High-dimensional uncertainty quantification

for radio interferometric imaging

Jason McEwen www.jasonmcewen.org @jasonmcewen

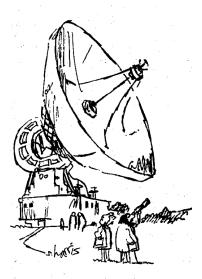
Mullard Space Science Laboratory (MSSL) University College London (UCL)

with Xiaohao Cai (MSSL) and Marcelo Pereyra (HWU)

Cai, Pereyra & McEwen (2017a): arXiv:1711.04818 Cai, Pereyra & McEwen (2017b): arXiv:1711.04819

Workshop on Uncertainty Quantification and Computational Imaging, International Centre for Mathematical Sciences (ICMS), Edinburgh April 2018

Radio telescopes are big!



"Just checking."

Radio telescopes are big!

Radio interferometric telescopes

Very Large Array (VLA) in New Mexico

Next-generation of radio interferometry rapidly approaching

- Next-generation of radio interferometric telescopes will provide orders of magnitude improvement in sensitivity.
- Unlock broad range of science goals.

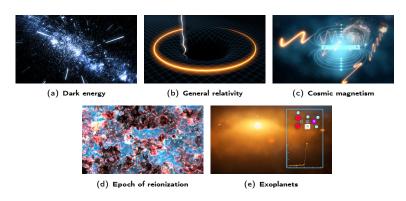
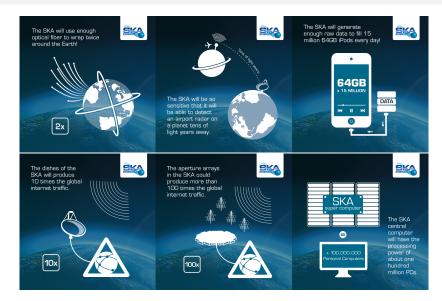


Figure: SKA science goals. [Credit: SKA Organisation]

Square Kilometre Array (SKA)

The SKA poses a considerable big-data challenge



The SKA poses a considerable big-data challenge

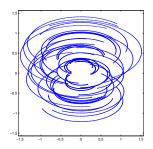
Outline

- Radio interferometric imaging
- Proximal MCMC sampling and uncertainty quantification
- MAP estimation and uncertainty quantification

Outline

- Radio interferometric imaging
- Proximal MCMC sampling and uncertainty quantification
- MAP estimation and uncertainty quantification

Radio interferometric telescopes acquire "Fourier" measurements



Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$\left[\ oldsymbol{y} = oldsymbol{\Phi} oldsymbol{x} + oldsymbol{n} \
ight]$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator, e.g. $\Phi = \mathbf{GFA}$, may incorporate:
 - primary beam A of the telescope;
 - Fourier transform F;
 - ullet convolutional de-gridding ${f G}$ to interpolate to continuous uv-coordinates;
 - direction-dependent effects (DDEs)...

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator, e.g. $\Phi = \mathbf{GFA}$, may incorporate:
 - primary beam A of the telescope;
 - Fourier transform F;
 - ullet convolutional de-gridding ${f G}$ to interpolate to continuous uv-coordinates;
 - direction-dependent effects (DDEs)...

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator, e.g. $\Phi = \mathbf{GFA}$, may incorporate:
 - primary beam A of the telescope;
 - Fourier transform F;
 - ullet convolutional de-gridding ${f G}$ to interpolate to continuous uv-coordinates;
 - direction-dependent effects (DDEs)...

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

Synthesis and analysis frameworks

Sparse synthesis regularisation problem:

$$egin{aligned} oldsymbol{x}_{\mathsf{synthesis}} &= oldsymbol{\Psi} imes rg \min_{oldsymbol{lpha}} \left[\left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{\Psi} oldsymbol{lpha}
ight\|_{2}^{2} + \lambda \left\| oldsymbol{lpha}
ight\|_{1}
ight] \end{aligned}$$

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: $x = \Psi \alpha$.

$$x = \Psi \alpha$$

$$oldsymbol{x}_{\mathsf{analysis}} = \operatorname*{arg\,min}_{oldsymbol{x}} \left[\left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x}
ight\|_2^2 + \lambda \left\| oldsymbol{\Psi}^\dagger oldsymbol{x}
ight\|_1
ight]$$

Synthesis and analysis frameworks

Sparse synthesis regularisation problem:

$$egin{aligned} oldsymbol{x}_{\mathsf{synthesis}} &= oldsymbol{\Psi} imes rg \min_{oldsymbol{lpha}} \left[\left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{\Psi} oldsymbol{lpha}
ight\|_{2}^{2} + \lambda \left\| oldsymbol{lpha}
ight\|_{1}
ight] \end{aligned}$$

