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What is sparsity?

— representation of data in such a way that many data points are zero
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Why is sparsity useful?

— efficient characterisation of structure
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Inverse transform
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(a) Original (b) Noisy (c) Denoised

[Credit: http://www.ceremade.dauphine. fr/~peyre/numerical-tour/tours/denoisingwav_2_wavelet_2d/]
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How can we construct sparsifying transforms?

— many signals in nature have spatially localised, scale-dependent features



How can we construct sparsifying transforms?
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Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform [Credit: http://www.wavelet.org/tutorial/]


http://www.wavelet.org/tutorial/

How can we construct sparsifying transforms?
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Figure: Fourier vs wavelet transform [Credit: http://www.wavelet.org/tutorial/]
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How can we construct sparsifying transforms?

TAM Al hhAnMI\/\/\A AAM MM/\M)\/

VATV STV o T
Nt
- w(g2K)
_y‘_\/\ﬂﬁ 1 wig3K)
. Shifting Sh‘ﬁmg '/\/WA
E Scaling g
&
wig/2)

Figure: Wavelet scaling and shifting [Credit: http: //www.wavelet .org/tutorial/]
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Observations on the celestial sphere in cosmology
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ISW Effect  Continuous Wavelets ~ Detection
Outline

0 Dark energy
@ ISW effect

@ Continuous wavelets on the sphere
@ Detecting dark energy
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Dark energy

@ Universe consists of ordinary baryonic matter,
cold dark matter and dark energy.

@ Dark energy represents energy density of empty
space, which acts as a repulsive force.

683% Dark
Energy

Figure: Content of the Universe [Credit: Planck]
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Dark energy

@ Universe consists of ordinary baryonic matter,
cold dark matter and dark energy.

@ Dark energy represents energy density of empty
space, which acts as a repulsive force.

@ Strong evidence for dark energy exists but we
know very little about its nature and origin.

683% Dark
Energy

@ A consistent model in the framework of particle
physics lacking.

Figure: Content of the Universe [Credit: Planck]



Dark Energy ISW Effect Continuous Wavelets Detection

Integrated Sachs Wolfe Effect
Analogy

(no dark energy) (with dark energy)

(a) No dark energy (b) With dark energy

Figure: Analogy of ISW effect



ballsim7_2_prod.avi
Media File (video/avi)


ballsim7_ani1_prod.avi
Media File (video/avi)


k Energy ISW Effect Continuous Wavelets Detection

Integrated Sachs Wolfe Effect
Correlation between CMB and LSS

(a) CMB (b) LSS

Figure: Constraining dark energy through any correlation between the CMB and LSS.



Dark Energy ISW Effect Continuous Wavelets Detection

Recall wavelet transform in Euclidean space
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Figure: Wavelet scaling and shifting [Credit: http://www.wavelet.org/ttutorial/]
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ISW Effect Continuous Wavelets Detection
Continuous wavelets on the sphere

@ One of the first natural wavelet construction on the sphere was derived in the seminal work
of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.
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Continuous wavelets on the sphere
@ One of the first natural wavelet construction on the sphere was derived in the seminal work
of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on
the sphere is defined by

[R(PfIw) =f(p~" w), w=(0,0) €S*, p=(a,B,7) €SO3).

translation
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Continuous wavelets on the sphere
@ One of the first natural wavelet construction on the sphere was derived in the seminal work
of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on
the sphere is defined by

[R(PfIw) =f(p~" w), w=(0,0) €S*, p=(a,B,7) €SO3).

translation

@ How define dilation on the sphere?



ISW Effect Continuous Wavelets Detection
Continuous wavelets on the sphere
@ One of the first natural wavelet construction on the sphere was derived in the seminal work
of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on
the sphere is defined by

R(p)fI(w) =f(p™" - w), w=(6,9) €S, p=(xB7) €SO(3).

translation

@ How define dilation on the sphere?

North pole---.
@ The spherical dilation operator is defined through the '

conjugation of the Euclidean dilation and

stereographic projection IT:

D(a) =11~ d(a)II.

dilation

South pole



Dark Energy ISW Effect Continuous Wavelets Detection

Continuous wavelets on the sphere
Forward transform (i.e. analysis)

@ Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet W:

{U,, =R(p)D(a)¥ : p € SO(3),a € R }.

dictionary
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Continuous wavelets on the sphere
Forward transform (i.e. analysis)

@ Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet W:

{U,, =R(p)D(a)¥ : p € SO(3),a € R }.

dictionary

@ The forward wavelet transform is given by

W 0.0) = (. ap) |= [ 000) f0) 9,0)

projection

where dQ(w) = sin 0 df de is the usual invariant measure on the sphere.



Dark Energy ISW Effect Continuous Wavelets Detection

Continuous wavelets on the sphere
Forward transform (i.e. analysis)

@ Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet W:

{U,, =R(p)D(a)¥ : p € SO(3),a € R }.

dictionary

@ The forward wavelet transform is given by

W 0.0) = (. ap) |= [ 000) f0) 9,0)

projection

where dQ(w) = sin 0 df de is the usual invariant measure on the sphere.

