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Exploiting sparsity
CMB
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Exploiting sparsity
Wavelet coefficients of CMB

CMB is not sparse!
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Exploiting sparsity

CMB contribution due to cosmic strings

[Credit: Ringeval et al. (2012)]
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Exploiting sparsity

Wavelet coefficients of CMB contribution due to cosmic strings

’ Other cosmological signals are sparse! ‘
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Exploiting sparsity

The correct approach
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Exploiting sparsity

The correct approach
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@ While the CMB is not sparse, it may contain sparse contributions.

@ Correct way to exploit sparsity is to treat, say, the CMB as (non-sparse) noise, and exploit
sparsity of other cosmological or astrophysical signals.

@ Not always the approach taken in the literature.
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Sphere Ball Compressive Sensing Cosmological Applications

Cosmological observations live on spherical manifolds

Cosmic Spheres of Time

2006 Abrams and Primack, Inc
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0 Harmonic analysis on the sphere
@ Sampling theorems
@ Wavelets

e Harmonic analysis on the ball
@ Sampling theorems
@ Wavelets

e Compressive Sensing
Synthesis-based
Analysis-based
Bayesian perspective
Sparsity averaging
Sphere

e Cosmological applications
@ CMB inpainting
@ Cosmic strings
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Sphere Sampling Theor

Outline

0 Harmonic analysis on the sphere
@ Sampling theorems
@ Wavelets
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Sphere Ball

Compressive Sensing Cosmological Applications Sampling Theorems Wavelets
Cosmic microwave background (CMB)
R ————————S——S———M—M—tth_—

Credit: WMAP
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Sphere Sampling Theorems Wavelets

Spherical harmonic transform

@ The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
A Yem = —L(€+ 1)Yen.

@ A function on the sphere /' € L*(S*) may be represented by its spherical harmonic expansion:

oo 4
FO,0) =" D" fon Yeu(0, ) .

=0 m=—4¢

where the spherical harmonic coefficients are given by:

fim = 7, Yeu) = [ 9920, ) (0,0) V3 (6. 0)
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Sphere Sampling Theorems Wavelets

Spherical harmonic transform

@ The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
A Yem = —L(€+ 1)Yen.

@ A function on the sphere /' € L*(S*) may be represented by its spherical harmonic expansion:

oo 4
FO,0) =" D" fon Yeu(0, ) .

=0 m=—4¢

where the spherical harmonic coefficients are given by:

fim = 7, Yeu) = [ 9920, ) (0,0) V3 (6. 0)

@ Consider signals on the sphere band-limited at L, that is signals such that| /s, = 0, V¢ > L |.

@ For a band-limited signal, can we compute f;,, exactly?

— | Sampling theorems on the sphere
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Sphere Sampling Theorems

Driscoll & Healy (DH) sampling theorem

@ Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994).

= ‘ Npu = (2L — 1)2L + 1 ~ 4L? samples on the sphere. ‘

Figure: Sample positions of the DH sampling theorem.
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Sphere Sampling Theorems

McEwen & Wiaux (MW) sampling theorem

@ A new sampling theorem on the sphere (McEwen & Wiaux 2011).

= ‘ Nuw = (L — 1)(2L — 1) + 1 ~ 2L* samples on the sphere.

@ Reduced the Nyquist rate on the sphere by a factor of two.

Figure: Sample positions of the MW sampling theorem.
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Sphere Sampling Theorems Wa

McEwen & Wiaux (MW) sampling theorem

@ New sampling theorem follows by associating the sphere with the torus through a periodic
extension.

@ Similar in flavour to making a periodic extension in 6 of a function  on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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Sphere Sampling Theorems Wavelets

Numerical accuracy
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Figure: Numerical accuracy (MW=red; DH=green; GL=blue)
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Sphere Sampling Theorems Wavelets

Computation time
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Figure: Computation time (MW-=red; DH=green; GL=blue)
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Sphere Sampling Theorems ets

Code to compute (spin) spherical harmonic transforms

SSHT code: Spin spherical harmonic transforms
A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

Code available from: http://www. jasonmcewen.org/
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Sphere Sampling Theorems Wavelets

Wavelet transform in Euclidean space

W(g-3K)

Repeat Shifting Operation

Wi{d/2)

Figure: Wavelet scaling and shifting (Credit: http: //www.waveletiorg/tatorial /)
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Sphere Sampling Theol

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.
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Sphere Sampling Theorems Wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().
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Sphere Sampling Theorems Wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().

@ How define dilation on the sphere?
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Sphere Sampling Theorems Wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(AAw) =fp~'w), w=(6,0) €S, p=(a,8,7) €SO().

@ How define dilation on the sphere?

North, pole-{--

@ The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection II:

r = 2tan(2)..

D) =11 'd(a)1I.

South pole

Figure; Stereographic-projection.
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Sphere Sampling Theorems Wavelets

Continuous wavelet analysis

@ Wavelets on the sphere constructed from rotations and dilations of a mother spherical wavelet
v
{9, =R(P)D(@)¥ : p € SO3),a € R} }.
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Sphere Sampling The:

Continuous wavelet analysis

@ Wavelets on the sphere constructed from rotations and dilations of a mother spherical wavelet
v
{9, =R(P)D(@)¥ : p € SO3),a € R} }.

@ The forward wavelet transform is given by

Wi(ap) = . Vap) = [ 0900) ) ¥, @),

where dQ2(w) = sin 6 d6 dy is the usual invariant measure on the sphere.

@ Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.
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Sphere Sampling Theorems Wavelets

Continuous wavelet analysis

@ Wavelets on the sphere constructed from rotations and dilations of a mother spherical wavelet
v
{9, =R(P)D(@)¥ : p € SO3),a € R} }.

@ The forward wavelet transform is given by

Wi(ap) = . Vap) = [ 0900) ) ¥, @),

where dQ2(w) = sin 6 d6 dy is the usual invariant measure on the sphere.

@ Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

@ Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)

e Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001)
@ Separation of variables: Wiaux et al. (2005)

@ FastCSWT code available to download: http://www. jasonmcewen.org/
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Sphere Sampling Theorems Wavelets

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

C = - E ! a 7 w
f(w)f/() ‘ /Som do(p)W, (a, p) [R(p) L Wal(w) ,

a’

where do(p) = sin 8 da dB dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0<Cqy = 21+l Z / | (Ta)g P< 00, VLEN

m=—1

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).
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Sphere Sampling Theorems Wavelets

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

C = - E ! a 7 w
f(w)f/() ‘ /Som do(p)W, (a, p) [R(p) L Wal(w) ,

a’

where do(p) = sin 8 da dB dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0<Cqy = 21+l Z / | (Ta)g P< 00, VLEN

m=—1

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

@ Continuous wavelets used effectively in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

@ BUT...
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Sphere Sampling Theorems Wavelets

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

C = - E ! a 7 w
f(w)f/() ‘ /Som do(p)W, (a, p) [R(p) L Wal(w) ,

a’

where do(p) = sin 8 da dB dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0<Cqy = 21+l Z / | (Ta)g P< 00, VLEN

m=—1

where (¥,),,, are the spherical harmonic coefficients of ¥, (w).

@ Continuous wavelets used effectively in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

@ BUT... exact reconstruction not feasible in practice!
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Sphere Sampling Theorems Wavelets

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!
@ Wiaux, McEwen, Vandergheynst, Blanc (2008)

Exact reconstruction with directional wavelets on the sphere
S2DW code

Jason McEwen Sparsity



Sphere Sampling Theorems Wavelets

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!
@ Wiaux, McEwen, Vandergheynst, Blanc (2008)

Exact reconstruction with directional wavelets on the sphere
S2DW code

@ Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).

Jason McEwen Sparsity



Sphere Sampling Theorems Wavelets

Scale-discretised wavelets on the sphere

@ Exact reconstruction not feasible in practice with continuous wavelets!

@ Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere

S2DW code
. 2 =3 j=5 @ Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).
0.8
@ The scale-discretised wavelet ¥ € L*(S?,dQ) is
0.6 defined in harmonic space:
0.4 \f/m =Ky (K)SZ” .
0.2
@ Construct wavelets to satisfy a resolution of the
identity for0 < ¢ < L:
12 4 8 16 32 _, S )
¢ 4’(1,((1![) + Zki,((l/l) =1

j=0
Figure: Harmonic tiling on the sphere.
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Sphere

Scale-discretised wavelets o
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Figure: Spherical scale-discretised wavelets.

Wavelets

@ Construct directional and steerable wavelets.

Jason McEwen Sparsity



Sphere

Scale-discretised wavelets o
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Figure: Spherical scale-discretised wavelets.

Wavelets

@ Construct directional and steerable wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wo (0 0/) = (.9, ) = [, 400) @) ¥ ).
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Sphere

Scale-discretised wavelets o
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Figure: Spherical scale-discretised wavelets.

Wavelets

@ Construct directional and steerable wavelets.

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wo (0 0/) = (.9, ) = [, 400) @) ¥ ).

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f(w) = [<I>(¥Jf} (w) + XJ:/;)U) do(p) W([, (p,o/) {R (p) Ld\I/aj] (w) -
=0 /0
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Sphere Sampling Theor Wavelets

Scale-discretised wavelet transform of the Earth

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Sphere Sampling Theorems Wavelets

Codes to compute scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

@ Fortran
@ Parallelised

@ Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

@ C, Matlab, IDL, Java
@ Support only axisymmetric wavelets at present
@ Future extensions:

@ Directional, steerable wavelets
@ Faster algorithms to perform wavelet transforms
@ Spin wavelets

All codes available from: http://www. jasonmcewen.org/
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Sampling Theor

e Harmonic analysis on the ball
@ Sampling theorems
@ Wavelets
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Sphere Ball _Compressive Sensing _Cosmological Applications {5 Sampling Theorems Wavelets S5
surveys

Credit: SDSS
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Ball Sampling Theorems Wavelets

Sampling theorem on the ball

@ Fourier-Bessel functions are the canonical orthogonal basis on the sphere — but do not admit
a sampling theorem.

@ Developed a new Fourier-Laguerre transform and the first sampling theorem on the ball
(Leistedt & McEwen 2012).
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Ball Sampling Theorems

Sampling theorem on the ball

@ Fourier-Bessel functions are the canonical orthogonal basis on the sphere — but do not admit
a sampling theorem.

@ Developed a new Fourier-Laguerre transform and the first sampling theorem on the ball
(Leistedt & McEwen 2012).

@ Define the radial basis functions by

—r/27 X
| pt e 0] (7 )
K,(r) = —_— L -,
() »+2)! s - )

where Lff) is the p-th generalised Laguerre polynomial of order two.

@ Define the Fourier-Laguerre basis functions by Z,,, (r) = K, (r) Y, (w).

Figure: Functions rK, (r
Jason McEwen Sparsity



Ball Sampling Theorems Wa

Sampling theorem on

@ For a band-limited signal, we can compute the Fourier-Laguerre transform exactly.