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: $x = \psi \alpha$.

$$x = \Psi \alpha$$

- Typically sparsity assumption justified by analysing example signals in transformed domain.
- Different to synthesising signals.

$$oldsymbol{x}_{\mathsf{analysis}} = rg\min_{oldsymbol{x}} \left[\left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x}
ight\|_2^2 + \lambda \left\| oldsymbol{\Psi}^\dagger oldsymbol{x}
ight\|_1
ight]$$

Synthesis and analysis frameworks

Sparse synthesis regularisation problem:

$$\boxed{ \boldsymbol{x}_{\mathsf{synthesis}} = \boldsymbol{\Psi} \times \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \! \left[\left\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{\alpha} \right\|_{1} \right] }$$

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: $x = \Psi \alpha$.

$$x = \Psi \alpha$$

- Typically sparsity assumption justified by analysing example signals in transformed domain.
- Different to synthesising signals.
- Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

$$\boxed{ \boldsymbol{x}_{\mathsf{analysis}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \! \left[\left\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{\Psi}^{\dagger} \boldsymbol{x} \right\|_{1} \right] }$$

Analysis framework

(For orthogonal bases the two approaches are identical but otherwise very different.)

SARA algorithm

- Sparsity averaging reweighted analysis (SARA)
 (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
- Overcomplete dictionary composed of a concatenation of orthonormal bases:

$$\left[\mathbf{\Psi} = \left[\mathbf{\Psi}_1, \mathbf{\Psi}_2, \dots, \mathbf{\Psi}_q \right] \right]$$

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity) Daubechies wavelets two to eight \Rightarrow concatenation of 9 bases.

ullet Promote average sparsity by solving the constrained reweighted ℓ_1 analysis problem:

$$\min_{m{x}\in\mathbb{R}^N}\|\mathbf{W}\mathbf{\Psi}^{\dagger}m{x}\|_1$$
 subject to $\|m{y}-\mathbf{\Phi}m{x}\|_2\leq\epsilon$ and $m{x}\geq0$

SARA algorithm

- Sparsity averaging reweighted analysis (SARA)
 (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
- Overcomplete dictionary composed of a concatenation of orthonormal bases:

$$\boxed{\boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{\Psi}_1, \boldsymbol{\Psi}_2, \dots, \boldsymbol{\Psi}_q \end{bmatrix}}$$

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelets two to eight ⇒ concatenation of 9 bases.

ullet Promote average sparsity by solving the constrained reweighted ℓ_1 analysis problem:

$$\min_{m{x}\in\mathbb{R}^N}\|\mathbf{W}\mathbf{\Psi}^\daggerm{x}\|_1$$
 subject to $\|m{y}-\mathbf{\Phi}m{x}\|_2\leq\epsilon$ and $m{x}\geq0$

SARA algorithm

- Sparsity averaging reweighted analysis (SARA)
 (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
- Overcomplete dictionary composed of a concatenation of orthonormal bases:

$$\boxed{\boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{\Psi}_1, \boldsymbol{\Psi}_2, \dots, \boldsymbol{\Psi}_q \end{bmatrix}}$$

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelets two to eight ⇒ concatenation of 9 bases.

• Promote average sparsity by solving the constrained reweighted ℓ_1 analysis problem:

Public open-source codes

PURIFY code

http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d'Avezac

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

SOPT code

http://basp-group.github.io/sopt/

Sparse OPTimisation

Carrillo, McEwen, Wiaux, Kartik, d'Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to perform sparse optimisation using state-of-the-art convex optimisation algorithms.

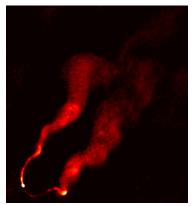
Imaging observations from the VLA and ATCA with PURIFY

(a) NRAO Very Large Array (VLA)

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered

PURIFY reconstruction VLA observation of 3C129



(a) CLEAN (uniform)

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)

PURIFY reconstruction VLA observation of 3C129

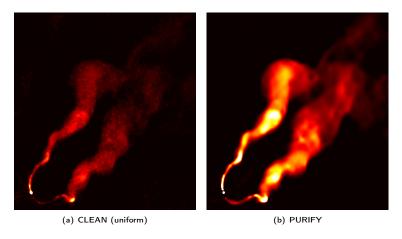
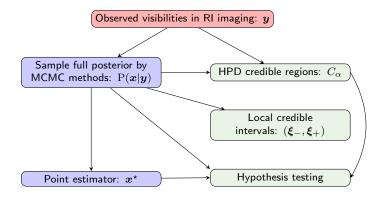


Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)

Outline

- Radio interferometric imaging
- Proximal MCMC sampling and uncertainty quantification
- MAP estimation and uncertainty quantification

MCMC sampling and uncertainty quantification



- Sample full posterior distribution P(x | y).

