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Cosmic timeline
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Cosmic microwave background (CMB)

What is the origin of structure in our Universe?

Planck satellite CMB
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Epoch of reionisation

How did the first luminous objects in the Universe form?

Square Kilometre Array (SKA) Ionised bubbles in neutral hydrogen
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Large-scale structure (LSS) of the Universe

What is the nature of dark energy?

Euclid satellite Large-scale structure
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Cosmological observations on the celestial sphere
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Cosmic textures on the celestial sphere

Characterization and generative modelling
of cosmic textures (patterns) on the celestial sphere.

CMB LSS
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For use in simulation-based inference and beyond
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Why not use standard machine learning?

Aim
Characterization and generative modelling of cosmic textures (patterns) on the
celestial sphere.

Standard machine learning techniques can be applied but:

▶ Requires substantial training data (which we typically do not have in cosmology).
▶ Suffers covariate shift (i.e. change in cosmological model).
▶ Fails to capture symmetries of data (unless encode in model architecture).

⇒ Statistical characterization and generative modelling (inspired by CNNs).
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Wavelet scattering networks and representations

Wavelet scattering networks and representations inspired by CNNs but designed rather
than learned filters (Mallat 2012).

⇒ Scattering networks on the sphere
(McEwen et al. 2022, ICLR, arXiv:2102.02828)

⇒ Generative models of astrophysical fields with scattering transforms on the sphere
(Mousset, Allys, Price, et al. McEwen, in prep.)
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Wavelets on the sphere

Adopt scale-discretized wavelets on the sphere (e.g. McEwen et al. 2018, McEwen et al. 2015).

Wavelets ψj ∈ L2(S2) capture spatially-localised, high-frequency signal content at scale j.

Scaling function ϕ ∈ L2(S2) captures spatially-localised, low-frequency content.

Spherical wavelet transform given by

Wj(ρ) = ( f ⋆ ψj )(ρ) =

∫
S2
dµ(ω′)f(ω′)( Rρψj )

∗(ω′).

Spherical convolution Rotated wavelet

Fast algorithms available
(e.g. McEwen et al. 2007, 2013, 2015).

Orthographic plot of spherical wavelets.
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Scattering transform on the sphere

Spherical scattering propagator for scale j:

U[j]f = |f ⋆ ψj|.

Modulus function is adopted for the activation function (since non-expansive and
preserves stability of wavelet representation).

Spherical cascade of propagators:

U[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd |,

for the path p = (j1, j2, . . . , jd) with depth d.

Scattering coefficients:
S[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd | ⋆ ϕ.
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Scattering networks on the sphere

Spherical scattering network is collection of scattering transforms for a number of paths:
SPf = {S[p]f : p ∈ P}, where the general path set P denotes the infinite set of all possible
paths P = {p = (j1, j2, . . . , jd) : J0 ≤ ji ≤ J, 1 ≤ i ≤ d, d ∈ N0} .

f

U [J0]f
• • •

U [j]f
• • •

U [J ]f

S[0]f

U [J0, J0]f
• • •

U [J0, j
′]f

• • •
U [J, J0]f

S[J0]f

S[J0, J0]f S[J0, j
′]f S[J, J0]f

U [j, J0]f
• • •
U [j, j′′]f

• • •
U [j, J ]f

S[j]f

S[j, J0]f S[j, j′′]f S[j, J ]f

• • •
U [J, J0]f U [J, j′′′]f

• • •
U [J, J ]f

S[J ]f

S[J, J0]f S[J, j′′′]f S[J, J ]f

Capture all information content at infinite depth and typically > 99% for depth d = 3.
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Properties

Latent representation is very well-behaved and satisfies a number of important
properties:

1. Rotational equivariance

2. Isometric invariance

3. Stability to diffeomorphisms
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Rotationally equivariance

Rotational Equivariance (
(Rρf) ⋆ ψ

)
(ρ′) = (Rρ(f ⋆ ψ))(ρ′).

A

A

Rρ

Rρ
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Isometric invariance

Isometric Invariance
Let ζ ∈ Isom(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL5/2(D+ 1)1/2 λJ0 ∥ζ∥∞∥f∥2.