@ Wavelet coefficients live in SO(3) x R} ; thus, directional structure is naturally incorporated.



Dark Energy ISW Effect Continuous Wavelets Detection

Continuous wavelets on the sphere
Fast algorithms

@ Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
e Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001), Risbo (1996)

@ Separation of variables: Wiaux et al. (2005)
FastCSWT code http://www.fastcswt.org

Fast directional continuous spherical wavelet transform algorithms
McEwen et al. (2007)

@ Fortran

@ Supports directional and steerable wavelets



http://www.fastcswt.org

Dark Energy ISW Effect Continuous Wavelets Detection

Continuous wavelets on the sphere
Mother wavelets

@ Correspondence principle between spherical and Euclidean wavelets (Wiaux et al. 2005).



Dark Energy ISW Effect Continuous Wavelets Detection

Continuous wavelets on the sphere
Mother wavelets

@ Correspondence principle between spherical and Euclidean wavelets (Wiaux et al. 2005).

@ Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets

defined on the plane:
(=]

construction

where Up, € L2(R?, d%x) is an admissible wavelet on the plane.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.



Dark Energy ISW Effect Continuous Wavelets Detection

Continuous wavelets on the sphere
Inverse transform (i.e. synthesis)

@ The inverse wavelet transform given by

© da

@ = [T5 [ deo) | Whlap) REOZuWI@) |-
o @ Jso(3)

weighted basis functions

‘sum’ contributions

where do(p) = sin S da.df dv is the invariant measure on the rotation group SO(3).



Dark Energy ISW Effect Continuous Wavelets Detection

Continuous wavelets on the sphere
Inverse transform (i.e. synthesis)

@ The inverse wavelet transform given by

© da

@ = [T5 [ deo) | Whlap) REOZuWI@) |-
o @ Jso(3)

weighted basis functions

‘sum’ contributions
where do(p) = sin S da.df dv is the invariant measure on the rotation group SO(3).
@ Perfect reconstruction iff wavelets satisfy admissibility property:

872

20+ 1

L \
~y > da
0<Ch= > /0 = | (Ta),, P< oo, WLEN

m=—{

where (¥,),,, are the spherical harmonic coefficients of W, (w).



Dark Energy ISW Effect Continuous Wavelets Detection

Continuous wavelets on the sphere
Inverse transform (i.e. synthesis)

@ The inverse wavelet transform given by

© da

@ = [T5 [ deo) | Whlap) REOZuWI@) |-
o @ Jso(3)

weighted basis functions

‘sum’ contributions
where do(p) = sin S da.df dv is the invariant measure on the rotation group SO(3).
@ Perfect reconstruction iff wavelets satisfy admissibility property:

872

20+ 1

L \
~y > da
0<Ch= > /(, = | (Ta),, P< oo, WLEN

m=—{

where (¥,),,, are the spherical harmonic coefficients of W, (w).

@ | BUT... exact reconstruction not feasible in practice! ]




ISW Effect Continuous Wavelets Detection
Detecting dark energy

Wavelet coefficient correlation

@ Compute wavelet correlation of CMB and LSS data
(McEwen et al. 2007, McEwen et al. 2008).

@ Compare to 1000 Monte Carlo simulations.



ISW Effect Continuous Wavelets Detection
Detecting dark energy

Wavelet coefficient correlation
@ Compute wavelet correlation of CMB and LSS data
(McEwen et al. 2007, McEwen et al. 2008).
@ Compare to 1000 Monte Carlo simulations.

@ Correlation detected at 99.9% significance.

= | Independent evidence for the existence of dark energy!

h

Diaton b arcmin)

Figure: Wavelet correlation N,, surface. Contours are shown at 3o.



ISW Effect Continuous Wavelets Detection
Detecting dark energy

Constraining cosmological models

@ Use positive detection of the ISW effect to constrain parameters of cosmological models:
o Energy density Q4.

e Equation of state parameter w relating pressure and density of cosmological fluid modelling dark
energy, i.e. p = wp.



ISW Effect Continuous Wavelets Detection
Detecting dark energy

Constraining cosmological models

@ Use positive detection of the ISW effect to constrain parameters of cosmological models:
o Energy density Q4.

e Equation of state parameter w relating pressure and density of cosmological fluid modelling dark
energy, i.e. p = wp.

Qp = 0631018

To17 |and

@ Parameter estimates of

w=—0.77703 | obtained.

(a) Full likelihood surface (b) Marginalised distribution for €2 5 (c) Marginalised distribution for w

Figure: Likelihood for dark energy parameters.

Jason McEwen Cosmolnformatics



Strings  Discrete Wavelets ~ Estimation
Outline

e Cosmic strings
@ String physics
@ Scale-discretised wavelets on the sphere
@ String estimation



S e
Cosmic strings

@ Symmetry breaking phase transitions in the early
Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise
when axial or cylindrical symmetry is broken
— line-like discontinuities in the fabric of the Universe.
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Cosmic strings

@ Symmetry breaking phase transitions in the early
Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise
when axial or cylindrical symmetry is broken

— line-like discontinuities in the fabric of the Universe.