MCMC sampling the full posterior distribution

- Sample full posterior distribution P(x | y).
- MCMC methods for high-dimensional problems (like interferometric imaging):
 - Gibbs sampling (sample from conditional distributions)
 - Hamiltonian MC (HMC) sampling (exploit gradients)
 - Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity-promoting priors, which shown to be highly effective.

MCMC sampling the full posterior distribution

- Sample full posterior distribution P(x | y).
- MCMC methods for high-dimensional problems (like interferometric imaging):
 - Gibbs sampling (sample from conditional distributions)
 - Hamiltonian MC (HMC) sampling (exploit gradients)
 - Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity-promoting priors, which shown to be highly effective.

Langevin dynamics

• Consider posteriors of the following form:

$$P(\boldsymbol{x} \mid \boldsymbol{y}) = \boxed{\pi(\boldsymbol{x})} \propto \exp(-\boxed{g(\boldsymbol{x})})$$
Posterior Smooth

- ullet If $g(oldsymbol{x})$ differentiable can adopt MALA (Langevin dynamics).
- Based on Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution:

$$d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$

where \mathcal{W} is Brownian motion.

Need gradients so cannot support sparsity-promoting priors.

Langevin dynamics

• Consider posteriors of the following form:

$$P(\boldsymbol{x} \mid \boldsymbol{y}) = \begin{bmatrix} \pi(\boldsymbol{x}) \\ \text{Posterior} \end{bmatrix} \propto \exp(-\begin{bmatrix} g(\boldsymbol{x}) \\ \text{Smooth} \end{bmatrix})$$

- If g(x) differentiable can adopt MALA (Langevin dynamics).
- Based on Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution:

$$d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$

where W is Brownian motion.

Need gradients so cannot support sparsity-promoting priors.

Langevin dynamics

• Consider posteriors of the following form:

$$P(\boldsymbol{x} \mid \boldsymbol{y}) = \begin{bmatrix} \pi(\boldsymbol{x}) \\ Posterior \end{bmatrix} \propto \exp(-\begin{bmatrix} g(\boldsymbol{x}) \\ Smooth \end{bmatrix})$$

- If g(x) differentiable can adopt MALA (Langevin dynamics).
- Based on Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution:

$$d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$

where \mathcal{W} is Brownian motion.

Need gradients so cannot support sparsity-promoting priors

Langevin dynamics

Consider posteriors of the following form:

$$P(\boldsymbol{x} \mid \boldsymbol{y}) = \begin{bmatrix} \pi(\boldsymbol{x}) \\ Posterior \end{bmatrix} \propto \exp(-\begin{bmatrix} g(\boldsymbol{x}) \\ Smooth \end{bmatrix})$$

- If g(x) differentiable can adopt MALA (Langevin dynamics).
- Based on Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution:

$$d\mathcal{L}(t) = \frac{1}{2} \boxed{\nabla \log \pi \big(\mathcal{L}(t) \big)} dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$
Gradient

where \mathcal{W} is Brownian motion.

Need gradients so cannot support sparsity-promoting priors.

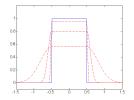
Proximal MALA

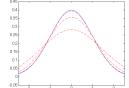
Moreau approximation

• Moreau approximation of $f(x) \propto \exp(-g(x))$:

$$f_{\lambda}^{\mathsf{MA}}(\boldsymbol{x}) = \sup_{\boldsymbol{u} \in \mathbb{R}^N} f(\boldsymbol{u}) \exp \left(-\frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}\right)$$

• Important properties of $f_{\lambda}^{\text{MA}}(x)$:





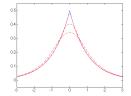


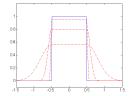
Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]

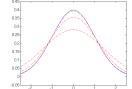
Moreau approximation

• Moreau approximation of $f(x) \propto \exp(-g(x))$:

$$\boxed{f_{\lambda}^{\mathsf{MA}}(\boldsymbol{x}) = \sup_{\boldsymbol{u} \in \mathbb{R}^N} f(\boldsymbol{u}) \exp\!\left(-\frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}\right)}$$

