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Cosmology and computer graphics

Whenever observe over angles, recover data on 2D sphere (or 3D rotation group).

Cosmic microwave background Computer graphics & vision
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Why not standard (Euclidean) deep learning approaches?

Could project sphere to plane and then apply standard planar CNNs.

Projection
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Why not standard (Euclidean) deep learning approaches?

Projection breaks symmetries and geometric properties of sphere.
⇒ Conformal, area-preserving projection does not exist.

Well-known that regular discretisation of the sphere does not exist (e.g. Tegmark 1996).
⇒ Not possible to discretise sphere in a manner that is invariant to rotations.

Capturing strict rotational equivariance with operations defined directly in discretised
(pixel) space not possible due to structure of sphere.
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Goals of geometric deep learning on the sphere

1. Capture geometry and symmetry of the sphere (rotational equivariance)

2. Computationally scalable to support high-resolution data
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Categorization of spherical deep learning frameworks

Continuous Discrete Discrete-Continuous (DISCO)

Equivariant Not Equivariant Equivariant
Not Scalable → Scalable Scalable Scalable

(Cohen et al. 2018, Esteves et al. 2018,
Kondor et al. 2018, Cobb et al. 2021,
McEwen et al. 2022, Price & McEwen in
prep., Mousset et al. in prep., …)

(Jiang et al. 2019, Zhang et al. 2019,
Perraudin et al. 2019, Cohen et al.
2019, …)

(Ocampo, Price & McEwen 2023)

https://arxiv.org/abs/1801.10130
https://arxiv.org/abs/1711.06721
https://arxiv.org/abs/1806.09231
https://arxiv.org/abs/2010.11661
https://arxiv.org/abs/2102.02828
https://arxiv.org/abs/1901.02039
https://arxiv.org/abs/1907.12849
https://arxiv.org/abs/1810.12186
https://arxiv.org/abs/1902.04615
https://arxiv.org/abs/1902.04615
https://arxiv.org/abs/2209.13603


Outline

1. Spherical CNNs

2. Scattering networks on the sphere

3. Emulation of cosmic strings
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Spherical CNNs



Spherical CNN

Spherical CNNs constructed by analog of Euclidean CNNs but using convolution on the
sphere (and rotation group) and pointwise non-linear activations functions, e.g. ReLU
(Cohen et al. 2018; Esteves et al. 2018).

S2 Conv.

ReLU

×N

SO(3)
Conv.

ReLU

×N
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Convolution of signals on the sphere

Convolution of signals in spatial domain
Convolution of two signals f, ψ ∈ L2(S2) is given by

(f ⋆ ψ)(ρ) = ⟨f,Rψ⟩ =
∫
S2
dµ(ω) f(ω)ψ∗(ρ−1ω), for ω ∈ S2, ρ ∈ SO(3),

where dµ(ω) denotes the Haar measure on S2 and ·∗ complex conjugation.
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Convolution is rotationally equivariant

Convolution is rotationally equivariant (if computed continuously):(
(Rρf) ⋆ ψ

)
(ρ′) = (Rρ(f ⋆ ψ))(ρ′).

A

A

Rρ

Rρ
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Fourier representations

Since sphere is compact manifold, Fourier space is discrete and sampling theorems can
be leveraged to compute Fourier representations exactly for bandlimited signals on the
sphere and rotation group (e.g. McEwen & Wiaux 2011, McEwen et al. 2011).

⇒ Provides access to underlying continuous signals and symmetries of sphere.
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Differentiable and accelerated Fourier transforms on S2 and SO(3)

Github: https://github.com/astro-informatics/s2fft

Docs: https://astro-informatics.github.io/s2fft

Paper: Price & McEwen, in prep.
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Harmonic space tensor product activations

Previous approach introduces non-linearity by pointwise activations in spatial domain.

• Computationally costly since it requires repeated harmonic transforms.
• Introduces small equivariance error due to irregular pixelisation.

Alternatively introduce non-linearity in the harmonic domain in an equivariant manner.