@ We have not yet observed cosmic strings but we have

observed string-like topological defects in other media.

Figure: Optical microscope photograph of
a thin film of freely suspended nematic
liquid crystal after a temperature quench.
[Credit: Chuang et al. (1991).]



Dark Energy Cosmic Strings Radio Interferometry LSS Strings Discrete Wavelets Estimation

Cosmic strings

@ Symmetry breaking phase transitions in the early
Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise
when axial or cylindrical symmetry is broken
— line-like discontinuities in the fabric of the Universe.

@ We have not yet observed cosmic strings but we have
observed string-like topological defects in other media.

Figure: Optical microscope photograph of
a thin film of freely suspended nematic
liquid crystal after a temperature quench.
[Credit: Chuang et al. (1991).]

The detection of cosmic strings would open a new window into the physics of the Universe!

Jason McEwen Cosmolnformatics



Strings Discrete Wavelets Estimation

Observational signatures of cosmic strings

Conical Spacetime

@ Spacetime about a cosmic string is conical, with

a three-dimensional wedge removed
(Vilenkin 1981).

@ Strings moving transverse to the line of sight
induce line-like discontinuities in the CMB
(Kaiser & Stebbins 1984).

@ The amplitude of the induced contribution
scales with the string tension Gp.

Jason McEwen

Source

Light | % rays

String

Observer

Figure: Spacetime around a cosmic string.
[Credit: Kaiser & Stebbins 1984, DAMTP]

Cosmolnformatics



Cosmic Strings Strings Discrete Wavelets Estimation

Observational signatures of cosmic strings
CMB contribution

@ Make contact between theory and data using high-resolution simulations.

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.

Jason McEwen Cosmolnformatics



Strings Discrete Wavelets Estimation
Observational signatures of cosmic strings

CMB contribution
@ Make contact between theory and data using high-resolution simulations.
@ Search for a weak string signal s embedded in the CMB ¢, with observations d given by

[ d6.0) |=| ct@.0) |+ Gu-s0.0) .

observation CMB strings

»
X
- 4
(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.

Jason McEwen Cosmolnformatics



Cosmic Strings Strings  Discrete Wavelets Estimation

Scale-discretised wavelets on the sphere
Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

@ Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)



Cosmic Strings Strings  Discrete Wavelets Estimation

Scale-discretised wavelets on the sphere
Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

@ Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

@ Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].
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Scale-discretised wavelets on the sphere
Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

@ Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

@ Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].

@ Scale-discretised wavelet ¥ € L2(S?, dQ)

o SO defined in harmonic space:

\IlQm =1 (Osp .

0.2]
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Scale-discretised wavelets on the sphere
Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

@ Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

@ Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].

— @ Scale-discretised wavelet ¥ € L2(S?, dQ)
o cO 0 defined in harmonic space:
W, =K (O)spm -

@ Admissible wavelets constructed to satisfy
a resolution of the identity:

J L
-5 £ [F-

. " j=0 m=—2¢
scaling function = wavelet

0.2]
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Scale-discretised wavelets on the sphere
Wavelets

(b)j=3 (©j=2

Figure: Scale-discretised wavelets on the sphere.



Cosmic Strings Strings  Discrete Wavelets Estimation

Scale-discretised wavelets on the sphere
Forward and inverse transform (i.e. analysis and synthesis)

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WY (p) = (f, Ry W)

projection

— /S Q@) (@) (RpW)* ().
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Scale-discretised wavelets on the sphere
Forward and inverse transform (i.e. analysis and synthesis)

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WY (p) = (f, R, W)

projection

— /S Q@) (@) (RpW)* ().

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

flw) =

2 [ a0)W® () (RuLiB) @) [ oW ()R, W)
52 SO(3)

scaling function contribution wavelet contribution

finite sum



Cosmic Strings Strings Discrete Wavelets Estimation

Scale-discretised wavelets on the sphere
Exact and efficient computation

@ Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

4

2041 . N
WY (p) = Z Z Z = (W‘I’]) D% (p) , | where (W‘I’j)mn = 2@ me
L=0m=—~€n=—"¢ 4 +1

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski 2001,
McEwen et al. 2007).
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Scale-discretised wavelets on the sphere
Exact and efficient computation

@ Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

4

2041 . N
WY (p) = Z Z > T (WY),, Do), | where (W“I”)m—ze fon®,
L=0m=—Ln=—" & +1

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski 2001,
McEwen et al. 2007).

@ Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

J

j . 20 + 1
fw~zéwwmeWMWw ZZ WY W Yy(w) |
Jj=0 £mn

where

- - ;
Wﬂm=w%0mzéwfmwww%mm

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wiaux, McEwen et al. 2008)
and exactly by employing the Driscoll & Healy (1994) or McEwen & Wiaux (2011) sampling theorem.

