Exploiting sparsity for CMB data analysis

Jason McEwen

http://www.jasonmcewen.org/

University College London (UCL)

London Cosmology Discussion Meeting (LCDM) :: April 2013

Jason McEwen Exploiting sparsity for CMB data analysis


http://www.jasonmcewen.org/

0 Sparsity: what is it all about?

e Wavelets on the sphere for CMB data analysis
@ Motivation
@ Continuous wavelets
@ Scale-discretised wavelets

e Cosmological applications
@ Exploiting sparsity
@ CMB inpainting
@ Cosmic strings

Jason McEwen Exploiting sparsity for CMB data analysis



Introduction
utline

0 Sparsity: what is it all about?
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Introduction
What is sparsity?

What is sparsity?

— representation of data in such a way that many data points are zero.
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Sparsifying
transform
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Why is sparsity useful?

— efficient characterisation of structure.
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Why is sparsity useful?

. =
Inverse transform §
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Introduction

Why is sparsity useful?

(a) Original (b) Noisy (c) Denoised

[Credit: http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/denoisingwav_2_wavelet_2d/]
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Introduction

How can we construct sparsifying transforms?

How can we construct sparsifying transforms?

— many signals in nature have spatially localised, scale-dependent features.
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How can we construct sparsifying

Fourier (1807) Haar (1909)

I ——

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform [Credit: http://www.wavelet.org/tutorial/]
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Introduction

How can we construct sparsifying transforms?

W(g-3K)

Repeat Shifting Operation

Wi{d/2)

Figure: Wavelet scaling and shifting [Credit: http: //www.waveletiorg/titorial /]
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Wavelets on Continuo

e Wavelets on the sphere for CMB data analysis
@ Motivation
@ Continuous wavelets
@ Scale-discretised wavelets
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Wavelets Motivation Continuous

CMB in real and harmonic space

Multipole moment
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Figure: CMB observations [Credit: WMAP Science Team]
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Wavelets Motivation Continuous

Spherical harmonic transform

@ Spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
A Yon = =L+ 1)Ygp.

@ Spherical harmonics have global support over the entire sphere.
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Figure: Spherical harmonic functions.
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Wavelets Motivation Continuo

Spherical harmonic transform

@ A function (i.e. data) on the sphere / € L?(S?) may be represented by its spherical harmonic
expansion:

o £
= Z Z fom Yem (0, 0) -
=0 m=
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Wavelets Motivation Continuo

Spherical harmonic transform

@ A function (i.e. data) on the sphere / € L?(S?) may be represented by its spherical harmonic
expansion:

o £
= Z Z fom Yem (0, 0) -
=0 m=

@ The spherical harmonic coefficients are given by the projection onto the basis functions

fin = s Yeu) = [ 9626,) 16, 0) Vi 01 0)

Jason McEwen Exploiting sparsity for CMB data analysis



Wavelets Motivation Continuou

Spherical harmonic tra

@ A function (i.e. data) on the sphere / € L?(S?) may be represented by its spherical harmonic
expansion:

oot
= z Z fom Yem(0, ) -
=0 m=

@ The spherical harmonic coefficients are given by the projection onto the basis functions

fin = s Yeu) = [ 9626,) 16, 0) Vi 01 0)
@ In harmonic space we lose all spatial localisation since the spherical harmonics have global
support.

@ = Wavelets: simultaneous scale and spatial localisation.
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Wavelets ation  Continuous Wavelets

Wavelet transform in Euclidean space

W(g-3K)

Repeat Shifting Operation

Wi{d/2)

Figure: Wavelet scaling and shifting [Credit: http: //www.waveletiorg/titorial /]
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Wavelets tion Continuous Wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.
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Wavelets tion Continuous Wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().
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Wavelets tion Continuous Wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().

@ How define dilation on the sphere?
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Wavelets tion Continuous Wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().