@ Compute Fourier-Bessel coefficients exactly from Fourier-Laguerre coefficients.

107 "6l 1 1 1 1 1 1 1
97 910 913 916 219 922 925 928
N

Figure: Numerical accuracy of Fourier-Laguerre transform
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Ball Sampling Theorems Wavelets

Sampling theorem on the ball

@ Fast algorithms to compute the Fourier-Laguerre transform.

)
2%

210 215 21!3 210 222 925 22!»‘

Figure: Computation time of Fourier-Laguerre transform
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Ball Sampling Theorems

Code to compute the Fourier-Laguerre transfor

FLAG code: Fourier-Laguerre transforms
Exact wavelets on the ball
Leistedt & McEwen (2012)

All codes available from: http://www. jasonmcewen.org/
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Ball pling Theore Wavelets

Translation and convolution on the radial line

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(T p)(¥) = b — 1) = ¢F, (W) s (x) -

Jason McEwen Sparsity



Ball Sampling Theorems Wavelets

Translation and convolution on the radial line

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(T p)(¥) = b — 1) = ¢F, (W) s (x) -

@ Define translation of the spherical Laguerre basis functions on the radial line by analogy:
(ToKp) (r) = Ky($)Ky(r) -

Jason McEwen Sparsity



Ball Sampling Theore Wavelets

Translation and convolution on the radial line

@ We construct translation and convolution operators on the radial line by analogy with the
infinite line.

@ For the standard orthogonal basis ¢, (x) = ¢'“* translation of the basis functions defined by
the shift of coordinates:

(T p)(¥) = b — 1) = ¢F, (W) s (x) -

@ Define translation of the spherical Laguerre basis functions on the radial line by analogy:
(ToKp) (r) = Ky($)Ky(r) -

@ Define convolution on the radial line of by
(f * ) (r) = (| Toh) = A L 4557 (s) (Toh) (5),

from which it follows that radial convolution in harmonic space is given by the product
(f * h), = (f % h|Kp) = fohp .
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Ball Wavelets

Translation and convolution on the radial line

@ Translation corresponds to convolution with the Dirac delta:

(% 8)(r) = D_fKp()Kp(r) = (TS)(r) -

p=0

@ Angular aperture of localised functions (and flaglets) is invariant under radial translation.

0 [ 0
90©90 SOQQO go@
180 180 180

(a) Translated by r = 0.2 (b) Translated by r = 0.3 (c) Translated by r = 0.4

Figure: Slices of an axisymmetric flaglet wavelet plotted on the ball of radius R = 0.5.
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Ball Sampling Theorems Wavelets

Scale-discretised wavelets on the ball

@ Exact wavelets on the ball (Leistedt & McEwen 2012).

@ Define translation and convolution operators on the radial
line.
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Ball Sampling Thec

Scale-discretised wavelets on the ball

@ Exact wavelets on the ball (Leistedt & McEwen 2012).

@ Define translation and convolution operators on the radial
line.

@ Dilation performed in harmonic space.

@ Scale-discretised wavelet U ¢ L*(B°) is defined in
harmonic space:

20+ 1 4 P -
” — J— JR—
‘II“”” o 47 A <)\f) o <u/’ Omo-

@ Construct wavelets to satisfy a resolution of the identity:

J
Figure: Tiling of Fourier-Laguerre space. (\(I) Jji 2 _
oopl” + Z Z \\I’mp =1, V¢, p.
2+1 J=hj' =44
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Ball Wavelets

Scale-discretised wavelets on the ball

180 180

@ G.J") = 4,9 ®) (G,") = (4,6)

0 0

180 180

© G,i") = (5,5) @) G,j") = (5,6)

Figure: Scale-discretised wavelets on the ball.
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Ball Sampling Theore Wavelets

Scale-discretised wavelets on the ball

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W ) = (% U () = (FITRLE Y

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

) = /B EFWE (TR <I))(r)+z Z/ W (TR W ) ()

i=Jo j! =1
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rems Wavelets

Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.
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Wavelets

iscretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.
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Ball Sampling Theorems Wavelets

Code for scale-discretised wavelets o

FLAGLET code
Exact wavelets on the ball
Leistedt & McEwen (2012)

@ C, Matlab, IDL, Java
@ Exact (Fourier-LAGuerre) wavelets on the ball — coined flaglets!

Code available from: http://www. jasonmcewen.org/

Jason McEwen Sparsity


http://www.jasonmcewen.org/

Compressive Sensing

Outline

e Compressive Sensing
Synthesis-based
Analysis-based
Bayesian perspective
Sparsity averaging
Sphere
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Compressive Sensing i a S| Sparsity Averaging

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
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Compressive Sensing Synthesis Analysis B S| e Sparsity Averaging Sphere

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.

@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
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Compressive Sensing Synthesis  Anal tive Sparsity Averaging

Compressive sensing

Sphere

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — compressive sensing.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera

on McEwen Sparsity




Compressive Sensing Synthesis  Anal tive Sparsity Averaging

Sphere

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
@ Move compression to the acquisition stage — compressive sensing.