T (. ormatios
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Scale-discretised wavelets on the sphere
Exact and efficient computation
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Figure: Numerical accuracy.
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Scale-discretised wavelets on the sphere
Exact and efficient computation
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Figure: Computation time.
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Scale-discretised wavelets on the sphere

Codes

S2DW code

http://www.s2dw.org

Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

@ Fortran
@ Parallelised

@ Supports directional and steerable wavelets

S2LET code

http://www.s2let.org

S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

@ C, Matlab, IDL, Java
@ Supports only axisymmetric wavelets at present

@ Future extensions planned (directional and steerable wavelets, faster
algos, spin wavelets)



http://www.s2dw.org
http://www.s2let.org
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Scale-discretised wavelets on the sphere
lllustration

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.



Strings Discrete Wavelets Estimation
Motivation for using wavelets to detect cosmic strings

@ Denote the wavelet coefficients of the data d by
Wi, = (d, jp)

for scale j € Z* and position p € SO(3).

@ Consider an even azimuthal band-limit N = 4 to yield wavelet with odd azimuthal symmetry.

I

Figure: Example wavelet matched to the expected string contribution.



Strings Discrete Wavelets Estimation
Motivation for using wavelets to detect cosmic strings

@ Wavelet transform yields a sparse representation of the string signal — hope to effectively
separate the CMB and string signal in wavelet space.

5§
0.25y
MB
4 = Cosmic strings
0.2
2z >
2y 3
3 § 0.15|
g >
K 2 E 0.1]
E [<}
a [
1 0.05)
o - =
-400 -20 0 200 400 -40 -20 0 20 40
Pixel values ( uK) Wavelet coefficients ( pK)

Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).



Strings Discrete Wavelets Estimation
Learning the statistics of the CMB and string signals in wavelet space

@ Wavelet-Bayesian approach to estimate the string tension and map:

[d6.0) |=[c@.0) |+ Gu-s0.0) |-

observation CMB strings

@ Need to determine statistical description of the CMB and string signals in wavelet space.
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Learning the statistics of the CMB and string signals in wavelet space

@ Wavelet-Bayesian approach to estimate the string tension and map:

[d6.0) |=[c@.0) |+ Gu-s0.0) |-

observation CMB strings

@ Need to determine statistical description of the CMB and string signals in wavelet space.

@ Calculate analytically the probability distribution of the CMB in wavelet space.



Strings  Discrete Wavelets ~ Estimation
Learning the statistics of the CMB and string signals in wavelet space

@ Wavelet-Bayesian approach to estimate the string tension and map:

[d6.0) |=[c@.0) |+ Gu-s0.0) |-

observation CMB

strings

@ Need to determine statistical description of the CMB and string signals in wavelet space.

@ Calculate analytically the probability distribution of the CMB in wavelet space.

o Fit a generalised Gaussian distribution (GGD) for
the wavelet coefficients of a string training map
(cf. Wiaux et al. 2009):

Figure: GGD



Strings  Discrete Wavelets ~ Estimation
Learning the statistics of the CMB and string signals in wavelet space

g * A . "
(a) String training map (b) String testing map
Figure: Cosmic string simulations.
15° ‘Wavelet coefficient distribution for scale | = 0

ted (string2)
s
%
@ Distributions in close agreement. [
!

T e

Figure: Distributions for wavelet scale j = 0.



Strings  Discrete Wavelets ~ Estimation
Learning the statistics of the CMB and string signals in wavelet space

(a) String training map (b) String testing map
Figure: Cosmic string simulations.

16° Wavelet coeficent distribution or scale = 1

<t (string)
ted (sting?)

@ Distributions in close agreement.

Probatilty density

B E] T 15

50 o
Wavelet coefficient x10’

Figure: Distributions for wavelet scale j = 1.



Strings  Discrete Wavelets ~ Estimation
Learning the statistics of the CMB and string signals in wavelet space

(a) String training map (b) String testing map
Figure: Cosmic string simulations.

16° Wavelet coeficent distribion for scale | =

<t (string)
ted (sting?)

@ Distributions in close agreement.

Probatilty density

B E] T 15

50 o
Wavelet coefficient x10’

Figure: Distributions for wavelet scale j = 2.



Strings  Discrete Wavelets ~ Estimation
Learning the statistics of the CMB and string signals in wavelet space

(a) String training map (b) String testing map
Figure: Cosmic string simulations.

16° Wavelet coeficent distribion for scale | - 3

Test (string1)
08 Fited (sting2)

@ Distributions in close agreement.

Probatilty density

B E] T 15

50 o
Wavelet coefficient x10’

Figure: Distributions for wavelet scale j = 3.



Strings  Discrete Wavelets ~ Estimation
Learning the statistics of the CMB and string signals in wavelet space

(a) String training map (b) String testing map
Figure: Cosmic string simulations.

ted (string2)
5
@ Distributions in close agreement.
@ Accurately characterised statistics X
of string signals in wavelet space.
!
T Mt

%10

Figure: Distributions for wavelet scale j = 4.