Consider irreducible representations of the rotation group SO(3) and leverage the
decomposability of the tensor product between these representations
(Thomas et al. 2018, Kondor et al. 2018).

⇒ Clebsch-Gordan decomposition (cf. coupling of angular momenta in quantum mechanics).
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Efficient generalized spherical CNNs

Consider the s-th layer of a generalized spherical CNN to
take the form of a triple (Cobb et al. 2021; arXiv:2010.11661)

A(s) = (L1,N ,L2),

such that

A(s)( f(s−1) ) = L2 (N (L1( f(s−1) ) ) ),

where
• L1,L2 : F L → F L are spherical convolution operators,
• N : F L → F L is a non-linear, spherical activation
operator.

Linear

Non-linear

Linear
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Efficient generalised spherical CNNs

• Build on other influential equivariant
spherical CNN constructions:

• Cohen et al. (2018)
• Esteves et al. (2018)
• Kondor et al. (2018)

• Encompass other frameworks as special
cases.

• General framework supports hybrids models.

• Significant efficiency improvements.

S2 Conv.

ReLU

I

Cohen et al. (2018),
Esteves et al. (2018)

I

Tensor
Products

Gen. Conv.

Kondor et al. (2018)
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Contributions to improve efficiency

1. Channel-wise structure

2. Constrained generalized convolutions

3. Optimized degree mixing sets

4. Efficient sampling theory on the sphere and rotation group
(McEwen & Wiaux 2011; McEwen et al. 2015)
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Computational cost and memory requirements

• State-of-the-art (SOTA) performance on many benchmark problems.
• Considerable computational savings in FLOPs and memory.

Computational cost Memory requirements
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Discrete-continuous (DISCO) spherical convolution

Scalable and Equivariant Spherical CNNs by Discrete-Continuous (DISCO) Convolutions
(Ocampo, Price & McEwen 2023; arXiv:2209.13603)

Follows by a careful hybrid representation of the spherical convolution:

• some components left continuous, to facilitate accurate rotational equivariance;
• while other components are discretized, to yield scalable computation.
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Discrete-continuous (DISCO) spherical convolution

DISCO spherical convolution
Spherical convolution can be carefully approximated by the DISCO representation

(f ⋆ ψ)(R) =
∫
S2
f(ω)ψ(R−1ω)dω ≈

∑
i

f[ωi]ψ(R−1ωi)q(ωi),

for spherical signal and filter kernel f, ψ : S2 → R, with spherical coordinates ω ∈ S2,
where, for now, we consider 3D rotations R ∈ SO(3).

• Appeal to sampling theorem on the sphere with quadrature weights q : S2 → R
(McEwen & Wiaux 2011; arXiv:1110.6298):
⇒ all information content of signal captured by samples {f[ωi]}i;
⇒ continuous integral evaluated accurately by quadrature (exact for sufficient sampling).

• Filter ψ and rotation R treated continuously to avoid any discretization artefacts.
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Restricting rotations to SO(3)/SO(2)

While the DISCO spherical convolution is already efficient,
we seek further computational savings by restricting the
space of rotations to quotient space SO(3)/SO(2).

• Analogous to Euclidean planar CNNs, where filters are
translated across the image but are not rotated in the plane.

• However, as the space SO(3)/SO(2) is not a group, when
restricting rotations in this manner important differences to
the usual setting arise.

R = Z(α)Y(β)Z(γ) ∈ SO(3)

R = Z(α)Y(β) ∈ SO(3)/SO(2) ≃ S2

Jason McEwen 18

http://www.jasonmcewen.org


Rotational equivariance for rotations R ∈ SO(3)

DISCO spherical convolution f ⋆ ψ for rotations Q,R ∈ SO(3) satisfies SO(3) rotational
equivariance.

Only holds since SO(3) exhibits a group structure and so Q−1R ∈ SO(3).
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Asymptotic rotational equivariance for rotations R ∈ SO(3)/SO(2)

DISCO spherical convolution f⃝⋆ ψ for rotations Q,R ∈ SO(3)/SO(2) does not satisfy
rotational equivariance (in contrast to the Euclidean setting).