@ How define dilation on the sphere? P
North pole-{--

@ The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection II:

r = 2tan(2)..

D) =11 'd(a)1I.

South pole

Figure; Stereographic-projection.
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Wavelets Y tion Continuous Wavelets

Continuous wavelet analysis

@ Wavelets on the sphere constructed from rotations and dilations of a mother spherical wavelet
v
{9, =R(P)D(@)¥ : p € SO3),a € R} }.
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Wavelets Y tion Continuous Wavelets

Continuous wavelet analysis

@ Wavelets on the sphere constructed from rotations and dilations of a mother spherical wavelet
v
{9, =R(P)D(@)¥ : p € SO3),a € R} }.

@ The forward wavelet transform is given by

Wo(ap) = (. ) = [ 090 ) ¥, @),

where dQ2(w) = sin 6 d6 dy is the usual invariant measure on the sphere.

@ Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.
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Wavelets Y tion Continuous Wavelets

Continuous wavelet analysis

@ Wavelets on the sphere constructed from rotations and dilations of a mother spherical wavelet
v
{9, =R(P)D(@)¥ : p € SO3),a € R} }.

@ The forward wavelet transform is given by

Wo(ap) = (. ) = [ 090 ) ¥, @),

where dQ2(w) = sin 6 d6 dy is the usual invariant measure on the sphere.

@ Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

@ Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)

e Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001)
@ Separation of variables: Wiaux et al. (2005)

@ FastCSWT code available to download: http://www. jasonmcewen.org/
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Wavelets M ion Continuous Wavelets

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

w) = OCE ! (a Lo¥,](w
f(w)f/() ‘ /Som do(p) W,y (a, p) [R(p)Lw Val(w) ,

a’

where do(p) = sin 8 da dB dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0<Cqy = 21+l Z / | (Ta)g P< 00, VLEN

m=—1

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

Jason McEwen Exploiting sparsity for CMB data analysis



Wavelets M ion Continuous Wavelets

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

w) = OCE ! (a Lo¥,](w
f(w)f/() ‘ /Som do(p) W,y (a, p) [R(p)Lw Val(w) ,

a’

where do(p) = sin 8 da dB dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0<Cqy = 21+l Z / | (Ta)g P< 00, VLEN

m=—1

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

@ Continuous wavelets used effectively in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

@ BUT...
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Wavelets M ion Continuous Wavelets

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

C = - E ! a 7 w
f(w)f/() ‘ /Som do(p)W, (a, p) [R(p) L Wal(w) ,

a’

where do(p) = sin 8 da dB dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0<Cqy = 21+l Z / | (Ta)g P< 00, VLEN

m=—1

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

@ Continuous wavelets used effectively in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

@ BUT... exact reconstruction not feasible in practice!
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Wavelets N tion Continuou s Scale-discretised Wavelets

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!
@ Wiaux, McEwen, Vandergheynst, Blanc (2008)

Exact reconstruction with directional wavelets on the sphere
S2DW code
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Wavelets N tion Continuou s Scale-discretised Wavelets

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!
@ Wiaux, McEwen, Vandergheynst, Blanc (2008)

Exact reconstruction with directional wavelets on the sphere
S2DW code

@ Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).
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Wavelets N tion Continuou s Scale-discretised Wavelets

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!

@ Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere

S2DW code
. 2 =3 j=5 @ Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).
0.8
@ The scale-discretised wavelet ¥ € L*(S?,dQ) is
0.6 defined in harmonic space:
0.4 \f/m =Ky (K)SZ” .
0.2
@ Construct wavelets to satisfy a resolution of the
identity for0 < ¢ < L:
12 4 8 16 32 7
¢ Dy (o M""ZK‘J/(”[)* 1.

j=0
Figure: Harmonic tiling on the sphere.
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Wavelets Mot

Scale-discretised wavelets on the sphere

i 6
4
2
I;
4

Figure: Spherical scale-discretised wavelets.

