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Rl Imaging Proximal MCMC MAP Estimation

Radio telescopes are big!

“Just checking.”
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Rl Imaging Proximal MCMC MAP Estimation

Radio interferometric telescopes
Very Large Array (VLA) in New Mexico
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Next-generation of radio interferometry rapidly approaching

@ Next-generation of radio interferometric telescopes will provide orders of magnitude
improvement in sensitivity.

@ Unlock broad range of science goals.

‘/‘/

(b) General relativity (c) Cosmic magnetism

(d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Rl Imaging Proximal MCMC MAP Estimation

Square Kilometre Array (SKA)
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The SKA poses a considerable big-data challenge

The SKA will generate
g;‘;csa}f?bg‘r”tfvirz?tk\‘razg enough raw data to fill 15
llion B4 !
T ‘ milion 64GB iPods every day!

A

The SKA will be so
sensitive that it will
be able to detect.

an airport. radar on
B rione tne o
light years away.

The dishes of the The aperture arrays

SKA will produce in the SKA could

10 times the global produce more than

internet traffic 100 times the global
internet traffic.

The SKA
central
computer
will have the
processing
x 100,000,000 power of
Personal ¢ about one
hundred
million PCs.
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Outline

© Radio interferometric imaging
© Proximal MCMC sampling and uncertainty quantification

© MAP estimation and uncertainty quantification
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© Radio interferometric imaging

UQ for RI imaging



Rl Imaging

Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

>
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Rl Imaging

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.
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Rl Imaging

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..
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Rl Imaging

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Rl Imaging

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”; + A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .
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Rl Imaging

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

msynthesis =W x argcinin[Hy - (D\Voc”; +A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Typically sparsity assumption justified by analysing example signals in transformed domain.

o Different to synthesising signals.
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Rl Imaging

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”; + A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Typically sparsity assumption justified by analysing example signals in transformed domain.
o Different to synthesising signals.

@ Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Tanatysis = arg min [ [y — @z + A [|w'z], |

Analysis framework

(For orthogonal bases the two approaches are identical but otherwise very different.)
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Rl Imaging

Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
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Rl Imaging

Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

@ Overcomplete dictionary composed of a concatenation of orthonormal bases:

U= (W, Wy, ..., W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.
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Rl Imaging

Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

@ Overcomplete dictionary composed of a concatenation of orthonormal bases:

U= (W, Wy, ..., W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.

o Promote average sparsity by solving the constrained reweighted ¢; analysis problem:

min [|[WWix|; subjectto |ly—®x|2<e and x>0
RN

SARA
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Rl Imaging

Public open-source codes

PURIFY code

http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d'Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code

http://basp-group.github.io/sopt/

Sparse OPTimisation

Carrillo, McEwen, Wiaux, Kartik, d'Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.
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http://basp-group.github.io/purify/
http://basp-group.github.io/sopt/

Imaging observations from the VLA and ATCA with PURIFY

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of 3C129

(a) CLEAN (uniform)

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of 3C129

(a) CLEAN (uniform) (b) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing
Outline

© Proximal MCMC sampling and uncertainty quantification
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Proximal MCMC

MCMC sampling and uncertainty quantification

[Observed visibilities in Rl i

imaging: y

AN

Sample full posterior by
MCMC methods: P(x|y)

HPD credible regions: Cq

\

|

Local credible
intervals: (§—,&4)

|

( Point estimator: x* )—_’[

Hypothesis testing

uUQ for RI imaging



Px-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).
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Px-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
e Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
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Px-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
e Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity-promoting priors,
which shown to be highly effective.
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(z|y) = - e exp(f)

Posterior Smooth

UQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(z|y) = - e exp(f)

Posterior Smooth

o If g(x) differentiable can adopt MALA (Langevin dynamics).
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(z|y) = e exp(f)

Posterior Smooth
o If g(x) differentiable can adopt MALA (Langevin dynamics).

@ Based on Langevin diffusion process L£(t), with 7 as stationary distribution:
1
dL(t) = 5Vlog m(L(t))dt +dW(t), L£(0)=1lo

where W is Brownian motion.
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

Consider posteriors of the following form:

P(z|y) = e exp(f)

Posterior Smooth

If g(x) differentiable can adopt MALA (Langevin dynamics).

Based on Langevin diffusion process L£(t), with 7 as stationary distribution:

dL(t):% Viogn(£(8) |dt +dW(r), £(0) =10

Gradient

where W is Brownian motion.