- Important properties of $f_{\lambda}^{\mathsf{MA}}(\boldsymbol{x})$:
 - $\textbf{0} \quad \text{As } \lambda \to 0, f_{\lambda}^{\textbf{MA}}(\boldsymbol{x}) \to f(\boldsymbol{x})$





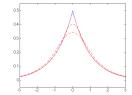


Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]

Proximal MALA MCMC sampling

Provimal Metropolis adi

Proximal Metropolis adjusted Langevin algorithm (Px-MALA) Pereyra (2016a)

- Consider log-convex posteriors: $P(x \mid y) = \pi(x) \propto \exp\left(-\left[\begin{array}{c}g(x)\\\vdots\\g(x)\end{array}\right]^{\frac{30}{20}}\right)$.
- ullet Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution ($\mathcal W$ Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left(\mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$

ullet Euler discretisation and apply Moreau approximation to π

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \left[\nabla \log \pi(\boldsymbol{l}^{(m)}) \right] + \sqrt{\delta} \boldsymbol{w}^{(m)}.$$

$$abla \log \pi_{\lambda}(oldsymbol{x}) = (\mathrm{prox}_g^{\lambda}(oldsymbol{x}) - oldsymbol{x})/\lambda$$

MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA) Pereyra (2016a)

- Consider log-convex posteriors: $P(x \mid y) = \pi(x) \propto \exp\left(-\frac{g(x)}{g(x)}\right)$.
- ullet Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution ($\mathcal W$ Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left(\mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

ullet Euler discretisation and apply Moreau approximation to π

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \left[\nabla \log \pi(\boldsymbol{l}^{(m)}) \right] + \sqrt{\delta} \boldsymbol{w}^{(m)}.$$

$$abla \log \pi_{\lambda}(oldsymbol{x}) = (\operatorname{prox}_g^{\lambda}(oldsymbol{x}) - oldsymbol{x})/\lambda$$

MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA) Perevra (2016a)

- Consider log-convex posteriors: $P(x \mid y) = \pi(x) \propto \exp\left(-\left[\begin{array}{c}g(x)\\ 0\\ 0\end{array}\right]\right)$.
- ullet Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution ($\mathcal W$ Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left(\mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

• Euler discretisation and apply Moreau approximation to π :

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \boxed{\nabla \log \pi(\boldsymbol{l}^{(m)})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.$$

$$\nabla \log \pi_{\lambda}(\boldsymbol{x}) = (\operatorname{prox}_{g}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda$$

MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA) Pereyra (2016a)

- Consider log-convex posteriors: $P(x \mid y) = \pi(x) \propto \exp\left(-\frac{g(x)}{2}\right)$.
- ullet Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution ($\mathcal W$ Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left(\mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

• Euler discretisation and apply Moreau approximation to π :

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \boxed{\nabla \log \pi(\boldsymbol{l}^{(m)})} + \sqrt{\delta} \boldsymbol{w}^{(m)} .$$

$$\nabla \log \pi_{\lambda}(\boldsymbol{x}) = (\operatorname{prox}_{g}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda$$

Computing proximity operators for the analysis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Let $\bar{g}(x) = \bar{f}_1(x) + \bar{f}_2(x)$, where $\boxed{\bar{f}_1(x) = \mu \| \Psi^\dagger x \|_1}$ and $\boxed{\bar{f}_2(x) = \| y \Phi x \|_2^2 / 2\sigma^2}$.
- Must solve an optimisation problem for each iteration

$$\operatorname{prox}_{\overline{g}}^{\delta/2}(\boldsymbol{x}) = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{argmin}} \left\{ \mu \| \boldsymbol{\Psi}^{\dagger} \boldsymbol{u} \|_1 + \frac{\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u} \|_2^2}{2\sigma^2} + \frac{\| \boldsymbol{u} - \boldsymbol{x} \|_2^2}{\delta} \right\} \$$

- ullet Taylor expansion at point $m{x}$: $\|m{y} m{\Phi} m{u}\|_2^2 pprox \|m{y} m{\Phi} m{x}\|_2^2 + 2(m{u} m{x})^ op m{\Phi}^\dagger (m{\Phi} m{x} m{y}).$
- Then proximity operator approximated by

$$\mathrm{prox}_{ar{g}}^{\delta/2}(m{x})pprox \mathrm{prox}_{ar{f}_1}^{\delta/2}\left(m{x}-\deltam{\Phi}^\dagger(m{\Phi}m{x}-m{y})/2\sigma^2
ight)$$