Continuo elets Scale-discretised Wavelets

@ Construct directional and steerable wavelets.
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Wavelets

Scale-discretised wavelets

i 6
4
2
I;
4

Figure: Spherical scale-discretised wavelets.

s Scale-discretised Wavelets

@ Construct directional and steerable wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wo (0 0/) = (.9, ) = [, 400) @) ¥ ).

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f(w) = [<I>(¥Jf} (w) + XJ:/;)U) do(p) W([, (p,o/) {R (p) Ld\I/aj] (w) -
=0 /0
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Wavelets ation  Continuo elets Scale-discretised Wavelets

Scale-discretised wavelet transform of the Earth

(a) Undecimated

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Wavelets ation  Continuo s Scale-discretised Wavelets

Scale-discretised wavelet transform of the Earth

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Wavelets ion Continuo s Scale-discretised Wavelets

Scale-discretised wavelet transform of the CMB

(b) Wavelet coeff. (large scale) (c) Wavelet coeff. (intermediate scale) (d) Wavelet coeff. (fine scale)

Figure: Scale-discretised wavelet transform of a simulated CMB map.
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Wavelets Motivation Continuous W s Scale-discretised Wavelets

Codes to compute scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere

Wiaux, McEwen, Vandergheynst, Blanc (2008)
@ Fortran
@ Parallelised

@ Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere

Leistedt, McEwen, Vandergheynst, Wiaux (2012)
@ C, Matlab, IDL, Java
@ Support only axisymmetric wavelets at present
@ Future extensions:

@ Directional, steerable wavelets
@ Faster algorithms to perform wavelet transforms
@ Spin wavelets

All codes available from: http://www. jasonmcewen.org/
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e Cosmological applications
@ Exploiting sparsity
@ CMB inpainting
@ Cosmic strings
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Exploiting sparsity for CMB data analysis
CMB
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Cosmological Applications Exploiting Sparsity CMB Inpainting

Exploiting sparsity for CMB data analysis
Wavelet coefficients of CMB

CMB is not sparse!
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Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Exploiting sparsity for CMB data analysis

CMB contribution due to cosmic strings

[Credit: Ringeval et al. (2012)]
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Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Exploiting sparsity for CMB data analysis

Wavelet coefficients of CMB contribution due to cosmic strings

’ Other cosmological signals are sparse! ‘
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Exploiting sparsity for CMB data analysis
Correct approach

N} (%) N

Probability density

[

-400 -200
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Cosmological Applications Exploiting Sparsity Inpainting Cos

Exploiting sparsity for CMB data analysis
Correct approach

5
0.25
MB
4 Cosmic strings
0.2
>
2 2
3 § o1
2 Wavelet transform
K 2 o4
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a o
g 0.05)
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Pixel values ( pK) Wavelet coefficients ( pK)
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Exploiting sparsity for CMB data analysis

Correct approach

5
0.25
===CMB
4 Cosmic strings
0.2
>
2 2
3 § o1
£ Wavelet transform 2
22 3 o4
o g -
g g
g 0.05)
-400 -200 00 400 -40 - 0 20 40
Wavelet coefficients ( pK)

0 2
Pixel values ( pK)

@ While the CMB is not sparse, it may contain sparse contributions.

@ Correct way to exploit sparsity is to treat, say, the CMB as (non-sparse) noise, and exploit
sparsity of other cosmological or astrophysical signals.

@ Not always the approach taken in the literature.
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CMB inpainting

(a) Galactic contamination (b) Excise galaxy
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CMB inpainting

(a) Galactic contamination (b) Excise galaxy

@ Model observations by |y = ®x = PA% | where A represents the inverse spherical harmonic

transform and & harmonic coefficients.
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Cosmological Applications

MB inpainti

(a) Galactic contamination (b) Excise galaxy

@ Model observations by |y = ®x = PA% | where A represents the inverse spherical harmonic
transform and & harmonic coefficients.

