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Compressive Sensing Interferometric Imaging

Next-generation of radio interferometry rapidly approaching

Square Kilometre Array (SKA) construction
scheduled to begin 2018.

Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP,
MeerKAT, MWA.

Broad range of science goals.

Figure: Artist impression of SKA dishes. [Credit: SKA
Organisation]

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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The SKA poses a considerable big-data challenge
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Outline

1 Compressive sensing and sparse regularisation
Introductory review
Analysis vs synthesis
Bayesian interpretations

2 Interferometric imaging with compressive sensing
Imaging with the SARA algorithm
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Compressive Sensing Interferometric Imaging Introduction Analysis vs Synthesis Bayesian Interpretations

Compressive sensing

Developed by Candes et al. 2006 and Donoho 2006 (and others).

Although many underlying ideas around for a long time.

Exploits the sparsity of natural signals.

Active area of research with many new developments.

Acquisition versus imaging.

(a) Emmanuel Candes (b) David Donoho
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An introduction to compressive sensing
Operator description

Linear operator (linear algebra) representation of signal decomposition:

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0 +

 |Ψ1
|

α1 + · · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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An introduction to compressive sensing
Promoting sparsity via `1 minimisation

Ill-posed inverse problem:

y = Φx + n = ΦΨα + n .

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e.
solve the following `0 optimisation problem:

α? = arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Recall norms given by:

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

Jason McEwen Sparsity in Astrophysics
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An introduction to compressive sensing
Union of subspaces

Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

• Sparse signal: All but K coordinates are zero

• Model: union of K-dimensional subspaces
aligned w/ coordinate axes
(highly nonlinear!)

Geometrical Situation

sparse
signal

nonzero
entries

Figure: Space of the sparse vectors [Credit: Baraniuk]
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An introduction to compressive sensing
Restricted isometry property (RIP)

Solutions of `0 and `1 problems often the same.

Restricted isometry property (RIP):

(1− δ2K)‖x1 − x2‖2
2 ≤ ‖Θx1 −Θx2‖2

2 ≤ (1 + δ2K)‖x1 − x2‖2
2 ,

for K-sparse x1 and x2, where Θ = ΦΨ.

Measurement must preserve geometry of sets of sparse vectors.

Stable Embedding
• An information preserving projection      preserves 

the geometry of the set of sparse signals

• How to do this?    Ensure

K-dim subspaces

Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]
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An introduction to compressive sensing
Intuition

Solutions of `0 and `1 problems often the same.

Geometry of `0, `2 and `1 problems.

Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing
Sparsity and coherence

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

But this is different to synthesising signals from atoms.

Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x? = arg min
x
‖Ωx‖1 such that ‖y− Φx‖2 ≤ ε .

analysis

Contrast with synthesis-based approach:

x? = Ψ · arg min
α

‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

synthesis

For orthogonal bases Ω = Ψ† and the two approaches are identical.

Jason McEwen Sparsity in Astrophysics
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Compressive Sensing Interferometric Imaging Introduction Analysis vs Synthesis Bayesian Interpretations

Analysis vs synthesis
Comparison

Synthesis-based approach is more general, while analysis-based approach more restrictive.

Figure 4: A schematic overview of analysis cosparse vs synthesis sparse models in relation
with compressed sensing.

a projection (through the dictionary D) of a high-dimensional vector z living
in the union of sparse coefficient subspaces; in the analysis model, the signal
lives in the pre-image by the analysis operator Ω of the intersection between
the range of Ω and this union of subspaces. For a given sparsity of z, this is
usually a set of much smaller dimensionality.

4. Pursuit algorithms

Having a theoretical foundation for the uniqueness of the problem

x̂ = arg min
x

‖Ωx‖0 subject to Mx = y, (15)

we now turn to the question of how to solve it: algorithms. We present two
algorithms, both targeting the solution of problem (15). As in the uniqueness
discussion, we assume that M ∈ Rm×d, where m < d. This implies that the
equation Mx = y has infinitely many possible solutions, and the term ‖Ωx‖0

introduces the analysis model to regularize the problem.