Strings Discrete Wavelets Estimation
Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space.



Strings Discrete Wavelets Estimation
Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space.

@ For each wavelet coefficient the likelihood is given by

P, | Gu) = P(W, + W, | Gu) = /IR AW, Py (W, = Wi,) Pi(Wj, | Gu) -




Strings Discrete Wavelets Estimation
Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space.

@ For each wavelet coefficient the likelihood is given by

P

d _ d
POV, | G) = POV, + W5, ) = [ aw, Biows, vv,-;>1>;<vv;,,|cm.’

@ The overall likelihood of the data is given by

P(W*|Gu) = HP( IGu)’

where we have assumed independence for numerical tractability.



Strings Discrete Wavelets Estimation
Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy | W) by Bayes theorem:

P(W? | Gp) P(Gp) d
P(Gu | Wd) = =22 1 o (WY | Gu) P(Gp) .
(G | W) WD) oc P(W* | Gu) P(Gp)
1
0.8¢ E |
> :
‘0 .
806/ 1
z '
§o4 : ]
s :
£ :
0.2+ H R
G0 1 2 é 4
Gu x107°

Figure: Posterior distribution of the string tension (true G = 3 x 10~°).



Strings Discrete Wavelets Estimation
Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy | W) by Bayes theorem:

P(W? | Gp) P(Gp)

PG| W) = =

o< P(W?| Gp) P(Gp) .

o o
=) ®

I
EN

Probability density

=
<
-
o

Figure: Posterior distribution of the string tension (true G = 2 x 10~°).



Strings Discrete Wavelets Estimation
Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy | W) by Bayes theorem:

P(W? | Gp) P(Gp) d
P(Gu | Wd) = =22 1 o (WY | Gu) P(Gp) .
(G | W) WD) oc P(W* | Gu) P(Gp)
1 .
0.8 f 1
> :
‘0 .
806/ 1
z '
§o4 : ]
s :
: :
0.2+ H R
% 1 2 3 4
Gu x107°

Figure: Posterior distribution of the string tension (true G = 1 x 10~°).
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Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M* to the alternative model M©
that the observed data is comprised of just a CMB contribution.
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@ Compute Bayesian evidences to compare the string model M* to the alternative model M©
that the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

£ = PV M) = [ d(Gun) POV Gp) P(G).




Strings Discrete Wavelets Estimation
Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M* to the alternative model M©
that the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

£ = PV M) = [ d(Gun) POV Gp) P(G). ’

@ The Bayesian evidence of the CMB model is given by

Jsp

B = pw! | M) = [T v ’




Strings Discrete Wavelets Estimation
Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M* to the alternative model M¢
that the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

£ = PV M) = [ d(Gun) POV Gp) P(G). ’

@ The Bayesian evidence of the CMB model is given by

— d _ d
£ =PW! M) = [TP(W)-
ip

@ Compute the Bayes factor to determine the preferred model:

AInE = In(E° /E°) . ]

Table: Tension estimates and log-evidence differences for simulations.

Gu/10~° 0.7 0.8 0.9 1.0 2.0 3.0

Gu/1076 1.1 1.2 1.2 13 21 3.1
AlInE —13 -11 —-09 —07 55 29




Strings ~ Discrete Wavelets ~ Estimation
Recovering string maps

@ Inference of the wavelet coefficients of the underlying string map encoded in posterior
probability distribution P(ij | wo).



Strings Discrete Wavelets Estimation
Recovering string maps

@ Inference of the wavelet coefficients of the underlying string map encoded in posterior
probability distribution P(ij | wo).

@ Estimate the wavelet coefficients of the string map from the mean of the posterior
distribution:

P

—
W= | aw, Wi, pO¥;, W)

@ Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

@ Work in progress. ..
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Outline

© Radio interferometry
@ Interferometric imaging
@ Compressive sensing
@ |Imaging with CS
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Next-generation of radio interferometry rapidly approaching

@ Square Kilometre Array (SKA) construction
scheduled to begin in 2018.

@ Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP,
MeerKAT, MWA.

Figure: Artist impression of SKA dishes. [Credit: SKA
Organisation]

e

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]

Jason McEwen Cosmolnformatics
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Next-generation of radio interferometry rapidly approaching

@ Square Kilometre Array (SKA) construction
scheduled to begin in 2018.

@ Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP,
MeerKAT, MWA.

@ New modelling and imaging techniques
required to ensure the next-generation of
interferometric telescopes reach their full
potential.