Single forward-backward iteration

Computing proximity operators for the analysis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Let $\bar{g}(\boldsymbol{x}) = \bar{f}_1(\boldsymbol{x}) + \bar{f}_2(\boldsymbol{x})$, where $\boxed{\bar{f}_1(\boldsymbol{x}) = \mu \| \boldsymbol{\Psi}^\dagger \boldsymbol{x} \|_1}_{\text{Prior}}$ and $\boxed{\bar{f}_2(\boldsymbol{x}) = \| \boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{x} \|_2^2 / 2\sigma^2}_{\text{Likelihood}}$.
- Must solve an optimisation problem for each iteration!

$$\operatorname{prox}_{\overline{g}}^{\delta/2}(\boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^N} \left\{ \mu \| \boldsymbol{\Psi}^{\dagger} \boldsymbol{u} \|_1 + \frac{\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u} \|_2^2}{2\sigma^2} + \frac{\| \boldsymbol{u} - \boldsymbol{x} \|_2^2}{\delta} \right\} \ .$$

- Taylor expansion at point $m{x}$: $\|m{y} m{\Phi} m{u}\|_2^2 pprox \|m{y} m{\Phi} m{x}\|_2^2 + 2(m{u} m{x})^{ op} m{\Phi}^{\dagger} (m{\Phi} m{x} m{y}).$
- Then proximity operator approximated by

$$\operatorname{prox}_{\bar{g}}^{\delta/2}(\boldsymbol{x}) pprox \operatorname{prox}_{\bar{f}_1}^{\delta/2} \left(\boldsymbol{x} - \delta \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{x} - \boldsymbol{y}) / 2 \sigma^2 \right)$$

Single forward-backward iteration

$$\boxed{\operatorname{prox}_{\bar{g}}^{\delta/2}(\boldsymbol{x}) \approx \bar{\boldsymbol{v}} + \boldsymbol{\Psi}\left(\operatorname{soft}_{\mu\delta/2}(\boldsymbol{\Psi}^{\dagger}\bar{\boldsymbol{v}}) - \boldsymbol{\Psi}^{\dagger}\bar{\boldsymbol{v}})\right)}, \text{ where } \bar{\boldsymbol{v}} = \boldsymbol{x} - \delta\boldsymbol{\Phi}^{\dagger}(\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y})/2\sigma^{2}.$$

Computing proximity operators for the analysis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Let $\bar{g}(\boldsymbol{x}) = \bar{f}_1(\boldsymbol{x}) + \bar{f}_2(\boldsymbol{x})$, where $\boxed{\bar{f}_1(\boldsymbol{x}) = \mu \| \boldsymbol{\Psi}^\dagger \boldsymbol{x} \|_1}$ and $\boxed{\bar{f}_2(\boldsymbol{x}) = \| \boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{x} \|_2^2 / 2\sigma^2}$. Likelihood
- Must solve an optimisation problem for each iteration!

$$\operatorname{prox}_{\overline{g}}^{\delta/2}(\boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^N} \left\{ \mu \| \boldsymbol{\Psi}^{\dagger} \boldsymbol{u} \|_1 + \frac{\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u} \|_2^2}{2\sigma^2} + \frac{\| \boldsymbol{u} - \boldsymbol{x} \|_2^2}{\delta} \right\} \ .$$

- Taylor expansion at point x: $\|y \Phi u\|_2^2 \approx \|y \Phi x\|_2^2 + 2(u x)^\top \Phi^\dagger (\Phi x y)$.
- Then proximity operator approximated by

$$\operatorname{prox}_{ar{g}}^{\delta/2}(oldsymbol{x}) pprox_{ar{f}_1}^{\delta/2} \left(oldsymbol{x} - \delta oldsymbol{\Phi}^\dagger (oldsymbol{\Phi} oldsymbol{x} - oldsymbol{y})/2\sigma^2
ight) \ .$$

Single forward-backward iteration

$$\boxed{ \operatorname{prox}_{\bar{g}}^{\delta/2}(\boldsymbol{x}) \approx \bar{\boldsymbol{v}} + \boldsymbol{\Psi} \left(\operatorname{soft}_{\mu\delta/2}(\boldsymbol{\Psi}^{\dagger}\bar{\boldsymbol{v}}) - \boldsymbol{\Psi}^{\dagger}\bar{\boldsymbol{v}}) \right) }, \text{ where } \bar{\boldsymbol{v}} = \boldsymbol{x} - \delta \boldsymbol{\Phi}^{\dagger}(\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y})/2\sigma^{2}.$$