But DISCO spherical convolution f⃝⋆ ψ does satisfy asymptotic SO(3) equivariance as
β → 0, where Q = Z(α)Y(β)Z(γ).

Asymptotic SO(3) equivariance of significant practical use since content in spherical
signals often orientated and similar content appears at similar latitudes, particularly for
360◦ panoramic photos and video.
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Computationally scalable DISCO spherical convolution

DISCO convolution affords a computationally scalable implementation.

1. Sparse tensor representation.

2. Memory compression.

3. Custom sparse gradients.

Linear scaling in number of pixels on the sphere O(N) = O(L2) for both computational
cost and memory usage.
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Computational cost and memory requirements

• State-of-the-art (SOTA) performance on many dense-prediction benchmark
problems.

• Dramatic computational savings in FLOPs and memory.

Computational cost Memory requirements

For 4k spherical image, 109 saving in computational cost and 104 saving in memory usage.
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Scattering networks on the sphere



Scattering networks

Scattering networks inspired by CNNs but designed rather than learned filters (Mallat 2012).

⇒ Scattering networks on the sphere follows by direct analogue of Mallat’s Euclidian
construction (McEwen et al. 2022; arXiv:2102.02828)

1. Scalable
2. Rotationally equivariant
3. Stable and locally invariant representation (i.e. effective representation space)
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Differentiable and accelerated wavelets on the sphere

Adopt scale-discretized wavelets on the sphere (e.g. McEwen et al. 2018, McEwen et al. 2015).

Github: https://github.com/astro-informatics/s2wav

Docs: https://astro-informatics.github.io/s2wav

Paper: Price, Polanska, Whitney & McEwen, in prep.
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Scattering transform on the sphere

Spherical scattering propagator for scale j:

U[j]f = |f ⋆ ψj|.

Modulus function is adopted for the activation function since non-expansive. Acts to mix
signal content to low frequencies.

Spherical cascade of propagators:

U[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd |,

for the path p = (j1, j2, . . . , jd) with depth d.

Scattering coefficients:
S[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd | ⋆ ϕ.
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Scattering networks on the sphere

Spherical scattering network is collection of scattering transforms for a number of paths:
SPf = {S[p]f : p ∈ P}, where the general path set P denotes the infinite set of all possible
paths P = {p = (j1, j2, . . . , jd) : J0 ≤ ji ≤ J, 1 ≤ i ≤ d, d ∈ N0} .

f

U [J0]f
• • •

U [j]f
• • •

U [J ]f

S[0]f

U [J0, J0]f
• • •

U [J0, j
′]f

• • •
U [J, J0]f

S[J0]f

S[J0, J0]f S[J0, j
′]f S[J, J0]f

U [j, J0]f
• • •
U [j, j′′]f

• • •
U [j, J ]f

S[j]f

S[j, J0]f S[j, j′′]f S[j, J ]f

• • •
U [J, J0]f U [J, j′′′]f

• • •
U [J, J ]f

S[J ]f

S[J, J0]f S[J, j′′′]f S[J, J ]f

Scattering networks are rotationally equivariant (since the spherical wavelet transform
and modulus operator are rotationally equivariant).
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Isometric invariance

Image Representation Scattering Representation

Isometry
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Isometric invariance

Theorem (Isometric Invariance)

Let ζ ∈ Isom(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL5/2(D+ 1)1/2 λJ0 ∥ζ∥∞∥f∥2.

Scattering network representation is invariant to isometries up to a scale .

(Proof: Follows by straightforward extension of proof of Perlmutter et al. 2020.)
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism

Large diffeomorphism Large diffeomorphism

Jason McEwen 29

http://www.jasonmcewen.org


Stability to diffeomorphisms

Theorem (Stability to Diffeomorphisms)

Let ζ ∈ Diff(S2). If ζ = ζ1 ◦ ζ2 for some isometry ζ1 ∈ Isom(S2) and diffeomorphism
ζ2 ∈ Diff(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL2
[
L2 ∥ζ2∥∞ + L1/2(D+ 1)1/2λJ0 ∥ζ1∥∞

]
∥f∥2.