Figure: Artist impression of SKA dishes. [Credit: SKA
Organisation]

e

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]

Jason McEwen Cosmolnformatics
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Radio interferometry

@ The complex visibility measured by an interferometer is given by

. 2
y(u,w) = ‘/mA(l) x(1) C(||1]]p) e~ 12 % 7

visibilities

where the w-modulation C(]|Z||,) is given by

‘ c(ju) = &2 (1=Vi=I)

w-modulation
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Radio interferometry

@ The complex visibility measured by an interferometer is given by

—i27u- dzl
yaw) = [ Q)@ (i) B 8,
Jp2 n(l)
visibilities
where the w-modulation C(]|Z||,) is given by
‘ c(ju) = &2 (1=Vi=I)

w-modulation

@ Various assumptions are often made regarding the size of the field-of-view (FoV):

o Small-fieldwith| [lZlPw< 1| = | (i) ~1
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Radio interferometry

@ The complex visibility measured by an interferometer is given by

; d’l
y(u,w) = / AQ) x(1) C(JI|]) e~ 2™t £2 |,
JD? n(l)
visibilities

where the w-modulation C(]|Z||,) is given by

‘ C(|l122) = i2mw (1-V1-1II)

w-modulation

@ Various assumptions are often made regarding the size of the field-of-view (FoV):

o Small-fieldwith | [[[[Fw <1 | = | c(z) ~1
Fa—_ 2
o smalfieldwith| [Zfw< 1| = | ) ~ ™I
o Wide-field = | c(ltR) = i2mw (1=v/1=1111%)
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

=z

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

=)

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator| ® = MF CA | may incorporate:

e primary beam A of the telescope;
e w-modulation modulation C;
e Fourier transform F;

@ masking M which encodes the incomplete measurements taken by the interferometer.
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

=)

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator| ® = MF CA | may incorporate:

e primary beam A of the telescope;
e w-modulation modulation C;
e Fourier transform F;

@ masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Compressive sensing

“Nothing short of revolutionary.”

— National Science Foundation

@ Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.

@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — compressive sensing.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
‘and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera



Dark Energy Cosmic Strings Radio Interferometry LSS Interferometric Imaging Compressive Sensing Imaging with CS

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.

@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — compressive sensing.

@ Acquisition versus imaging.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
‘and random basis

DSP

(a) Architecture (b) Scene

Figure: Single pixel camera

(c) Recov. (20% meas.)



Radio Interferometry Interferometric Imaging Compressive Sensing Imaging with CS

An introduction to compressive sensing
Operator description

@ Linear operator (linear algebra) representation of signal decomposition:

| |
x(t) = Za[‘l/;(l) - x= Z\I/,'Ot,' = (WU) oo + (‘L’]) ayp+ -0 =
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An introduction to compressive sensing
Operator description

@ Linear operator (linear algebra) representation of signal decomposition:

x(t):Za,-‘I/;(t) — x:Z\I/,-a,-: Vo lag+ (VY1 |y +--+ —
i i

@ Linear operator (linear algebra) representation of measurement:
— Py —

R
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An introduction to compressive sensing
Operator description

@ Linear operator (linear algebra) representation of signal decomposition:

| |
x(t) = Za[‘l/;(l) - x= Z\I/,'Ot,' = <\1/0) oo + (\L’]) ayp+ -0 =
: i |

@ Linear operator (linear algebra) representation of measurement:
— Py —

N
@ Putting it together:
Y )
M x N

H_/

= Va
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An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y=&&x+n=oVa+n |
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An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x+n=‘1>\1'a+n].

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i
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An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x—&-n:@\lla—l—n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

)

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

where the signal is synthesising by x* = Y a*.



Radio Interferometry Interferometric Imaging Compressive Sensing Imaging with CS

An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x—&-n:@\lla—l—n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

)

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

where the signal is synthesising by x* = Y a*.

@ Solving this problem is difficult (combinatorial).
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An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x+n:‘1>\1'a+n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

)

o = argmin||a|lp such that [y — dTea|, <e
a

where the signal is synthesising by x* = Y a*.
@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢, optimisation problem (convex):

‘ o* — argmin||al|; such that [y — dTal), < e
(84




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation
@ Solutions of the ¢y, and ¢; problems are often the same.
@ Restricted isometry property (RIP):
(1 =6p)llexl3 < @l < (1 +6k)llex3

for K-sparse «, where © = ®W.

(@) (b) ()

Figure: Geometry of (a) £q (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing
Coherence

@ In the absence of noise, compressed sensing is exact!
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An introduction to compressive sensing
Coherence

@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by

M > ci’KlogN |,

where K is the sparsity and N the dimensionality.
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An introduction to compressive sensing

Coherence
@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by

M > ci’KlogN |,

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p= VN max |(¥;, &)
L]

Y o} \ «
—_—

= Va
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An introduction to compressive sensing

Coherence
@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by

M > ci’KlogN |,

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p= VN max |(¥;, &)
L]

Y o} \ «
—_—

= Va

@ Robust to noise.
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An introduction to compressive sensing
Analysis vs synthesis

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).
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An introduction to compressive sensing
Analysis vs synthesis

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

o = argmin ||a||; suchthat |y — PPl <e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Va*.

@ Analysis-based framework:

x* = argmin || UTx||; such that |ly — ®x||» <,
x

where the signal x* is recovered directly.