Computing proximity operators for the analysis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Let $\bar{g}(\boldsymbol{x}) = \bar{f}_1(\boldsymbol{x}) + \bar{f}_2(\boldsymbol{x})$, where $\boxed{\bar{f}_1(\boldsymbol{x}) = \mu \| \boldsymbol{\Psi}^\dagger \boldsymbol{x} \|_1}_{\text{Prior}}$ and $\boxed{\bar{f}_2(\boldsymbol{x}) = \| \boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{x} \|_2^2 / 2\sigma^2}_{\text{Likelihood}}$.
- Must solve an optimisation problem for each iteration!

$$\operatorname{prox}_{\overline{g}}^{\delta/2}(\boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^N} \left\{ \mu \| \boldsymbol{\Psi}^{\dagger} \boldsymbol{u} \|_1 + \frac{\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u} \|_2^2}{2\sigma^2} + \frac{\| \boldsymbol{u} - \boldsymbol{x} \|_2^2}{\delta} \right\} \ .$$

- Taylor expansion at point x: $\|y \Phi u\|_2^2 \approx \|y \Phi x\|_2^2 + 2(u x)^\top \Phi^\dagger (\Phi x y)$.
- Then proximity operator approximated by

$$\operatorname{prox}_{\bar{g}}^{\delta/2}(\boldsymbol{x}) \approx \operatorname{prox}_{\bar{f}_1}^{\delta/2} \left(\boldsymbol{x} - \delta \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{x} - \boldsymbol{y}) / 2\sigma^2 \right) \ .$$

Single forward-backward iteration

$$\boxed{ \operatorname{prox}_{\bar{g}}^{\delta/2}(\boldsymbol{x}) \approx \bar{\boldsymbol{v}} + \boldsymbol{\Psi} \left(\operatorname{soft}_{\mu\delta/2}(\boldsymbol{\Psi}^{\dagger}\bar{\boldsymbol{v}}) - \boldsymbol{\Psi}^{\dagger}\bar{\boldsymbol{v}}) \right) }, \text{ where } \bar{\boldsymbol{v}} = \boldsymbol{x} - \delta \boldsymbol{\Phi}^{\dagger}(\boldsymbol{\Phi}\boldsymbol{x} - \boldsymbol{y})/2\sigma^{2}.$$

Computing proximity operators for the synthesis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Must solve an optimisation problem for each iteration

$$\left[\operatorname{prox}_{\tilde{g}}^{\delta/2}(\boldsymbol{a}) = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^L} \left\{ \mu \|\boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{a}\|_2^2}{\delta} \right\} \ \right]$$

- Taylor expansion at point $m{a}\colon \|m{y} m{\Phi} m{\Psi} m{u}\|_2^2 pprox \|m{y} m{\Phi} m{\Psi} m{a}\|_2^2 + 2(m{u} m{a})^{ op} m{\Psi}^\dagger m{\Phi}^\dagger (m{\Phi} m{\Psi} m{a} m{y}).$
- Then proximity operator approximated by

$$\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) \approx \operatorname{prox}_{\hat{f}_1}^{\delta/2} \left(\boldsymbol{a} - \delta \boldsymbol{\Psi}^\dagger \boldsymbol{\Phi}^\dagger (\boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{a} - \boldsymbol{y}) / 2\sigma^2 \right)$$

Single forward-backward iteration

$$\operatorname{prox}_{\hat{g}}^{\delta/2}(a) pprox \operatorname{soft}_{\mu\delta/2}\left(a - \delta \mathbf{\Psi}^\dagger \mathbf{\Phi}^\dagger (\mathbf{\Phi} \mathbf{\Psi} a - y)/2\sigma^2\right)$$

Computing proximity operators for the synthesis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Let $\hat{g}(x(a)) = \hat{f}_1(a) + \hat{f}_2(a)$, where $\begin{array}{c} \hat{f}_1(a) = \mu \|a\|_1 \\ \text{Prior} \end{array}$ and $\begin{array}{c} \hat{f}_2(a) = \|y \Phi \Psi a\|_2^2/2\sigma^2 \\ \text{Likelihood}. \end{array}$
- Must solve an optimisation problem for each iteration!

$$\operatorname{prox}_{\widehat{g}}^{\delta/2}(\boldsymbol{a}) = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^L} \left\{ \mu \|\boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{a}\|_2^2}{\delta} \right\}.$$