@ Inpainting problem solved in harmonic space (Starck et al. 2012):

ax

" = argmin [|%]|; suchthat y = ®PA%.
x

@ Imposes sparsity of the spherical harmonic coefficients of the CMB!
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CMB inpainting

@ BUT we have a very strong physical prior. ..the CMB is very close to Gaussian!

@ Solving the CMB inpainting problem in this manner is equivalent to assuming harmonic
coefficients are independent and Laplacian — not a good prior.
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Cosmological Applications Exploiting CMB Inpainting ¢

CMB inpainting

@ BUT we have a very strong physical prior. ..the CMB is very close to Gaussian!

@ Solving the CMB inpainting problem in this manner is equivalent to assuming harmonic
coefficients are independent and Laplacian — not a good prior.

Furthermore, for an isotropic random field, the harmonic coefficients are independent if and
only if they are Gaussian distributed.

@ We can see this intuitively since a rotation in harmonic space may be written

4 .
(R(a, B,7)a) , = Z D, (o, B,7) ae .
P

Sparse CMB inpainting breaks statistical isotropy!
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Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

it £

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

@ The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmological Applications Exploiting y CMB Inpainting Cosmic Strings

Observational signatures of cosmic strings

@ Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).
Light rays

@ Strings moving transverse to the line of sight induce

line-like discontinuities in the CMB (Kaiser & Stebbins M
1984). soor < T[T[[f |||
%LV

@ The amplitude of the induced contribution scales with G,
the string tension.

H
Observer

s

Spacetime around a cosmic string. [Credit: Kaiser
& Stebbins 1984, DAMTP]
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Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Observational signatures of cosmic strings

@ Make contact between theory and data using high-resolution simulations.
@ Amplitude of the signal is given by the string tension Gp.

@ Search for a weak string signal s embedded in the CMB ¢, with observations d given by
d=c+s.

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Cosmological Applications Exploiting Sp CMB Inpainting Cosmic Strings

Using wavelets to detect cosmic strings

@ Ongoing work of McEwen, Feeney, Peiris, Wiaux,
Ringeval & Bouchet.

Figure: Example wavelet.
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Using wavelets to detect cosmic strings

@ Ongoing work of McEwen, Feeney, Peiris, Wiaux,
Ringeval & Bouchet.

@ Adopt the scale-discretised wavelet transform on [0
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

(d, W;,) |forscalej € Z* and
P

osition SO(3). )
p P €50(3) Figure: Example wavelet.
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Cosmological Applications Exploiting CMB Inpainting Cosmic Strings

Using wavelets to detect cosmic strings

@ Ongoing work of McEwen, Feeney, Peiris, Wiaux,
Ringeval & Bouchet.

@ Adopt the scale-discretised wavelet transform on [0
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by | W, ) |for scale j € ZT and

position p € SO(3).

Figure: Example wavelet.

@ Wavelet transform yields a sparse representation of the string signal — hope to effectively separate
the CMB and string signal in wavelet space.

=
5 10

cmB
Cosmic strings

@ N

Probability density
N

Probability density

.

200 400 -40 40

0 -200

'
B0

0 -20 0 20
Pixel values ( 1K) Wavelet coefficients (k)

Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Cosmological Applications

Inpainting  Cosmic Strings
Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space

@ Calculate analytically the probability distribution of the CMB in wavelet space

c 2

_((9)

PIW,) = ———=¢e\ \ 7 . where  (0f)? = (Wi, Wi,") =" Co l(8)),, 17
2m(a})?

£Lm
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Cosmological Applications Exploiti CMB Inpainting Cosmic Strings

Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:
R CTC DR
Pi(Wj,) = ———=e\ "\ where (o]) = (W, W,,") = 3 Cel(W),, -
2m(o¢)?

J £m

@ Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):
ﬂ,-)

-
“p
Gpv;

PW | Gu) Yj (7
N N = -
A Yo Y )

with scale parameter v; and shape parameter v;.