4.1. The Cosparse Signal Recovery Problem is NP-complete

Related to (15), we can consider a cosparse signal recovery problem COSPARSE

consisting of a quintuplet (y,M,Ω, !, ε) in which we seek to find a vector x∗

that satisfies
‖y − Mx∗‖2 ≤ ε, ‖Ωx∗‖0 ≤ p − ! (16)

where p is the number of rows of Ω as before. It is easy to see that the decision
problem “given (y,M,Ω, !, ε), does there exist x∗ satisfying (16)?” is NP [25]:
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Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

Consider the inverse problem:
y = ΦΨα + n .

Assume Gaussian noise, yielding the likelihood:

P(y |α) ∝ exp
(
‖y− ΦΨα‖2

2/(2σ2)
)
.

Consider the Laplacian prior:
P(α) ∝ exp

(
−β‖α‖1

)
.

The maximum a-posteriori (MAP) estimate (with λ = 2βσ2) is

x?MAP-Synthesis = Ψ · arg max
α

P(α | y) = Ψ · arg min
α

‖y− ΦΨα‖2
2 + λ‖α‖1 .

synthesis

One possible Bayesian interpretation!

Signal may be `0-sparse, then solving `1 problem finds the correct `0-sparse solution!

Jason McEwen Sparsity in Astrophysics
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

Other Bayesian interpretations are also possible (Gribonval 2011).

Minimum mean square error (MMSE) estimators
⊂ synthesis-based estimators with appropriate penalty function,

i.e. penalised least-squares (LS)
⊂ MAP estimators

MMSE

Penalised LS

MAP

Jason McEwen Sparsity in Astrophysics
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

For the analysis-based approach, the MAP estimate is then

x?MAP-Analysis = arg max
x

P(x | y) = arg min
x
‖y− Φx‖2

2 + λ‖Ωx‖1 .

analysis

Identical to the synthesis-based approach if Ω = Ψ† .

But for redundant dictionaries, the analysis-based MAP estimate is

x?MAP-Analysis = Ω† · arg min
γ∈column space Ω

‖y− ΦΩ†γ‖2
2 + λ‖γ‖1 .

analysis

Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger & Hobson (2004) in a Bayesian framework for wavelet
MEM (maximum entropy method).

Jason McEwen Sparsity in Astrophysics
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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

−1.5 −1 −0.5 0 0.5 1 1.5
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx + n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator Φ = M F C A may incorporate:

primary beam A of the telescope;

w-modulation modulation C;

Fourier transform F;

masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

Jason McEwen Sparsity in Astrophysics
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Interferometric imaging with compressed sensing

Solve the interferometric imaging problem

y = Φx + n with Φ = M F C A ,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

Basis Pursuit (BP) denoising problem

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε ,

B
P

D
N

where the image is synthesised by x? = Ψα?.

Jason McEwen Sparsity in Astrophysics
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SARA for radio interferometric imaging
Algorithm

Sparsity averaging reweighted analysis (SARA) for RI imaging
(Carrillo, McEwen & Wiaux 2012)

Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

Ψ =
1
√

q
[Ψ1,Ψ2, . . . ,Ψq],

thus Ψ ∈ RN×D with D = qN.

We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
⇒ concatenation of 9 bases

Promote average sparsity by solving the reweighted `1 analysis problem:

min
x̄∈RN

‖WΨT x̄‖1 subject to ‖y− Φx̄‖2 ≤ ε and x̄ ≥ 0 ,

S
A
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A

where W ∈ RD×D is a diagonal matrix with positive weights.

Solve a sequence of reweighted `1 problems using the solution of the previous
problem as the inverse weights→ approximate the `0 problem.
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SARA for radio interferometric imaging
Results on simulations
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Supporting continuous visibilities
Algorithm

Ideally we would like to model the continuous Fourier transform operator

Φ = Fc .

But this is impracticably slow!

Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2014).

Model with measurement operator

Φ = G F D Z ,

where we incorporate:
convolutional gridding operator G;

fast Fourier transform F;

normalisation operator D to undo the convolution gridding;

zero-padding operator Z to upsample the discrete visibility space.
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Supporting continuous visibilities
Results on simulations
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Spread spectrum effect
Optimising telescope configurations

Use theory of compressive sensing to optimise telescope configurations.