Interferometric Imaging Compressive Sensing Imaging with CS
An introduction to compressive sensing
Analysis vs synthesis
@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

o = argmin ||a||; suchthat |y — PPl <e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Va*.

@ Analysis-based framework:

x* = argmin || UTx||; such that |ly — ®x||» <,
x

where the signal x* is recovered directly.

@ Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, McEwen &
Wiaux 2013)

[@:[qf.,\yz,.--,\pq]‘]
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Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem

y=®+n with ®=MFCA |,

by applying a prior on sparsity of the signal in a sparsifying dictionary .
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Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem

y=®+n with ®=MFCA |,

by applying a prior on sparsity of the signal in a sparsifying dictionary .
@ Basis pursuit (BP) denoising problem

a* = argmin||e||; suchthat |y — @Pal, <€,
«a

where the image is synthesised by x* = Va*.
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SARA for radio interferometric imaging
Algorithm

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)
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SARA for radio interferometric imaging
Algorithm
@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[U,¥,..., ¥,
Vi !

thus & € RVXP with D = ¢gN.
@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);

Daubechies wavelet bases two to eight.
=- concatenation of 9 bases
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SARA for radio interferometric imaging
Algorithm
@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[0,¥,,..., ¥,

Va

thus & € RVXP with D = ¢gN.

@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
=- concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

‘min |[WUT%||, subjectto |y —®%|,<e and ¥>0,
XeRVN

where W € RP*? is a diagonal matrix with positive weights.
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SARA for radio interferometric imaging
Algorithm

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[0,¥,,..., ¥,

Va

thus & € RVXP with D = ¢gN.

@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min ||WU%||; subjectto |y—®x|; <e and >0,
TRV

where W € RP*? is a diagonal matrix with positive weights.

@ Solve a sequence of reweighted ¢; problems using the solution of the previous
problem as the inverse weights — approximate the ¢, problem.
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Supporting continuous visibilities
Algorithm

@ |deally we would like to model the continuous Fourier transform operator

)

@ But this is impracticably slow!
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Supporting continuous visibilities
Algorithm

@ |deally we would like to model the continuous Fourier transform operator

)

@ But this is impracticably slow!
@ Incorporated gridding into our CS interferometric imaging framework.

@ Work of Rafael Carrillo, in collaboration with Wiaux and McEwen
(see Carrillo, McEwen, Wiaux 2013).
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Supporting continuous visibilities
Algorithm

@ |deally we would like to model the continuous Fourier transform operator

|

@ But this is impracticably slow!
@ Incorporated gridding into our CS interferometric imaging framework.

@ Work of Rafael Carrillo, in collaboration with Wiaux and McEwen
(see Carrillo, McEwen, Wiaux 2013).

@ Model with measurement operator

®=GFDZ |,

where we incorporate:
@ convolutional gridding operator G;

o fast Fourier transform F;
e normalisation operator D to undo the convolution gridding;

e zero-padding operator Z to upsample the discrete visibility space.
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Supporting continuous visibilities
Results on simulations

Figure: Coverage

Jason McEwen Cosmolnformatics
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Supporting continuous visibilities
Results on simulations

Figure: M31 (ground truth).

Jason McEwen Cosmolnformatics
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Supporting continuous visibilities
Results on simulations

Figure: Dirac basis (“CLEAN”) — SNR= 8.2dB.

Jason McEwen Cosmolnformatics
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Supporting continuous visibilities
Results on simulations

Figure: Db8 wavelets (“MS-CLEAN”) — SNR= 11.1dB.

Jason McEwen Cosmolnformatics
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Supporting continuous visibilities
Results on simulations

Figure: SARA — SNR= 13.4dB.

Jason McEwen Cosmolnformatics
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Outlook

@ Just released the PURIFY code to scale to the realistic setting.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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Outlook

@ Just released the PURIFY code to scale to the realistic setting.

@ Includes state-of-the-art convex optimisation algorithms that support parallelisation.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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Radio Interferometry Interferometric Imaging Compressive Sensing Imaging with CS
Outlook

@ Just released the PURIFY code to scale to the realistic setting.
@ Includes state-of-the-art convex optimisation algorithms that support parallelisation.

@ Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.



http://basp-group.github.io/purify/

Radio Interferometry Interferometric Imaging Compressive Sensing Imaging with CS
Outlook

@ Just released the PURIFY code to scale to the realistic setting.
@ Includes state-of-the-art convex optimisation algorithms that support parallelisation.

@ Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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LSS Wavelets on Ball Cosmic Voids

Outline

@ Large-scale structure
@ Wavelets on ball
@ Cosmic voids
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Observations on the 3D ball

DA

Jason McEwen Cosmolnformatics



LSS Wavelets on Ball Cosmic Voids

Fourier-LAGuerre wavelets (flaglets) on the ball
Construction

@ Exact wavelets on the ball (Leistedt & McEwen 2012).