@ Acquisition versus imaging.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction

and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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Compressive Sensing Synthesis  Ar

An introduction to compressive sensing

Jason McEwen Sparsity



Compressive Sensing Synthesis Ana

An introduction to compressive sensing

@ Linear operator (algebra) representation of signal decomposition (into atoms of a dictionary):

| |
X(I) = ZO{;\I/[(I) - x= Z‘I/,-a[ = ‘1}0 oo+ ‘1? - —

@ Linear operator (algebra) representation of measurement:

Yi = <x, ‘D_/) — Yy = X —

Jason McEwen Sparsity



Compressive Sensing Synthesis

An introduction to compressive sensing

@ Linear operator (algebra) representation of signal decomposition (into atoms of a dictionary):

| |
X(I) = ZO{,'\I/[(I) - x= Z‘I/,-a[ = ‘1}0 oo+ \[I] - —

@ Linear operator (algebra) representation of measurement:

Yi = <x, ‘D_/') — Yy = X —

@ Putting it together: |y = &x = PV«

Jason McEwen Sparsity



Compressive Sensing Synthesis  An

An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a + n.

Jason McEwen Sparsity



Compressive Sensing Synthesis  An n eraging

An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a + n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in W, i.e. solve
the following ¢, optimisation problem:

a” = argmin||a||p suchthat [y — @V, < e,
(a3

where the signal is synthesising by x* = Ta*.
@ Recall norms given by:

N\ 1/2
llallo = no. non-zero elements  [lafli = > |ou| ol = (§ m,r)
i i

Jason McEwen Sparsity



Compressive Sensing Synthesis  An n eraging

An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a + n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in W, i.e. solve
the following ¢, optimisation problem:

a” = argmin||a||p suchthat [y — @V, < e,
(a3

where the signal is synthesising by x* = Ta*.
@ Recall norms given by:

N\ 1/2
llallo = no. non-zero elements  [lafli = > |ou| ol = (§ m,r)
i i

@ Solving this problem is difficult (combinatorial).

Jason McEwen Sparsity



Compressive Sensing Synthesis  An n eraging

An introduction to compressive sensing

ll-posed inverse problem:
y=®x+n=>¥%a + n.

Solve by imposing a regularising prior that the signal to be recovered is sparse in 0, i.e. solve
the following ¢, optimisation problem:

a” = argmin||a||p suchthat [y — @V, < e,
(a3

where the signal is synthesising by x* = Ta*.
@ Recall norms given by:

N\ 1/2
llallo = no. non-zero elements  [lafli = > |ou| ol = (§ m,r)
i i

Solving this problem is difficult (combinatorial).

Instead, solve the ¢, optimisation problem (convex):

o™ = argmin||«||; suchthat [y — PV, < €.
(a3

Jason McEwen Sparsity
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An introduction to compressive sensing

@ The solutions of the ¢, and ¢, problems are often the same.

@ Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

RN

Figure: Space of the sparse vectors [Credit: Baraniuk]
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An introduction to compressive sensing

@ The solutions of the ¢, and ¢, problems are often the same.

@ Restricted isometry property (RIP):

(1= 8)[lx1 — %23 < (| Bx1 — Pxa 3 < (1 + 6ok [l — x5,
for K-sparse x.

@ Measurement must preserve geometry of sets of sparse vectors.

RN RM

b

_

X2
X
1 Ddxq

(O

K-dim subspaces

Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]
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An introduction to compressive sensing

@ The solutions of the ¢, and ¢, problems are often the same.

@ Geometry of ¢, and ¢, problems.

RN

(@) (b) (©

Figure: Geometry of (a) £, (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!

on McEwen Sparsity



Compressive Sensing Synthesis  Ana

An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by
M > z?,uzKlogN,

where K is the sparsity and N the dimensionality.
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An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > z?,uzKlogN,
where K is the sparsity and N the dimensionality.
@ The coherence between the measurement and sparsity basis is given by

p = VN max [(¥;, &) .
i,j
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An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > z?,uzKlogN,
where K is the sparsity and N the dimensionality.
@ The coherence between the measurement and sparsity basis is given by

p = VN max [(¥;, &) .
i,j

@ Robust to noise.

Jason McEwen Sparsity
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Analysis-based approach

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).
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Compressive Sensing

Analysis-based approach

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Typically sparsity assumption is justified by analysing example signals in terms of atoms of the
dictionary.

@ But this is different to synthesising signals from atoms.
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Compressive Sensing

Analysis-based approach

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Typically sparsity assumption is justified by analysing example signals in terms of atoms of the
dictionary.

@ But this is different to synthesising signals from atoms.

@ = Analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x* = argmin ||Qx||; suchthat ||y — ®x|, < e.
X
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Analysis-based approach

Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

Typically sparsity assumption is justified by analysing example signals in terms of atoms of the
dictionary.

But this is different to synthesising signals from atoms.

@ = Analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x* = argmin ||Qx||; suchthat ||y — ®x|, < e.
X

Contrast with synthesis-based approach:

x* =¥ - argmin ||a||; suchthat ||y — @Vl < e.
o

@ For orthogonal bases ©2 = ¥ and the two approaches are identical.
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Analysis-based approach

@ For the case of redundant dictionaries, the analysis- and synthesis-based approaches are
very different (Elad et al. 2007, Nam et al. 2012).

Analysis Dictionary

@ Again, leads to a union of subspaces.

@ But very different geometry to synthesis-based approach.

Jason McEwen Sparsity
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Compressive Sensing

Analysis-based approach

@ For a given redundancy, the size and number of subspaces is very different between the
analysis- and synthesis-approaches (Nam et al. 2012).