Non-coplanar baselines and wide fields→ w-modulation→ spread spectrum effect
→ improves reconstruction quality (first considered by Wiaux et al. 2009b).

The w-modulation operator C has elements defined by

C(l,m) ≡ ei2πw
(

1−
√

1−l2−m2
)
' eiπw‖l‖2

for ‖l‖4 w� 1 ,

giving rise to to a linear chirp.

(a) Real part (b) Imaginary part

Figure: Chirp modulation.
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Spread spectrum effect
Results on simulations

Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w.

Consider idealised simulations with uniformly random visibility sampling.
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Figure: Ground truth images in logarithmic scale.
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Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w.

As expected, for the case where coherence is already optimal, there is little improvement.

Jason McEwen Sparsity in Astrophysics



Compressive Sensing Interferometric Imaging SARA Imaging Continuous Visibilities Spread Spectrum

Spread spectrum effect
Results on simulations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

35

40

Visibility coverage proportion

S
N

R

(a) Daubechies 8 (Db8) wavelets

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

35

40

Visibility coverage proportion

S
N

R

(b) Dirac basis

Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w.

As expected, for the case where coherence is already optimal, there is little improvement.

Jason McEwen Sparsity in Astrophysics



Compressive Sensing Interferometric Imaging SARA Imaging Continuous Visibilities Spread Spectrum

Spread spectrum effect
Results on simulations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

35

40

Visibility coverage proportion

S
N

R

(a) Daubechies 8 (Db8) wavelets

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

35

40

Visibility coverage proportion

S
N

R
(b) Dirac basis

Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w.

As expected, for the case where coherence is already optimal, there is little improvement.

Jason McEwen Sparsity in Astrophysics



Compressive Sensing Interferometric Imaging SARA Imaging Continuous Visibilities Spread Spectrum

Spread spectrum effect
Results on simulations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

35

40

Visibility coverage proportion

S
N

R

(a) Daubechies 8 (Db8) wavelets

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

35

40

Visibility coverage proportion

S
N

R
(b) Dirac basis

Figure: Reconstruction fidelity for 30Dor.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w.

As expected, for the case where coherence is already optimal, there is little improvement.

Jason McEwen Sparsity in Astrophysics



Compressive Sensing Interferometric Imaging

Public codes

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

Jason McEwen Sparsity in Astrophysics
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Conclusions

Astrostatistics is a maturing field.

Informatics techniques (sparsity, wavelets, compressive sensing)
are a complementary approach. . .

. . . leading to the emerging field of astroinformatics.

Promising approach to radio interferometric imaging for emerging and future radio telescopes.
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Spread spectrum effect
Overview

Spread spectrum effect in a nutshell

1 Radio interferometers take (essentially) Fourier measurements.

2 Recall, the coherence is the maximum inner product between
measurement vectors and sparsifying atoms.

3 Thus, coherence is (essentially) the maximum of the Fourier coefficients of
the atoms of the sparsifying dictionary.

4 w-modulation spreads the spectrum of the atoms of the sparsifying
dictionary, reducing the maximum Fourier coefficient.

5 Spreading the spectrum reduces coherence, thus improving
reconstruction fidelity.

Consistent with findings of Carozzi et al. (2013) from information theoretic approach.

Studied for constant w (for simplicity) by Wiaux et al. (2009b).

Studied for varying w (with realistic images and various sparse representations) by
Wolz et al. (2013).
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Spread spectrum effect
Sparse w-projection algorithm

Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

Φ = M F C A ⇒ Φ = Ĉ F A .

Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.

Different w for each (u, v), while still exploiting FFT.

Many of the elements of Ĉ will be close to zero.

Support of w-modulation in Fourier space determined dynamically.

Jason McEwen Sparsity in Astrophysics
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Spread spectrum effect
Results on simulations
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Figure: Reconstruction fidelity using SARA.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w.

As expected, for the case where coherence is already optimal, there is little improvement.
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