Figure: Generalised Gaussian distribution (GGD).
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Cosmological Applications Exploiting Inpainting  Cosmic Strings

he statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

*
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale | =
@ Compare distribution learnt from the training * " " " : " e ara)
simulation (string2) with the distribution of the , it sirng?) |
testing simulation (string1).
25 4
@ Distributions in close agreement.
% 15 4
1 4
0s 4
0
-8 -6 -4 -2 0 2 4 6 8

Wavelet coefficient

Figure: Distributions for wavelet scale j = 0.
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Cosmological Applications Exploiting Inpainting  Cosmic Strings

he statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

*
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale j = 1
@ Compare distribution learnt from the training ™ " " " ' " e aral)
simulation (string2) with the distribution of the 2 — Fited (sting2)
testing simulation (string1).
1
@ Distributions in close agreement.
%DE
E 06
04
02
0
-2 -15 -1 -05 0 0. 1 15 2
Wavelet coefficient x lﬂ7

Figure: Distributions for wavelet scale j = 1.
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Cosmological Applications Exploiting Inpainting  Cosmic Strings

he statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

e
(a) String1 (b) String2
Figure: Cosmic string simulations.
10° ‘Wavelet coefficient distribution for scale | = 2
@ Compare distribution learnt from the training ™ " " " " " e aral)
simulation (string2) with the distribution of the — Fited (sting2)

testing simulation (string1).

@ Distributions in close agreement.

2z
Z 08
8
>
£os
3
04
02
0
2 15 A -05 0 0. 1 5 2
Wavelet coeficient 7
x10

Figure: Distributions for wavelet scale j = 2.
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Cosmological Applications Exploiting B Inpainting Cosmic Strings

he statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

e ) . x10° Wavelet coefficient distribution for scale j = 3
@ Compare distribution learnt from the training ! = Towymm
simulation (string2) with the distribution of the 09 ——Fitted (string?)
testing simulation (string1). 8
n " . . 07
@ Distributions in close agreement.
Z 06
gﬂﬁ
iéﬂ 04
03
02
0.1
0,
-2 -15 -1 05 0 0. 1 15 2
Wavelet coefficient x II]7

Figure: Distributions for wavelet scale j = 3.
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Cosmological Applications Exploiting Inpainting  Cosmic Strings

he statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
%107 Wavelet coefficient distribution for scale j = 4
@ Compare distribution learnt from the training ° ‘ ‘ ‘ ‘ ‘ ot
simulation (string2) with the distribution of the —— Fitied (sting?)
testing simulation (string1). 5

IS

@ Distributions in close agreement.

Probabilty density

2 15 A 1 15 2

05 0 0.
Wavelet coefficient 7
x 10

Figure: Distributions for wavelet scale j = 4.
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Cosmological Applications Exploiting Inpainting  Cosmic Strings

he statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
%107 Wavelet coefficient distribution for scale j = 4
@ Compare distribution learnt from the training s ‘ ‘ ‘ ‘ ‘ ety
simulation (string2) with the distribution of the —— Fitied (sting?)
testing simulation (string1). 5

IS

@ Distributions in close agreement.

@ We have accurately characterised the statistics of
string signals in wavelet space.

Probabilty density

2 15 A 1 15 2

05 0 0.
Wavelet coefficient 7
x 10

Figure: Distributions for wavelet scale j = 4.
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Cosmological Applications Exploiting S CMB Inpainting Cosmic Strings

Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.
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Cosmological Applications Exploiti CMB Inpainting Cosmic Strings

Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

@ For each wavelet coefficient the likelihood is given by

P

i s , ' 5 e d s
P(W, | Gu) = P(W, +W/-p|GN):/p aw;, Pi(W), — W) P;(W,, | Gp) .