Synthesis
Analysis

# of Sub-Spaces

Sub-Space dimension
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Synthesis  Analysis B

Compressive Sensing

Comparison of analysis- and synthesis-based approaches

Coefficient Domain

Range Q
/ Signal Domain
/ . D
/ \ Compressed Sensing Domain
| z=Qx / \
/

[ z , Analysis p \\ Measurement System | y |
=\ / \ Operator “‘/ Ve \\ y=Mx ‘\ |
i \_/

vs. | — |

Synthesis
Dictionary
x=Dz

\
\ Sparse coefficient

Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Comparison of analysis- and synthesis-based approaches

Coefficient Domain

/  RangeQ \
/ i \ Signal Domain
‘\'\[ Compressed Sensing Domain
| =0x 7 N\
| z | Analysis / \ Measurement System | y
| ) /| Operator | I v
4 | | M
| [ ez | \ /
| | £ \Z\ | \_/
| © | “ .
\ | VS| [\ |
) | Synthesis )
| Dictionary \ /

\ / x=Dz :
\  Sparse coefficient /'/(\; /
\ -

Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].

@ Synthesis-based approach is more general, while analysis-based approach more restrictive.
@ The more restrictive analysis-based approach may make it more robust to noise.

@ The greater descriptive power of the synthesis-based approach may provide better signal
representations.
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A Bayesian perspective (synthesis-based approach)

@ Consider the inverse problem:
y=®V%a+n.

@ Assume Gaussian noise, yielding the likelihood:

Pyl @) o exp(lly — vali/(20Y)) -

@ Consider the Laplacian prior:
P(a) o exp(=Bllalr) -

Jason McEwen Sparsity
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A Bayesian perspective (synthesis-based approach)

@ Consider the inverse problem:
=PV +n.

@ Assume Gaussian noise, yielding the likelihood:

Pyl @) o exp(lly — vali/(20Y)) -

@ Consider the Laplacian prior:
P(a) o exp(=Bllalr) -

@ The maximum a-posteriori (MAP) estimate is then

Kiapes = W - argmax P(ax |y) = ¥ - argmin [y — Warl} + Al

with A = 280>,
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Compressive Sensing Sy Bayesian Perspective

A Bayesian perspective (synthesis-based approach)

@ Consider the inverse problem:
=PV +n.

@ Assume Gaussian noise, yielding the likelihood:

Pyl @) o exp(lly — vali/(20Y)) -

@ Consider the Laplacian prior:
P(a) o exp(=Bllalr) -

@ The maximum a-posteriori (MAP) estimate is then

Haps = ¥ - argmax Pcx |y) = W - arg min Iy — e®el; + Al ,

with A = 2807,
@ One possible Bayesian interpretation.

@ Recall also that the signal may not be distributed according to the prior but rather ¢y-sparse, in
which case solving the £; problem finds the correct ¢,-sparse solution.
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Other Bayesian interpretations (synthesis- based approach

@ Other Bayesian interpretations of the synthesis-based approach are also possible (Gribonval
2011).

@ Minimum mean square error (MMSE) estimators

C synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

C MAP estimators

MAP

Penalised LS
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A Bayesian perspective (analysis- based approach)

@ For the analysis-based approach, the MAP estimate is then

Xpap-a = arg;nux P(x|y) = urg;nin ly — ®x|13 + Al

@ Identical to the synthesis-based approach if 2 = W'
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A Bayesian perspective (analysis-based approach)

@ For the analysis-based approach, the MAP estimate is then

Xpap-a = arg;nax P(x|y) = arg;nin lly — <I>xH§ + Al[Qx]]y -

@ Identical to the synthesis-based approach if 2 = W' .

@ But for redundant dictionaries, the analysis-based MAP estimate is

Xap-a = Q1+ agmin[ly — Q|3 + Al -

7Y €column space 2

Jason McEwen Sparsity



Compressive Sensing Sy Bayesian Perspective

A Bayesian perspective (analysis-based approach)

@ For the analysis-based approach, the MAP estimate is then

Kinp-p = wrzmax Pe |y) = argmin [ly — x|} + A0l

@ Identical to the synthesis-based approach if 2 = o

@ But for redundant dictionaries, the analysis-based MAP estimate is

Xap-a = Q00 agmin [ly — Q7|3 + Al~[

~Y €column space 2

Analysis- and synthesis-based approaches are quite different.

@ Gain insight into the geometrical nature of problems (Elad et al. 2007, Nam et al. 2012).
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Sparsity averaging and reweighting

@ Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
Vi

= — [0, Ty, T

thus W € RY*P with D = ¢N.

@ We consider the following bases:
e Dirac, i.e. pixel basis
e Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases

Jason McEwen Sparsity
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Sparsity averaging and reweighting

@ Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
Vi

= — [0, Ty, T

thus ¥ € RY*? with D = ¢N.

@ We consider the following bases:
e Dirac, i.e. pixel basis
e Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min |W¥ ||, subjectto |y— ®x|,<e and x>0,
XeRrN

where W € RP*? is a diagonal matrix with positive weights.

@ Solve a sequence of reweighted ¢; problems using the solution of the previous problem as the
inverse weights — approximate the ¢, problem.
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Compressive Sensing

RA for radio interfer

(d) BPDb8 (SNR=24.53 dB) (e) TV (SNR=26.47 dB) (f) SARA (SNR=29.08 dB)

Figure: Reconstruction example of 30Dor from 30% of visibilities.
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SARA for radio interferometric imaging

10 L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Coverage percentage

Figure: Reconstruction fidelity vs visibility coverage for 30Dor.
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SARA for natural imaging

(a) Original (b) Daubechies 8 (c) SARA

Figure: Lena reconstruction from 30% of Fourier measurements.
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Compressive Sensing

Sparsity Averaging Sy

SARA for natural imaging

40
35- 1
30t 1
m
el ——RW-TV
o 25
(% —— RW-BPDb8
RW-Curvelet
20 -<-BPSA
-8-TV
15F -4$-BPDb8 1
Curvelet
1 L L L L
00 0.2 0.4 0.6 0.8 1

M/N

Figure: Reconstruction fidelity vs measurement ratio for Lena.
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SARA for natural imaging

(a) Original (b) Daubechies 8 (c) SARA

Figure: Cameraman reconstruction from 30% of Fourier measurements.
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SARA for natural imaging

100 0.2 0.4 0.6 0.8 1

M/N

Figure: Reconstruction fidelity vs measurement ratio for Cameraman.
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Sparse reconstruction on the sphere and ball

@ We have been extending these ideas to the sphere and ball.