Need gradients so cannot support sparsity-promoting priors.
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Moreau approximation

o Moreau approximation of f(x) o exp(—g(x)):

2
fMA@) = sup f(u) exp( 1=
uERN 2)\

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Moreau approximation

o Moreau approximation of f(x) o exp(—g(x)):

2
fMA@) = sup f(u) exp( 1=
uERN 2)\

@ Important properties of fRAA(m):
QO Asx—0, M (x) - f(x)

@ Viog fiM(2) = (prox;(x) — =)/A

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(x | y) = 7(x) exp(—

Convex
—

UQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(z |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

dL(t) = %Vlogfr(ﬁ(t))dt +dW(t), L£(0)=1o.
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(z |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

dL(t) = %Vlogfr(ﬁ(t))dt +dW(t), L£(0)=1o.

@ Euler discretisation and apply Moreau approximation to 7:

)
((m+1) — g (m) + 5 Vlogfr(l(m>) 4 Vow'™

Vlog mx(x) = (prox, (z) — x)/X

UQ for RI imaging




Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(x | y) = 7(x) exp(— ) .

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

1
dL(t) = 5v1og7r(z:(t))dt +dW(t), L(0)=1Io.
@ Euler discretisation and apply Moreau approximation to 7:

s
1t = g m) 5| Vies

Vlog mx(x) = (prox, (z) — x)/X

@ Metropolis-Hastings accept-reject step.

UQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(@) = fi(@) + fo(a), where| fi(@) = ul|[W'z| |and| fa(z) = |ly — ®=|3/20°
Prior Likelihood
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(@) = fi(@) + fo(a), where| fi(@) = ul|[W'z| |and| fa(z) = |ly — ®=|3/20°
Prior Likelihood

@ Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{u” ull1 + 552 3

ueRN

UQ for RI imaging



g Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (w — 5T (D — 'y)/2cr2)

f1

Single forward-backward iteration

UQ for RI imaging



Rl Ima Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (:c — 5T (D — 'y)/202)

f1

Single forward-backward iteration

@ Analytic approximation:

, where & = & — 6@T (dx — y)/202.

proxg/2(w) ~o+ W (softm;/Q(lllT'T;) = \IIT'T;))

UQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

5]

o Let §(x(a)) = fi(a) + f2(a), where| fi(a) = pllal: |and| f2(a) = |y — ®Wal|3/20>
Prior Likelihood

UQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

o Let g(z(a)) = fi(a)+ fo(a), where

@ Must solve an optimisation problem for each iteration!

lly — W3 + |lu —all3 }
202 )

proxg/Q(a) = argmin {u||u||1 4F
ueRL

UQ for RI imaging



g Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the synthesis case

Recall posterior: () o exp(—g(x)).

[
5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

Let §(z(a)) = fl (a)+ fz (a), where

@ Must solve an optimisation problem for each iteration!

lly — W3 + |lu —all3 }
202 )

proxg/Q(a) = argmin {u||u||1 IF
ueRL

o Taylor expansion at point a: ||y — ®Wu|j3 ~ ||y — ®Wa|? + 2(u — a) TWidf (dWa — y).

Then proximity operator approximated by

proxg/2(a) = prox:i/Z (a —swiof(owa — y)/202)

1

Single forward-backward iteration
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Rl Ima Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Proximal MALA

Computing proximity operators for the synthesis case

Recall posterior: () o exp(—g(x)).

[
5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

Let §(z(a)) = fl (a)+ fz (a), where

@ Must solve an optimisation problem for each iteration!

— OWyl2 u — a2
lly I3 + I Hz}

5/2, \ :
prox, (@) = argmin {p||u||1 —+ 252 3

u€eRL

o Taylor expansion at point a: ||y — ®Wu|j3 ~ ||y — ®Wa|? + 2(u — a) TWidf (dWa — y).

Then proximity operator approximated by

proxg/2(a) = prox:i/Z (a —swiof(owa — y)/202)

1

Single forward-backward iteration

o Analytic approximation:

proxg/Q(a) ~ soft 5 /2 (a —swiof(owa — y)/2a2)

UQ for RI imaging




Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Moreau-Yosida approximation

@ Moreau-Yosida approximation (Moreau envelope) of f:

lu — 2|

(@)= inf f(u)+ 7

z ; o ; :
Figure: lllustration of Moreau-Yosida envelope of |z| for varying A [Credit: Stack exchange (ubpdqn)]
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Moreau-Yosida approximation

o Moreau-Yosida approximation (Moreau envelope) of f:

lu — 2|

(@)= inf f(u)+ 7

o Important properties of f&"Y(m)
O As)— 0, fW(z) = f(z)

Q@ VAY(x) = (z — prox}(z))/A

z ; o ; :
Figure: lllustration of Moreau-Yosida envelope of |z| for varying A [Credit: Stack exchange (ubpdqn)]
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

9@ = [ 1@ ] +[ @ ]i
) [%p]
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

5 k=
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogﬂ(ﬁ(t))dt +dw(t), £(0)=1Io .
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Proximal MCMC

MYULA
MCMC sampling

Px-MALA MYULA Experiments Hypothesis testing

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

x
(4
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):
1
dL(t) = 5v10g7r(L(t))dt +dw(t), £(0)=1Io .
@ Euler discretisation and apply Moreau-Yosida approximation to fi:

pmH) — glm) g Viegw(@™) |+ vVEw™ .