- Taylor expansion at point $m{a}\colon \|m{y} m{\Phi} m{\Psi} m{u}\|_2^2 pprox \|m{y} m{\Phi} m{\Psi} m{a}\|_2^2 + 2(m{u} m{a})^{ op} m{\Psi}^\dagger m{\Phi}^\dagger (m{\Phi} m{\Psi} m{a} m{y}).$
- Then proximity operator approximated by

$$\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) \approx \operatorname{prox}_{\hat{f}_1}^{\delta/2} \left(\boldsymbol{a} - \delta \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{a} - \boldsymbol{y}) / 2\sigma^2 \right)$$

Single forward-backward iteration

$$\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) \approx \operatorname{soft}_{\mu\delta/2}\left(\boldsymbol{a} - \delta \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{a} - \boldsymbol{y})/2\sigma^{2}\right)$$

Computing proximity operators for the synthesis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Let $\hat{g}(x(a)) = \hat{f}_1(a) + \hat{f}_2(a)$, where $\begin{array}{c} \hat{f}_1(a) = \mu \|a\|_1 \\ \text{Prior} \end{array} \text{ and } \begin{array}{c} \hat{f}_2(a) = \|y \Phi \Psi a\|_2^2/2\sigma^2 \\ \text{Likelihood.} \end{array}$
- Must solve an optimisation problem for each iteration!

$$\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^L} \left\{ \mu \|\boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{a}\|_2^2}{\delta} \right\} \ .$$

- Taylor expansion at point $m{a}$: $\|m{y} m{\Phi} m{\Psi} m{u}\|_2^2 pprox \|m{y} m{\Phi} m{\Psi} m{a}\|_2^2 + 2(m{u} m{a})^{ op} m{\Psi}^\dagger m{\Phi}^\dagger (m{\Phi} m{\Psi} m{a} m{y}).$
- Then proximity operator approximated by

$$\left| \operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) \approx \operatorname{prox}_{\hat{f}_1}^{\delta/2} \left(\boldsymbol{a} - \delta \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{a} - \boldsymbol{y}) / 2\sigma^2 \right) \right|.$$

Single forward-backward iteration

$$\mathrm{prox}_{\hat{g}}^{\delta/2}(oldsymbol{a})pprox \mathrm{soft}_{\mu\delta/2}\left(oldsymbol{a}-\deltaoldsymbol{\Psi}^{\dagger}oldsymbol{\Phi}^{\dagger}(oldsymbol{\Phi}oldsymbol{u}-oldsymbol{y})/2\sigma^2
ight)$$

Computing proximity operators for the synthesis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Must solve an optimisation problem for each iteration!

$$\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^L} \left\{ \mu \|\boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{a}\|_2^2}{\delta} \right\} \ .$$

- Taylor expansion at point $m{a}$: $\|m{y} m{\Phi} m{\Psi} m{u}\|_2^2 pprox \|m{y} m{\Phi} m{\Psi} m{a}\|_2^2 + 2(m{u} m{a})^{ op} m{\Psi}^\dagger m{\Phi}^\dagger (m{\Phi} m{\Psi} m{a} m{y}).$
- Then proximity operator approximated by

$$\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) \approx \operatorname{prox}_{\hat{f}_1}^{\delta/2} \left(\boldsymbol{a} - \delta \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{a} - \boldsymbol{y}) / 2\sigma^2 \right) \ .$$

Single forward-backward iteration

$$\boxed{ \operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) \approx \operatorname{soft}_{\mu\delta/2} \left(\boldsymbol{a} - \delta \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{a} - \boldsymbol{y}) / 2\sigma^{2} \right)}.$$

Moreau-Yosida approximation

Moreau-Yosida approximation (Moreau envelope) of f:

$$f_{\lambda}^{\mathsf{MY}}(\boldsymbol{x}) = \inf_{\boldsymbol{u} \in \mathbb{R}^N} f(\boldsymbol{u}) + \frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}$$

- Important properties of $f_{\lambda}^{\mathsf{MY}}(x)$:

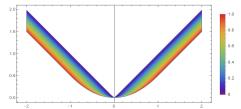


Figure: Illustration of Moreau-Yosida envelope of |x| for varying λ [Credit: Stack exchange (ubpdqn)]

Moreau-Yosida approximation

Moreau-Yosida approximation (Moreau envelope) of f:

$$f_{\lambda}^{\mathsf{MY}}(\boldsymbol{x}) = \inf_{\boldsymbol{u} \in \mathbb{R}^N} f(\boldsymbol{u}) + \frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}$$

- Important properties of $f_{\lambda}^{\mathsf{MY}}(x)$:
 - $\textbf{0} \quad \text{As } \lambda \to 0, f_{\lambda}^{\textbf{MY}}(\boldsymbol{x}) \to f(\boldsymbol{x})$