Scattering network representation is stable to small diffeomorphisms about isometry .

(Proof: Follows by straightforward extension of proof of Perlmutter et al. 2020.)
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Scalable and rotationally equivariant spherical CNNs

Scattering
Transform

Scattering
Transform

Scattering
Transform

Spherical
Scattering
Network

ReLU

S2 Layer

S2 Conv.

I

SO(3)
Conv.

SO(3)
Layer

ReLU

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Constrained

Gen. Conv.

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products

Designed Learned
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Spherical scattering covariance

Spherical scattering covariances (Mousset, Price, Allys, McEwen, in prep.)

Captures non-Gaussian properties of (cosmological) fields very well.

Scattering statistics considered:

1. S1[j] f = E
[
|f ⋆ ψj|

]
.

2. P00[j] f = E
[
|f ⋆ ψj|2

]
.

3. C01[j1, j2] f = Cov
[
f ⋆ ψj2 , |f ⋆ ψj1 | ⋆ ψj2

]
.

4. C11[j1, j2, j3] f = Cov
[
|f ⋆ ψj1 | ⋆ ψj3 , |f ⋆ ψj2 | ⋆ ψj3

]
.
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Emulation of cosmic strings



Cosmic strings

Symmetry breaking phase transitions in the early Universe → topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical
symmetry is broken → line-like discontinuities in the fabric of the Universe.

Observed string-like topological defects in
other media, e.g. ice and liquid crystal.

Detection of cosmic strings would open a new
window into the physics of the Universe!

Optical microscope photograph of
liquid crystal after temperature quench.
[Credit: Chuang et al. 1991].
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Observational signatures of cosmic strings

Spacetime about a cosmic string is canonical,
with a three-dimensional wedge removed
(Vilenkin 1981).

Strings moving transverse to the line of sight
induce line-like discontinuities in the CMB
(Kaiser & Stebbins 1984).

Spacetime around a cosmic string.
[Credit: Kaiser & Stebbins 1984].
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Simulation of cosmic strings

Contact between theory and data via high-resolution simulations (Ringeval et al. 2012).

Need to simulate full physics, evolving a network of strings through cosmic time, and
then ray-trace CMB photons through the string network.
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A single simulation requires 800,000 CPU hours on a supercomputer.

In total there are three full-sky string maps in existence.

Jason McEwen 35

http://www.jasonmcewen.org


Emulation to match scattering covariance

Instead of simulating full physics we emulate with a generative model.

Emulate by matching scattering covariance statistics S(f) with a (single) simulation:

min
femu

∥S(femu)− S(fsim)∥2.

Solve using L-BFGS algorithm in JAX.

Leverage automatic differentiable of spherical harmonic transforms (s2fft), wigner
transforms (s2fft), wavelet transform (s2wav), and spherical scattering computation
(coming very soon!).
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Solve using L-BFGS algorithm in JAX.

Leverage automatic differentiable of spherical harmonic transforms (s2fft), wigner
transforms (s2fft), wavelet transform (s2wav), and spherical scattering computation
(coming very soon!).
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Emulation of cosmic strings

Computation time: 800,000 CPU hours on supercomputer → O(1) hours on A100 GPU.

Still work in progress (detailed statistical validation in progress).
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Cosmic strings

Ability to rapidly emulate CMB string maps opens up many new analyses to search for
evidence of cosmic strings, such as Bayesian inference, simulation-based inference
(cf. McEwen et al. 2018; Planck Collaboration XXV 2014).
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Summary

▷ Data on the sphere prevalent (cosmology, climate, geophysics, computer graphics, …).

▷ Require geometric deep learning on the sphere to encode symmetries and geometric
properties (rotational equivariance); e.g. spherical CNNs, spherical scattering networks.

▷ Need to carefully design approaches to ensure computationally scalable.

▷ Differentiable programming critical: accelerated and differentiable codes for
generalised Fourier transforms on the sphere and rotation group (s2fft), spherical
wavelet transforms (s2wav), scattering networks (coming!), spherical CNNs (coming!).

▷ Rich and active field with many potential new applications!
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