
‖α‖1,S2 such that ‖y− ΦΨα‖2 ≤ ε .

where we synthesise the signal from its recovered wavelet coefficients by x? = Ψα?.

Consider the analysis-based framework:

x? = arg min
x
‖ΨTx‖1,S2 such that ‖y− Φx‖2 ≤ ε ,

where the signal x? is recovered directly.

Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, McEwen &
Wiaux 2013)

Ψ = [Ψ1,Ψ2, · · · ,Ψq] .

Dictionary learning (cf. Aharon et al. 2006).
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Cosmic structure
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Cosmic strings

Symmetry breaking phase transitions in the early Universe→ topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken→ line-like discontinuities in the fabric of the Universe.

Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Cosmic strings are distinct to the fundamental
superstrings of string theory.

However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Observational signatures of cosmic strings

Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).

Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins
1984).

The amplitude of the induced contribution scales with Gµ,
the string tension.

Spacetime around a cosmic string. [Credit: Kaiser
& Stebbins 1984, DAMTP.]
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Observational signatures of cosmic strings

Make contact between theory and data using high-resolution simulations.

Amplitude of the signal is given by the string tension Gµ.

Search for a weak string signal s embedded in the CMB c, with observations d given by

d = c + s .

5

FIG. 1: String-induced CMB temperature fluctuations on a 7.2 degree field with a (unrealistic) resolution of ✓res = 0.420

(1024 pixels). The upper left image shows the fluctuations induced in between the last scattering surface and the redshift
z = 36, while the upper right map represents the anisotropies produced by strings between z = 36 and z = 0.3. Due to their
cosmological scaling, most of the long strings intercept our past-light cone close to the last scattering surface. The overall
string-induced fluctuations are plotted in the bottom left panel. As can be seen in the bottom right image, the edges in the
temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions
corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these spots are
associated with ⇥ > 80 GU and saturate the color-map (see Sec. III).

(or long) strings, defined as strings larger than the hori-
zon size, because they rapidly reach the scaling regime.
Although it has been shown in Ref. [28] that the cosmic
string loop distribution scales as well, the relaxation time
for the loops to reach such a self-similar evolution with
respect to the horizon size appears to be larger for smaller
loops. As a result, and this is inherent to all cosmic string
numerical simulations, the smaller length scales in a nu-

merical string network keep some memory of the initial
network configuration until they reach their stable cos-
mological evolution (see also Refs. [27, 59]). Note that
even if this memory e↵ect is physical, one does not expect
a physical string network at the last scattering surface to
still exhibit structures coming from its initial configura-
tion at the GUT energy scale. The change in scale factor
between the GUT redshift and the last scattering surface

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Motivation for using wavelets to detect cosmic strings

Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by Wd
jρ = 〈d, Ψjρ〉 for scale j ∈ Z+ and

position ρ ∈ SO(3).

Consider an even azimuthal band-limit N = 4 to
yield wavelet with odd azimuthal symmetry.

Figure: Example wavelet.

Wavelet transform yields a sparse representation of the string signal→ hope to effectively separate
the CMB and string signal in wavelet space.
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Learning the statistics of the CMB and string signals in wavelet space
Need to determine statistical description of the CMB and string signals in wavelet space.

Calculate analytically the probability distribution of the CMB in wavelet space:

Pc
j (Wc

jρ) =
1√

2π(σc
j )

2
e

(
− 1

2

(
Wc

jρ
σc

j

)2)
, where (σ

c
j )

2
= 〈Wc

jρ Wc
jρ
∗〉 =

∑
`m

C` |(Ψj)`m|
2
.

Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):

Ps
j (Ws

jρ |Gµ) =
υj

2GµνjΓ(υj
−1)

e

(
−

∣∣∣∣ Ws
jρ

Gµνj

∣∣∣∣υj
)
,

with scale parameter νj and shape parameter υj.

Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 0.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 1.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 2.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 3.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.

Jason McEwen Signal processing on spherical manifolds



Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings Observational signatures Detection algorithm

Spherical wavelet-Bayesian string tension estimation

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed independence.
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Spherical wavelet-Bayesian string tension estimation
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∫
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where we have assumed independence.
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .
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Figure: Posterior distribution of the string tension (true Gµ = 3× 10−6).
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =
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Figure: Posterior distribution of the string tension (true Gµ = 2× 10−6).
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .
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Figure: Posterior distribution of the string tension (true Gµ = 1× 10−6).
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Bayesian evidence for strings

Compute Bayesian evidences to compare the string model Ms to the alternative model Mc that
the observed data is comprised of just a CMB contribution.

The Bayesian evidence of the string model is given by

Es
= P(Wd |Ms

) =

∫
R

d(Gµ) P(Wd |Gµ) P(Gµ) .

The Bayesian evidence of the CMB model is given by

Ec
= P(Wd |Mc

) =
∏
j,ρ

Pc
j (Wd

jρ) .

Compute the Bayes factor to determine the preferred model:

∆ ln E = ln(Es
/Ec

) .

Table: Tension estimates and log-evidence differences for simulations.

Gµ/10−6 0.7 0.8 0.9 1.0 2.0 3.0

Ĝµ/10−6 1.1 1.2 1.2 1.3 2.1 3.1
∆lnE −1.3 −1.1 −0.9 −0.7 5.5 29
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Recovering string maps

Our best inference of the wavelet coefficients of the underlying string map is encoded in the
posterior probability distribution P(Ws

jρ |W
d).

Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

Ws
jρ =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
)

=

∫
R

d(Gµ) P(Gµ | d) Ws
jρ(Gµ) ,

where

Ws
jρ(Gµ) =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
jρ,Gµ)

=
1

P(Wd
jρ |Gµ)

∫
R

dWs
jρ Ws

jρ Pc
j (Wd

jρ − Ws
jρ) Ps

j (Ws
jρ |Gµ) .

Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

Work in progress. . .
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Summary

Observations on spherical manifolds are prevalent.

Necessitate rigorous signal processing techniques on spherical manifolds:

Sampling theorems
Wavelets
Compressive sensing

In cosmology, sensitive methods are required to extract the weak signatures of new physics
from next-generation observations.
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Extra slides on compressive sensing
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Introduction to the theory of compressive sensing

Linear operator (linear algebra) representation of wavelet decomposition:

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0+

 |Ψ1
|

α1+· · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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Introduction to the theory of compressive sensing

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.

Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity) and new
applications.
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Extra slides on sparsity averaging
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SARA for radio interferometric imaging

Sparsity averaging reweighted analysis (SARA) algorithm (Carrillo, McEwen & Wiaux 2012)

Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

Ψ =
1
√

q
[Ψ1,Ψ2, . . . ,Ψq],

thus Ψ ∈ RN×D with D = qN.

We consider the following bases:
Dirac, i.e. pixel basis
Haar wavelets (promotes gradient sparsity)
Daubechies wavelet bases two to eight.

⇒ concatenation of 9 bases

Promote average sparsity by solving the reweighted `1 analysis problem:

min
x̄∈RN

‖WΨ
T x̄‖1 subject to ‖y− Φx̄‖2 ≤ ε and x̄ ≥ 0 ,

where W ∈ RD×D is a diagonal matrix with positive weights.

Solve a sequence of reweighted `1 problems using the solution of the previous problem as the
inverse weights→ approximate the `0 problem.

Jason McEwen Signal processing on spherical manifolds



Cosmology Sampling Wavelets Compressive Sensing Cosmic Strings

SARA for radio interferometric imaging
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Figure: Reconstruction example of 30Dor from 30% of visibilities.
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