Figure: Ground truth at L = 128.
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Sparse reconstruction on the sphere and ball

@ We have been extending these ideas to the sphere and ball.

Figure: Measurements at L = 128 for M/2L* = 1/8.
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Sparse reconstruction on the sphere and ball

@ We have been extending these ideas to the sphere and ball.

Figure: MW reconstruction in the harmonic domain at L = 128 for M/2L> = 1/8 (SNR; = 20dB).

Jason McEwen Sparsity



Cosmological Applications Inpainting

e Cosmological applications
@ CMB inpainting
@ Cosmic strings
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Cosmological Applications CMB Inpainting Cosmic Strings

CMB inpainting

@ Incomplete observations of the CMB on the full-sky due to Galactic contamination.

(a) Galactic contamination (b) Excise galaxy
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Cosmological Applications CMB Inpainting Cosmic Strings

CMB inpainting

@ Incomplete observations of the CMB on the full-sky due to Galactic contamination.

(a) Galactic contamination (b) Excise galaxy

@ Model observations by |y = ®x = PA% | where A represents the inverse spherical harmonic

transform and & harmonic coefficients.
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Cosmological Applications CMB Inpainting

@ Incomplete observations of the CMB on the full-sky due to Galactic contamination.

(a) Galactic contamination (b) Excise galaxy

@ Model observations by |y = ®x = PA% | where A represents the inverse spherical harmonic
transform and & harmonic coefficients.

@ Inpainting problem solved in harmonic space (Starck et al. 2012):

ax

" = argmin [|%]|; suchthat y = ®PA%.
x

@ Imposes sparsity of the spherical harmonic coefficients of the CMB!

Jason McEwen Sparsity
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CMB inpainting

@ BUT we have a very strong physical prior. ..the CMB is very close to Gaussian!

@ Solving the CMB inpainting problem in this manner is equivalent to assuming harmonic
coefficients are independent and Laplacian — not a good prior.

Jason McEwen Sparsity
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CMB inpainting

@ BUT we have a very strong physical prior. ..the CMB is very close to Gaussian!

@ Solving the CMB inpainting problem in this manner is equivalent to assuming harmonic
coefficients are independent and Laplacian — not a good prior.

Furthermore, for an isotropic random field, the harmonic coefficients are independent if and
only if they are Gaussian distributed.

@ We can see this intuitively since a rotation in harmonic space may be written

4 .
(R(a, B,7)a) , = Z D, (o, B,7) ae .
P

Sparse CMB inpainting breaks statistical isotropy!
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Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

it £

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

@ The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Observational signatures of cosmic strings

@ Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).
Light rays
@ Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins
1984).

S !"’,l‘“,‘"‘e i [ | ’ |
9y
@ The amplitude of the induced contribution scales with G, *“*LLLLA,LLL
the string tension.

H
Observer

.

Spacetime around a cosmic string. [Credit: Kaiser
& Stebbins 1984, DAMTP]
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Observational signatures of cosmic strings

@ Make contact between theory and data using high-resolution simulations.
@ Amplitude of the signal is given by the string tension Gp.

@ Search for a weak string signal s embedded in the CMB ¢, with observations d given by
d=c+s.

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Motivation for using wavelets to detect cosmic strings

@ Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by | Wi, = (d, ¥;,) |for scale j € Z* and i

position p € SO(3).

@ Consider an even azimuthal band-limit N = 4 to

yield wavelet with odd azimuthal symmetry. Figure: Example wavelet
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Motivation for using wavelets to detect cosmic strings

@ Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by | Wi, = (d, ¥;,) |for scale j € Z* and
position p € SO(3).

@ Consider an even azimuthal band-limit N = 4 to

yield wavelet with odd azimuthal symmetry. Figure: Example wavelet

@ Wavelet transform yields a sparse representation of the string signal — hope to effectively separate
the CMB and string signal in wavelet space.

-
5x 10
VB 0.25

— Cosmic strings

---CmB
— Cosmic strings

@ N

Probability density
o

Probability density

.

200 200 -40

0 -200

'
B0

40

0 -20 0 20
Pixel values ( 1K) Wavelet coefficients (k)

Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Cosmological Applications

Inpainting  Cosmic Strings
Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:

o\ 2
(%)
C C o = of
P./<Wi/)>_ ¢

J

) ., where (0})’ = (
2m(a})?

W;/) W/L/7x> = Z Ce [(¥))g,, 1"
m
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Cosmological Applications B Inpainting Cosmic Strings

Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:

. (%)) e :

) = = 1) where (o)t = (W, W,y = DD Cel(E)),, [

J £m

@ Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):
ﬂ,-)

-
“p
Gpv;

. v -
PW |Gu)= ——L e(
1o 198 = 3Gt (1)

with scale parameter v; and shape parameter v;.

Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
e . . 10° Wavelet coefficient distribution for scale j = 0
@ Compare distribution learnt from the training * ‘ ‘ ‘ ‘ T
simulation (string2) with the distribution of the , —— Fted )|
testing simulation (string1).
25 4
@ Distributions in close agreement.
E 15 4
1 4
0s 4
0
-8 -6 -4 -2 0 2 4 6 8

Wavelet coefficient

Figure: Distributions for wavelet scale j = 0.
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Cosmological Applications B Inpainting Cosmic Strings

Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
e . . 10° Wavelet coefficient distribution for scale = 1
@ Compare distribution learnt from the training 1 ‘ ‘ ‘ ‘ T
simulation (string2) with the distribution of the 2 ——Fitted (string?)
testing simulation (string1).
1
@ Distributions in close agreement.
%DE
E 06
04
02
0
-2 -15 -1 -05 0 0. 1 15 2
Wavelet coefficient x Iﬂ7

Figure: Distributions for wavelet scale j = 1.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
e . . 10° Wavelet coefficient distribution for scale | = 2
@ Compare distribution learnt from the training 1 ‘ ‘ ‘ ‘ T
simulation (string2) with the distribution of the 2 ——Fitted (string?)
testing simulation (string1).
1
@ Distributions in close agreement.
%DE
E 06
04
02
0
-2 -15 -1 -05 0 0. 1 15 2
Wavelet coefficient x Iﬂ7

Figure: Distributions for wavelet scale j = 2.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

x10° ‘Wavelet coefficient distribution for scale | = 3

@ Compare distribution learnt from the training ! = Towymm
simulation (string2) with the distribution of the 03 —— Fited (string?)
testing simulation (string1).

08

@ Distributions in close agreement.

Probabilty density

=

2 15 A 1 15 2

05 0 05
Wavelet coefficient 7
x10

Figure: Distributions for wavelet scale j = 3.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

£
(a) String1 (b) String2
Figure: Cosmic string simulations.
e ) . %107 Wavelet coefficient distribution for scale j = 4
@ Compare distribution learnt from the training ° ‘ ‘ ‘ ‘ T
simulation (string2) with the distribution of the —— Fitied (sting?)
testing simulation (string1). 5
@ Distributions in close agreement. 4
s
2
1
D—Z -15 -1 05 0 0. 1 15 2
Wavelet coefficient x II]7

Figure: Distributions for wavelet scale j = 4.
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Learning the statistics of the CMB and string signals in wavelet space

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.

%107 Wavelet coefficient distribution for scale j = 4

6 T

@ Compare distribution learnt from the training e e
simulation (string2) with the distribution of the —— Fitied (sting?)
testing simulation (string1). 5

IS

@ Distributions in close agreement.

@ We have accurately characterised the statistics of
string signals in wavelet space.

Probabilty density

2 15 A 1 15 2

05 0 0.
Wavelet coefficient 7
x 10

Figure: Distributions for wavelet scale j = 4.
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Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.
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Spherical wavelet-Bayesian string tension estimation

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

@ For each wavelet coefficient the likelihood is given by

P

i s , ' 5 e d s
P(W, | Gu) = P(W, +W/-p|GN):/p aw;, Pi(W), — W) P;(W,, | Gp) .

@ The overall likelihood of the data is given by

POW! | Gu) = [T POV, | G

ip

where we have assumed independence.
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Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W*| Gu) P(Gu)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

I o o
IS ) ™

Probability density

o
[N}

Whesssesssssssssnaannnmmnm s

o 1 2 4
Gu x107°

Figure: Posterior distribution of the string tension (true Gu = 3 x 107°).
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Cosmological Applications B Inpainting Cosmic Strings

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W*| Gu) P(Gu)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

o o
) ™

Probability density
o
=

0.2r

=
<
-
o

Figure: Posterior distribution of the string tension (true Gu. = 2 x 10°).
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Cosmological Applications B Inpainting Cosmic Strings

Spherical wavelet-Bayesian string tension estimation

@ Compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W*| Gu) P(Gu)

d
PO ox P(W* | Gu) P(Gp) .

P(Gu | W) =

I o o
IS ) ™
.

Probability density

o
[N}

I e ————

2 3 4
Gu x107°

Figure: Posterior distribution of the string tension (true Gu. = 1 x 107°).
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Cosmological Applications B Inpainting Cosmic Strings

Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M’ to the alternative model M* that
the observed data is comprised of just a CMB contribution.
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Cosmological Applications B Inpainting Cosmic Strings

Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M’ to the alternative model M* that
the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

E =P(W! M) = /L d(Gp) P(W! | Gp) P(Gp) .

@ The Bayesian evidence of the CMB model is given by
EC=pPw! M) = [P(W,).

jp

@ Compute the Bayes factor to determine the preferred model:
AInE = In(E'/E°) .

Table: Tension estimates and log-evidence differences for simulations.

Gu/107° 0.7 0.8 0.9 1.0 2.0 3.0

Gu/107% 1.1 1.2 1.2 1.3 21 3.1
AlnE -13 —11 —09 —07 55 29
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Cosmological Applications B Inpainting Cosmic Strings

Recovering string maps

@ Our best inference of the underlying string map is encoded in the posterior probability
distribution P(W;, | W¥).
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Cosmological Applications B Inpainting Cosmic Strings

Recovering string maps

@ Our best inference of the underlying string map is encoded in the posterior probability

distribution P(W;, | W¥).

@ Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

W, = [ aw, w,ean, 1w
=3 /u d(Gp) P(Gu | d) W, (Gp)
where
W (i) = /F AW, W, B(WS | W Gp)
- W b; awi, Wi, P;(W;L = W) B (W, | Gu) -
°

Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

@ Work in progress. ..
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Conclusions

Sparsity is a powerful concept that can provide new insight and is
complementary to a Bayesian approach.
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Conclusions

Sparsity is a powerful concept that can provide new insight and is
complementary to a Bayesian approach.