@ The overall likelihood of the data is given by

P(W'|Gu) = [ P(Wy, |G)

ip

where we have assumed independence.
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Cosmological Applications Exploiting CMB Inpainting Cosmic Strings

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W| Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o o
L D (o)

Probability density

o
[N}

Whesssesssssssssnaannnmmnm s

o 1 2 4
Gu x107°

Figure: Posterior distribution of the string tension (true Gu = 3 x 107°).
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Cosmological Applications Exploiting CMB Inpainting Cosmic Strings

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W| Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o
D (o)

I
N

Probability density

0.2r

=
<
-
o

Figure: Posterior distribution of the string tension (true Gu. = 2 x 10°).
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Cosmological Applications Exploiting CMB Inpainting Cosmic Strings

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W| Gp) P(Gp)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o o
L D (o)
‘

Probability density

o
[N}

I e ————

2 3 4
Gu x107°

Figure: Posterior distribution of the string tension (true Gu. = 1 x 107°).
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Cosmological Applications Exploiting S y CMB Inpainting Cosmic Strings

Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M’ to the alternative model M* that
the observed data is comprised of just a CMB contribution.
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Cosmological Applications Exploiting y CMB Inpainting Cosmic Strings

Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M’ to the alternative model M* that
the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

E =P(W! M) = /L d(Gp) P(W! | Gp) P(Gp) .

@ The Bayesian evidence of the CMB model is given by
EC=pPw! M) = [P(W,).

jp

@ Compute the Bayes factor to determine the preferred model:
AInE = In(E'/E°) .

Table: Tension estimates and log-evidence differences for simulations.

Gu/107° 0.7 0.8 0.9 1.0 2.0 3.0

Gu/107% 1.1 1.2 1.2 1.3 21 3.1
AlnE -13 —11 —09 —07 55 29
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Recovering string maps

@ Our best inference of the underlying string map is encoded in the posterior probability
distribution P(W;, | W¥).
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Cosmological Applications Exploiting MB Inpainting Cosmic Strings

Recovering string maps

@ Our best inference of the underlying string map is encoded in the posterior probability

distribution P(W;, | W¥).

@ Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

W, = [ aw, w,ean, 1w
=3 /u d(Gp) P(Gu | d) W, (Gp)
where
W (i) = /F AW, W, B(WS | W Gp)
- W b; awi, Wi, P;(W;L = W) B (W, | Gu) -
°

Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

@ Work in progress. ..
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Conclusions

Sparsity is a powerful concept that can provide new insight and is
complementary to a Bayesian approach.

But, as all techniques, sparsity must be exploited in the correct
manner.

Great potential for cosmology, leading to the emerging field of
Cosmolnformatics.
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.

@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — compressive sensing.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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Compressive sensing

Image encoded by DMD

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
@ Move compression to the acquisition stage — compressive sensing.

@ Acquisition versus imaging.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
for reconstruction

and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing

@ Linear operator (algebra) representation of signal decomposition (into atoms of a dictionary):

X(I) = ZO{;\I/[(I) - x= Z‘I/,-a[ =Py | ap+ |V | a4+ - —
i i | |
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An introduction to compressive sensing

@ Linear operator (algebra) representation of signal decomposition (into atoms of a dictionary):

X(I) = ZO{;\I/[(I) - x= Z‘I/,-a[ =Py | ap+ |V | a4+ - —
i i | |

@ Linear operator (algebra) representation of measurement:
— By —

= wd) = o= [T e o
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An introduction to compressive sensing

@ Linear operator (algebra) representation of signal decomposition (into atoms of a dictionary):

X(I) = ZO{,'\I/[(I) - x= Z‘I/,-a[ =Py | ap+ |V | a4+ - —
i i | |

@ Linear operator (algebra) representation of measurement:
— By —

i=td) o oa= TP s o
@ Putting it together: |y = &x = PV«
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An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a + n.
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An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a + n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in W, i.e. solve
the following ¢, optimisation problem:

a” = argmin||a||p suchthat [y — @V, < e,
(a3

where the signal is synthesising by x* = Ta*.
@ Recall norms given by:

N\ 1/2
llallo = no. non-zero elements  [lafli = > |ou| ol = (Z m,r)

i i
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An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a + n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in W, i.e. solve
the following ¢, optimisation problem:

a” = argmin||a||p suchthat [y — @V, < e,
(a3

where the signal is synthesising by x* = Ta*.
@ Recall norms given by:

N\ 1/2
llallo = no. non-zero elements  [lafli = > |ou| ol = (Z m,r)

i i

@ Solving this problem is difficult (combinatorial).
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An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a + n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in W, i.e. solve
the following ¢, optimisation problem:

a” = argmin||a||p suchthat [y — @V, < e,
(a3

where the signal is synthesising by x* = Ta*.
@ Recall norms given by:

N\ 1/2
llallo = no. non-zero elements  [lafli = > |ou| ol = (§ m,r)
i i

@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢, optimisation problem (convex):

o™ = argmin||«||; suchthat [y — PV, < €.
(a3
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An introduction to compressive sensing

@ The solutions of the ¢, and ¢, problems are often the same.

@ Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

RN

Figure: Space of the sparse vectors [Credit: Baraniuk]
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An introduction to compressive sensing

@ The solutions of the ¢, and ¢, problems are often the same.

@ Restricted isometry property (RIP):

(1= 8)[lx1 — %23 < (| Bx1 — Pxa 3 < (1 + 6ok [l — x5,
for K-sparse x.

@ Measurement must preserve geometry of sets of sparse vectors.

RN

b

—

x2

X
1 Ddxq

(O

K-dim subspaces

Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]
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An introduction to compressive sensing

@ The solutions of the ¢, and ¢, problems are often the same.

@ Geometry of ¢, and ¢, problems.

RN

(@) (b) (©

Figure: Geometry of (a) £, (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!
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An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by
M > z?,uzKlogN,

where K is the sparsity and N the dimensionality.
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An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by
M > z?,uzKlogN,

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p = VN max [(¥;, &) .
i,j
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An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by
M > z?,uzKlogN,

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p = VN max [(¥;, &) .
i,j

@ Robust to noise.
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A Bayesian perspective

@ Consider the inverse problem:
y=®V%a+n.

@ Assume Gaussian noise, yielding the likelihood:

Pyl @) o exp(lly — vali/(20Y)) -

@ Consider the Laplacian prior:
P(a) o exp(=Bllalr) -
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A Bayesian perspective

@ Consider the inverse problem:
y=®V%a+n.

@ Assume Gaussian noise, yielding the likelihood:

Pyl @) o exp(lly — vali/(20Y)) -

@ Consider the Laplacian prior:
P(a) o exp(=Bllalr) -

@ The maximum a-posteriori (MAP) estimate is then

Kiapes = W - argmax P(ax |y) = ¥ - argmin [y — Warl} + Al

with A = 280>,
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A Bayesian perspective

@ Consider the inverse problem:
y=®V%a+n.

@ Assume Gaussian noise, yielding the likelihood:

Pyl @) o exp(lly — vali/(20Y)) -

@ Consider the Laplacian prior:
P(a) o exp(=Bllalr) -

@ The maximum a-posteriori (MAP) estimate is then

Haps = ¥ - argmax Pcx |y) = W - arg min Iy — e®el; + Al ,

with A = 2807,
@ One possible Bayesian interpretation.

@ Recall also that the signal may not be distributed according to the prior but rather ¢y-sparse, in
which case solving the £; problem finds the correct ¢,-sparse solution.
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Other Bayesian interpretations

@ Other Bayesian interpretations of the synthesis-based approach are also possible (Gribonval
2011).

@ Minimum mean square error (MMSE) estimators

C synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

C MAP estimators

MAP

Penalised LS
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