Viogn(x) ~ (prox?l () — :1:)//\ — Vfa(x)

uUQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

5 S
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogw(ﬁ(t))dt +dw(t), £(0)=1Io .

@ Euler discretisation and apply Moreau-Yosida approximation to fi:

Viogn(x) ~ (prox?l () — :1:)//\ — Vfa(x)

@ No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
arbitrarily small. To achieve precision target e requires:
o Worst case: order N°log?(e~1)e~? iterations.

o Strong convexity worst case: order N log(N) log?(e~!)e~2 iterations.
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(z) = fi(@) + f2(@), where | fi(x) = p|W'z||; |and [ fo(@) = |ly — &3 /257
Prior Likelihood

UQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(x) = fi(x) + fa(x), where

fi(@) = pl|Wiz|; |and [ fo(@) = |ly — &3 /257
Prior Likelihood

@ Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox{/z(w) =z+W (softﬂa/Q(WTw) “’Tw)) ’

UQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(a(a) = fi(a) + fa(a), where| fi(a) = plalls |and | fa(a) = [ly — ®Wal3/20°

Prior Likelihood

UQ for RI imaging



Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

fila) = plallx |and| f2(a) = |ly — ®Wa|3/20

Prior Likelihood

o Let g(z(a)) = fi(a)+ fa(a), where

@ Only need to compute proximity operator of fi, which can be computed analytically
without any approximation:

prox‘;{Q(a,) = soft,,5/2(a)

UQ for RI imaging



Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth

Figure: Cygnus A
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image

Figure: Cygnus A
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Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image

Figure: Cygnus A
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: Cygnus A
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Proximal MCMC MAP Estima Px-MALA MYULA Experiments Hypothesis testing

a1 6 |
| .I .Y

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Numerical experiments
MYULA with analysis model

Figure: HII region of M31

UQ for RI imaging



Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: W28 Supernova remnant
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Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

- { .
| nl |

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: 3C288
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Numerical experiments
Computation time

Table: CPU time in minutes for Proximal MCMC sampling
CPU time (min)

Image Method Analysis  Synthesis
Cvenus A PXMALA 2274 1762
ygnu MYULA 1056 942
M31 Px-MALA 1307 944
MYULA 618 581

Px-MALA 1122 879

W28 MYULA 646 598
Px-MALA 1144 881

3C288 MYULA 607 538
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.
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Proximal MCMC Px-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.

o If &’ € C, uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments

Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: HII region of M31
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Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: Cygnus A
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Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: Cygnus A
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Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

. 1. Cannot reject null
‘ hypothesis
' = cannot make strong
statistical statement about
origin of structure

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: Cygnus A
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Rl Imaging Proximal MCMC MAP Estimation

Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: Supernova remnant W28

UQ for RI imaging

Px-MALA MYULA Experiments

Hypothesis testing



Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing
Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28
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Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing

Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28

UQ for RI imaging
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Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing
Hypothesis testing

Numerical experiments

2[]

(a) Recovered image

Figure: 3C288
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Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing
Hypothesis testing

Numerical experiments

2[]
| ‘ ‘

(a) Recovered image (b) Surrogate with region removed

Figure: 3C288
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Rl Imaging Proximal MCMC MAP Estimation Px-MALA MYULA Experiments Hypothesis testing
Hypothesis testing

Numerical experiments

2[] .
| ‘ *

(a) Recovered image (b) Surrogate with region removed

1. Reject null hypothesis

= structure physical

2. Cannot reject null
hypothesis

= cannot make strong
statistical statement about
origin of structure

Figure: 3C288
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MAP Estimation Local credible intervals Experiments Hypothesis testing
Outline

© MAP estimation and uncertainty quantification
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Proximal MCMC sampling and uncertainty quantification

[Observed visibilities in Rl imaging: y

‘ Sample full posterior by \

MCMC methods: P(x|y) HPD credible regions: Cq

\

Local credible
intervals: (§—,&4)

( Point estimator: @* )————{  Hypothesis testing
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

UQ for RI imaging



MAP Estimation Local credible intervals Experiments Hypothesis testing

Approximate Bayesian credible regions for MAP estimation

Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Analytic approximation of ~y4:

Yo = g(®*) + N(1a + 1)

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b).

where 7o, =

o Define approximate HPD regions by Co = {@ : g(x) < Fa}.
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

o Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

@ Analytic approximation of vq:

Yo = g(®*) + N(1a + 1)

where 7o, =

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b).

o Define approximate HPD regions by Co = {@ : g(x) < Fa}.

o Compute x* by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.