But, as all techniques, sparsity must be exploited in the correct
manner.

Just like in CosmoStats, in Cosmolnformatics the Cosmo is integral.
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Extra slides on flaglet applications




(a) Simulated LSS (b) Wavelet coefficients  (c) Wavelet coefficients ~ (d) Wavelet coefficients
(large scale) (intermediate scale) (fine scale)

@ Flaglets are a powerful analysis technique to handle systematics, noise and foregrounds.
' A

(a) Challenges for CMB analysis (b) Challenges for LSS analysis
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Using flaglets to study large-scale structure (LSS)

@ Flaglets are a powerful analysis technique to handle systematics, noise and foregrounds.

THEORY THEORY + DATA DATA

Fourier-Bessel space Flaglet space Map space

® Scale access » ® Scale access « ® No scale access

® Global in space ® Local in space ® Local in space

Jason McEwen Sparsity



Extra slides on sparse recovery




Sparse signal reconstruction on the sphere

@ Consider sparse reconstruction on the sphere.

@ More efficient sampling theorem — implications for sparse signal reconstruction.

@ Improves both the dimensionality and sparsity signals in the spatial domain.

@ Improves the fidelity of sparse signal reconstruction.

@ Consider the inverse problem

where:
@ x ¢ R denotes the samples of f;
N is the number of samples on the sphere of the adopted sampling theorem;
& € RM*N denotes the measurement operator, representing a random masking of the signal;
M noisy measurements y € RM are acquired;
n € RM denotes iid Gaussian noise with zero mean.
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TV inpainting on the sphere

@ Develop a framework for total variation (TV) inpainting on the sphere as illustrative example to
study implications of sampling theorems (McEwen et al. 2013).

@ Define TV norm on the sphere:

Ng—1 Nyp—1 Ng—1 Np—1
2] ® 2] P ql( /)

5 o) .
/ A [V~ >0 ST IVAla0) = DT DT 4 [d2(00)(dex)7 + 7o (35%)* = II*llpy 2 -

=0 p=0 t=0 p=0

@ TV inpainting problem solved directly on the sphere:

x* = argmin [[x||, & suchthat |ly — ®x[[ <e.
N 5

@ TV inpainting problem solved in harmonic space:

NES

&7 = argmin ||A%||;y 2 suchthat [y — ®A%|> < e,
x

where A represents the inverse spherical harmonic transform.

@ Solve using convex optimisation techniques adapted to the sphere
(Douglas-Rachford splitting).
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M /2L* = 1/4
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M /2L* = 1/4
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/2L* = 1/4

Jason McEwen Sparsity



TV inpainting: low-resolution simulations

Do @

) DH spatial 1or ) DH harmonic fcr = 4 ) MW spatial for ) MW harmonic for

ol—

(e) DH spatial for LMZ = (f) DH harmonic for 4 = 1 (g) MW spatial for LMZ = % (h) MW harmonic for LMZ =

22

o=

(i) DH spatial for LMZ =1 (j) DH harmonic for LMZ

(k) MW spatial for LMZ =1 () MW harmonic for LMZ =1

olw

ol
[

(m) DH spatial for Lﬂz = (n) DH harmonic for LM2 = (0) MW spatial for LMZ =3 (p) MW harmonic for LMZ =
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TV inpainting: low-resolution simulations

40,
-4- DH spatial
35/ -o- MW spatial
=—9— DH harmonic
=®— MW harmonic
301 e T
251
Z 20f
15- - ‘ . s
.
10} ¢ .
.
.
sl %
0 1 1 1 1 1 1 1 1
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

M/L2

Figure: Reconstruction performance for the DH and MW sampling theorems
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TV inpainting: high-resolution simulations

@ Previously limited to low-resolution simulations.

@ To solve high-resolution problem we require fast adjoint spherical harmonic transform
operators in addition to fast forward spherical harmonic transforms to solve optimisation
problems.

@ Develop fast adjoints for the McEwen & Wiaux (2011) sampling theorem only.

Fast adjoint inverse spherical harmonic transform
g oy JSOne), 1€{0,1,.. L1}
S0 2p) {o, refL,...,2L—2}

2L—2 2L—-2

I S5 SRR

t=0 p=0

/20 + 1
xflmf _ s imts 4+ Al Am/ o sFon A
u

*(L 1))
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TV inpainting: high-resolution simulations

Fast adjoint forward spherical harmonic transform
= 2t
.mam’T = (71): =) Z “an Aﬁr’m Afz’,fx Sem
£=0

L—1
Sme//Jr =27 Z SGmm/f W(m/ = m”)
m! =—(L—1)

L—1
- 1 Gl
T _ T im" 6,
sFm (9,) =21 ) Z sFpmt ' € 1
m'=—(L—1)
gy [Fn @)+ (=" Ful @2, 1€ {0,1,..,L—2)
Fal(0) = {5, o
sFn'(6r) , t=L—1
1 L—1 .
xfT(917<Pp) = ﬁ Z sFmT(oz) e"r
T m=—(—1)

v
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TV inpainting: high-resolution simulations

@ Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: Ground truth at L = 128.
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TV inpainting: high-resolution simulations

@ Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: Measurements at L = 128 for M/2L* = 1/8.
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TV inpainting: high-resolution simulations

@ Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: MW reconstruction in the harmonic domain at L = 128 for M/2L> = 1/8 (SNR; = 20dB).
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