@ Extend the idea of scale-discretised wavelets on the
sphere (Wiaux, McEwen, Vandergheynst, Blanc 2008)

! to the ball.
. x @ Construct wavelets by tiling the ¢—p harmonic plane.
[ 10 20 30 40 50 60
60|
50
40
30
20
10 r/
A o % 10 20 30 40 50 60

Figure: Tiling of Fourier-Laguerre space.

Jason McEwen Cosmolnformatics



LSS Wavelets on Ball Cosmic Voids

Fourier-LAGuerre wavelets (flaglets) on the ball
Construction

@ Exact wavelets on the ball (Leistedt & McEwen 2012).

@ Extend the idea of scale-discretised wavelets on the
sphere (Wiaux, McEwen, Vandergheynst, Blanc 2008)

! to the ball.
. @ Construct wavelets by tiling the ¢—p harmonic plane.
; \ o Scale-discretised wavelet Wi’ € L2(B) is defined in

0 harmonic space:

\Iijj/ o J2U+1

i _-/
o = T O v .

@ Construct wavelets to satisfy a resolution of the identity:

4 L
|®eop|* |+ E E
2041 —
J=Jo j! :/[’)
wavelet

= 1,V¢,p.

scaling function

J—

1

10 20 30 40 50 60
1 0 0 10 20 30 40 50 60

Figure: Tiling of Fourier-Laguerre space.

Jason McEwen Cosmolnformatics
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Wavelets

Fourier-LAGuerre wavelets (flaglets) on the ball

Wavelets on Ball Cosmic Voids
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LSS Wavelets on Ball Cosmic Voids

Fourier-LAGuerre wavelets (flaglets) on the ball
Wavelets

Wavelets



waveletsL256P256.mp4
Media File (video/mp4)


LSS Wavelets on Ball Cosmic Voids

Fourier-LAGuerre wavelets (flaglets) on the ball
Forward and inverse transform (i.e. analysis and synthesis)

@ The Fourier-Laguerre wavelet transform is given by the usual projection onto each wavelet:

W) = (% (1T s | = /33 OICAZBIOR

projection




LSS Wavelets on Ball Cosmic Voids

Fourier-LAGuerre wavelets (flaglets) on the ball
Forward and inverse transform (i.e. analysis and synthesis)

@ The Fourier-Laguerre wavelet transform is given by the usual projection onto each wavelet:

W) = 1+ (T ) | = _/33 OICAZBIOR

projection

@ The original function may be synthesised exactly in practice from its wavelet (and scaling) coefficients:

J " »
f(r) = / W (TR ) |+ S / \ Erw e (e ) ()
B =1y j1 =1} =
scaling function contribution finit wavelet contribution
inite sum



LSS Wavelets on Ball Cosmic Voids

Fourier-LAGuerre wavelets (flaglets) on the ball
Exact and efficient computation

@ For a band-limited signal, we can compute Fourier-Laguerre wavelet transforms exactly.

8

10_ T T T T T T T

-10

10

-12

«10 1

_14

107

10_16 i i i i i i i

27 210 213 2]8 219 22'2 225

Figure: Numerical accuracy of the flaglet transform.



LSS Wavelets on Ball Cosmic Voids

Fourier-LAGuerre wavelets (flaglets) on the ball
Exact and efficient computation

@ Fast algorithms to compute Fourier-Laguerre wavelet transforms.

—_ A A a4
o O O O o
T T T T T

—_
o
T

Figure: Computation time of the flaglet transform.
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Fourier-LAGuerre wavelets (flaglets) on the ball
Codes

FLAGLET code http://www.flaglets.org

Exact wavelets on the ball
Leistedt & McEwen (2012)

@ C, Matlab

@ Exact (Fourier-LAGuerre) wavelets on the ball — coined flaglets!

FLAG code http://www.flaglets.org

FLAG: Fourier-Laguerre trnasform on the ball
Leistedt & McEwen (2012)

@ C, Matlab

Jason McEwen Cosmolnformatics


http://www.flaglets.org
http://www.flaglets.org

LSS Wavelets on Ball Cosmic Voids

Analysis of large-scale structure (LSS)

@ Map Horizon simulation of large-scale structure (LSS) to Fourier-Laguerre sampling.

| ' LSS fly through




horizon_f_L192P192_ShowSlices.mp4
Media File (video/mp4)


LSS Wavelets on Ball Cosmic Voids

Flaglet void finding

@ Find voids in the large-scale structure (LSS) of the Universe.

@ Perform Alcock & Paczynski (1979) test: study void shapes to constrain the nature of dark energy
(e.g. Sutter et al. 2012).

LSS voids



horizon_void_waveletsL192P192_ShowSlices.mp4
Media File (video/mp4)
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LSS Wavelets on Ball Cosmic Voids

Summary

A rapid tour of sparsity, wavelets, compressive sensing and all that . ..

...and their application to cosmology.

Application of informatics techniques like wavelets for CMB analysis well-established.

Great potential to exploit informatics techniques for analysis of LSS!
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