Scattering network representation is invariant to isometries up to a scale .

Difference in representation.
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Isometric invariance

Image Representation Scattering Representation

Isometry
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Stability to diffeomorphisms

Stability to Diffeomorphisms
Let ζ ∈ Diff(S2). If ζ = ζ1 ◦ ζ2 for some isometry ζ1 ∈ Isom(S2) and diffeomorphism
ζ2 ∈ Diff(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL2
[
L2 ∥ζ2∥∞ + L1/2(D+ 1)1/2λJ0 ∥ζ1∥∞

]
∥f∥2.

Scattering network representation is stable to small diffeomorphisms about isometry .

Difference in representation.
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism

Large diffeomorphism Large diffeomorphism
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Toy problem: Gaussianity of the cosmic microwave background (CMB)

Gaussian Non-Gaussian

53% classification accuracy without scattering versus 95% with scattering network.
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Spherical scattering covariance for generative modelling

Generative models of astrophysical fields with scattering transforms on the sphere
(Mousset, Allys, Price, et al. McEwen, in prep.)

Scattering covariance statistics:

1. S1[λ] f = E
[
|f ⋆ ψλ|

]
.

2. S2[λ] f = E
[
|f ⋆ ψλ|2

]
.

3. S3[λ1, λ2] f = Cov
[
f ⋆ ψλ2 , |f ⋆ ψλ1 | ⋆ ψλ2

]
.

4. S4[λ1, λ2, λ3] f = Cov
[
|f ⋆ ψλ1 | ⋆ ψλ3 , |f ⋆ ψλ2 | ⋆ ψλ3

]
.

Generative modelling by matching set of scattering covariance statistics S(f) with a
(single) target simulation:

min
f

∥S(f)− S(ftarget)∥2.
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Differentiable and GPU-accelerated spherical transform codes (in JAX)

s2fft: Spherical harmonic transforms
https://github.com/astro-informatics/s2fft

s2wav: Spherical wavelet transforms
https://github.com/astro-informatics/s2wav

s2scat: Spherical scattering transforms
https://github.com/astro-informatics/s2scat

s2ai: Spherical AI
Coming very soon! Contact us for early access.
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Generative modelling of large scale structure (LSS)

Which field is emulated and which simulated?

Logarithm (for visualization) of weak lensing field.
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Generative modelling of large scale structure (LSS)

Pixel distribution Power spectrum Minkowski functionals

Statistical validation.
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Generative modelling of cosmic strings in the CMB

Need to simulate full physics, evolving a network of strings through cosmic time, and
then ray-trace CMB photons through the string network (Ringeval et al. 2012).

A single simulation requires 800,000 CPU hours on a supercomputer.

There are only three full-sky string maps in existence.
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Generative modelling of cosmic strings in the CMB

Computation time: 800,000 CPU hours on supercomputer → O(1) hours on A100 GPU.

Still work in progress (statistical validation in progress).

Jason McEwen 25

http://www.jasonmcewen.org


Generative modelling of cosmic strings in the CMB

Computation time: 800,000 CPU hours on supercomputer → O(1) hours on A100 GPU.

Still work in progress (statistical validation in progress).

Jason McEwen 25

http://www.jasonmcewen.org


Summary

Characterization and generative modelling of cosmic textures (patterns) on the
celestial sphere with wavelet scattering representations.

Advantages:
▶ Little to no training data.
▶ No covariate shift.
▶ Capture spherical symmetries.

Well-behaved latent representation:
1. Rotational equivariance.
2. Isometric invariance.
3. Stability to diffeomorphisms.

Excellent latent representation to characterize cosmological fields or for generative
modelling (saving of 106 in computational time, rendering new analyses feasible).
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Extra slides
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Scalable and rotationally equivariant spherical CNNs

Scattering
Transform

Scattering
Transform

Scattering
Transform

Spherical
Scattering
Network

ReLU

S2 Layer

S2 Conv.

I

SO(3)
Conv.

SO(3)
Layer

ReLU

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Constrained

Gen. Conv.

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products

Designed Learned
Jason McEwen 28

http://www.jasonmcewen.org

	anm0: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