UQ for RI imaging



MAP Estimation Local credible intervals Experiments Hypothesis testing

MAP estimation and uncertainty quantification

[Observed visibilities in Rl imaging: y

N

MAP image Approximate HPD
estimation: Tmap credible regions: Cy

\

Approximate local credible
intervals: (£_,€.)

Hypothesis testing
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b)

Let Q define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. ¢; = 1 if 2 € Q and 0 otherwise).

Given 7, and x*, compute the credible interval by

= mgn{s | 9y(x') < Aa, V€ € [—00,+00)},

&y = max {¢ | gy (') < Fa, V€ € [—00, +00)},

where

' =x"(T-¢)+¢&C |
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Rl Imaging Proximal MCMC MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

(a) point estimators

Px-MALA

MAP

(b) local credible interval (c) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Proximal VIC MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

Px-MALA
—
—

&

(b) local credible interval (c) local credible interval

(a) point estimators

(grid size 10 x 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

Px-MALA

& | |
B
B

(b) local credible interval (c) local credible interval

MAP

(a) point estimators

(grid size 10 x 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Proximal C MAP Estimation Local credible intervals Experiments Hypothesis testing

(b) local credible interval (c) local credible interval

Numerical experiments

Px-MALA

MAP

(a) point estimators

(grid size 10 x 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Proximal VIC MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

Px-MALA

& |
<17 |
| & f |
EE N

. . (b) local credible interval (c) local credible interval
(a) point estimators L . S .
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Rl Imaging Proximal MCMC MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

Px-MALA

MAP

(b) local credible interval (c) local credible interval

(a) point estimators

(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

(b) local credible interval (c) local credible interval

Px-MALA

MAP

(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

l

(b) local credible interval (c) local credible interval

Px-MALA

MAP

(a) point estimators

(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Rl Imaging Proximal MCMC MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

Px-MALA

MAP

(b) local credible interval (c) local credible interval

(a) point estimators

(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for W28 for the analysis model.

UQ for RI imaging



MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

Px-MALA

(b) local credible interval (c) local credible interval

MAP

(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for W28 for the analysis model.
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Proximal C MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

Px-MALA

(b) local credible interval (c) local credible interval

MAP

(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for W28 for the analysis model.
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Rl Imaging Proximal MCMC MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

A
é“

Px-MALA

MAP

. . (b) local credible interval (c) local credible interval
(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

‘g‘ - B
i - ‘

Rie g
g ‘ "q |

. . (b) local credible interval (c) local credible interval
(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Numerical experiments

g - L. -

. . (b) local credible interval (c) local credible interval
(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.
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MAP Estimation Local credible intervals Experiments Hypothesis testing

Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

CPU time (min)

Image Method Analysis Synthesis
Px-MALA 1307 944

M31 MYULA 618 581
MAP .03 .02

Px-MALA 2274 1762

Cygnus A MYULA 1056 942
MAP .07 .04

Px-MALA 1122 879

W28 MYULA 646 598
MAP .06 .04

Px-MALA 1144 881

3C288 MYULA 607 538
MAP .03 .02
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MAP Estimation Local credible intervals Experiments Hypothesis testing
Hypothesis testing

Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Test Ground Hypothesis
Image area truth Method test

Px-MALA

M31 1 v MYULA
MAP

Px-MALA

Cygnus A 1 v MYULA*
MAP

Px-MALA

W28 1 v MYULA
MAP

Px-MALA

1 v MYULA
MAP

Px-MALA

2 X MYULA
MAP

3C288

R AN NN N NN IR N

(* Can correctly detect physical structure if use median point estimator.)
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Conclusions

@ Sparsity-promoting priors shown to be highly effective and scalable to big-data.
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Conclusions

@ Sparsity-promoting priors shown to be highly effective and scalable to big-data.

o PURIFY code provides robust framework for imaging interferometric observations
(http://basp-group.github.io/purify/).

o SOPT code for distributed sparse regularisation (http://basp-group.github.io/sopt/).

@ Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:
o Recover Bayesian credible intervals.

o Perform hypothesis testing to test whether structure physical.

© MAP estimation (sparse regularisation) with approximate uncertainty quantification:
o Recover Bayesian credible intervals.

o Perform hypothesis testing to test whether structure physical.

[ Scalable to big-data (computational time saving ~ 10°)

Supported by:

&R_C & Science & Technology

Ei d Ph LS HH™ '
Reaearch Councll @ Facilities Council
UQ for RI imaging


http://basp-group.github.io/purify/
http://basp-group.github.io/sopt/
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

Different to synthesising signals from atoms.

@ Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x* = arg min ||Qz||1 subject to ||y — P2 < €.
xT

analysis

e Contrast with synthesis-based approach:

x* =¥ - arg min ||a||1 subject to ||y — PVa2 <e.
«@

synthesis

For orthogonal bases Q = W' and the two approaches are identical.

UQ for RI imaging



Analysis vs synthesis
Comparison

Coefficient Domain

Signal Domain

Compressed Sensing Domain

Measurement System

VS.

Synthesis
Dictionary
x=Dz

Sparsé coefficient

Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Analysis vs synthesis
Comparison

o Synthesis-based approach is more general, while analysis-based approach more restrictive.
@ More restrictive analysis-based approach may make it more robust to noise.

@ The greater descriptive power of the synthesis-based approach may provide better signal
representations (too descriptive?).

UQ for RI imaging
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

e Consider the inverse problem:
y=0oWa+n.

o Assume Gaussian noise, yielding the likelihood:

P(y|a) o exp(lly — oWal3/(20%)) .

Consider the Laplacian prior:

Pla) exp(—,6’||a\|1> .

The maximum a-posteriori (MAP) estimate (with A = 2802) is

TMAP-synthesis = ¥ * arg max P(er[y) =¥ - arg min [|y — Va3 + Ml -

synthesis

@ One possible Bayesian interpretation!

o Signal may be {y-sparse, then solving ¢1 problem finds the correct £y-sparse solution!

UQ for RI imaging



Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

o Other Bayesian interpretations are also possible (Gribonval 2011).

@ Minimum mean square error (MMSE) estimators

C synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

C MAP estimators

MAP

Penalised LS

UQ for RI imaging



Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

@ Analysis-based MAP estimate is

w)l:/IAP-analysis =qf. arg min lly — 221412 + Al -

~y Ecolumn space Q

analysis
o Different to synthesis-based approach if analysis operator Q is not an orthogonal basis.
@ Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework
for wavelet MEM (maximum entropy method).
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Standard algorithms

Output Data
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Jason McEwen uUQ for RI imaging



Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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PURIFY reconstruction
VLA observation of 3C129
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=)

—50

—100

—150

~20056-150-100-50 0 50 100 150 200

u

Figure: VLA visibility coverage for 3C129
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of 3C129

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of 3C129 imaged by CLEAN (natural)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of 3C129 images by CLEAN (uniform)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of 3C129 images by PURIFY
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PURIFY reconstruction
VLA observation of 3C129

Pixels
Pixels
Pixels

mJy/Beam

(c) PURIFY
McEwen, et al. 2016)

mJy/Beam :

(b) CLEAN (uniform)

" miygeam
(a) CLEAN (natural)
Figure: 3C129 recovered images and residuals (Pratley,
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PURIFY reconstruction
VLA observation of Cygnus A
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Figure: VLA visibility coverage for Cygnus A
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of Cygnus A

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of Cygnus A imaged by CLEAN (natural)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of Cygnus A images by CLEAN (uniform)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of Cygnus A images by PURIFY
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PURIFY reconstruction
VLA observation of Cygnus A

Pixels

1000

Jy/Beam Jy/Beam E

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY
Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

v (k)

Figure: VLA visibility coverage for PKS J0334-39
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
ATCA observation of PKS J0334-39

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of PKS J0334-39 imaged by CLEAN (natural)
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Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of PKS J0334-39 images by CLEAN (uniform)

UQ for RI imaging



Rl Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of PKS J0334-39 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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(c) PURIFY

Pixels
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(b) CLEAN (uniform)
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Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: ATCA visibility coverage for Cygnus A
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PURIFY reconstruction
ATCA observation of PKS J0116-473

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of PKS J0116-473 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of PKS J0116-473 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of PKS J0116-473 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)

UQ for RI imaging



_______ RlImaging Proximal MCMC MAP Estimation |
PURIFY reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

Observation PURIFY CLEAN CLEAN
(natural) (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36
PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24

UQ for RI imaging
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