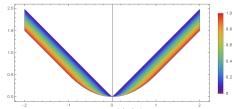


Figure: Illustration of Moreau-Yosida envelope of |x| for varying λ [Credit: Stack exchange (ubpdqn)]

MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)

Durmus, Moulines & Pereyra (2016)

• Consider log-convex posteriors: $P(\boldsymbol{x} \mid \boldsymbol{y}) = \pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$, where

$$g(\boldsymbol{x}) = \boxed{f_1(\boldsymbol{x})} \stackrel{\text{No.}}{\underset{\text{O}}{\overset{\text{No.}}{\overset{\text{No.}}{\underset{\text{O}}{\overset{\text{No.}}{\overset{\text{No.}}{\underset{\text{O}}}{\overset{\text{No.}}{\underset{\text{O}}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{\text{No.}}{\overset{\text{No.}}{\overset{\text{No.}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{\text{No.}}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{\text{No.}}{\overset{\text{No.}}{\overset{\text{No.}}{\overset{\text{No.}}{\overset{\text{No.}}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{\text{No.}}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{\text{No.}}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{\text{No.}}}{\overset{\text{No.}}{\overset{N}}}}{\overset{\text{No.}}{\overset{N}}}{\overset{\text{No.}}{\overset{N}}}{\overset{\text{No.}}{\overset{\text{No.}}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}}}{\overset{\text{No.}}}{\overset{N}}}}}}}}}}}}}}}}}}}}}}}}}}$$

ullet Langevin diffusion process $\mathcal{L}(t),$ with π as stationary distribution (\mathcal{W} Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left(\mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

ullet Euler discretisation and apply Moreau-Yosida approximation to f_1 :

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \left[\nabla \log \pi(\boldsymbol{l}^{(m)}) \right] + \sqrt{\delta} \boldsymbol{w}^{(m)} .$$
$$\nabla \log \pi(\boldsymbol{x}) \approx \left(\operatorname{prox}_{f_1}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x} \right) / \lambda - \nabla f_2(\boldsymbol{x})$$

- No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made arbitrarily small. To achieve precision target ε requires:
 - Worst case: order $N^5 \log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.
 - Strong convexity worst case: order $N\log(N)\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.

MYUI A

MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)

Durmus, Moulines & Pereyra (2016)

• Consider log-convex posteriors: $P(x | y) = \pi(x) \propto \exp(-g(x))$, where

ullet Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution ($\mathcal W$ Brownian motion):

$$\mathrm{d}\mathcal{L}(t) = \frac{1}{2}\nabla\log\pi(\mathcal{L}(t))\mathrm{d}t + \mathrm{d}\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

• Euler discretisation and apply Moreau-Yosida approximation to f_1 :

$$l^{(m+1)} = l^{(m)} + \frac{\delta}{2} \left[\nabla \log \pi (l^{(m)}) \right] + \sqrt{\delta} w^{(m)}.$$
$$\nabla \log \pi(x) \approx \left(\operatorname{prox}_{f_1}^{\lambda}(x) - x \right) / \lambda - \nabla f_2(x)$$

- No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made arbitrarily small. To achieve precision target ε requires:
 - Worst case: order $N^5 \log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.
 - Strong convexity worst case: order $N\log(N)\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.

MYUI A

MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)

Durmus, Moulines & Pereyra (2016)

• Consider log-convex posteriors: $P(x | y) = \pi(x) \propto \exp(-g(x))$, where

ullet Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution ($\mathcal W$ Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi (\mathcal{L}(t)) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

ullet Euler discretisation and apply Moreau-Yosida approximation to f_1 :

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \boxed{\nabla \log \pi(\boldsymbol{l}^{(m)})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.$$
$$\nabla \log \pi(\boldsymbol{x}) \approx \left(\operatorname{prox}_{f_1}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x}\right)/\lambda - \nabla f_2(\boldsymbol{x})$$

- No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made arbitrarily small. To achieve precision target ε requires:
 - Worst case: order $N^5 \log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.
 - Strong convexity worst case: order $N \log(N) \log^2(\epsilon^{-1}) \epsilon^{-2}$ iterations.

MYUI A

MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)

Durmus, Moulines & Pereyra (2016)

• Consider log-convex posteriors: $P(\boldsymbol{x} \mid \boldsymbol{y}) = \pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$, where

ullet Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution ($\mathcal W$ Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left(\mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

ullet Euler discretisation and apply Moreau-Yosida approximation to f_1 :

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \boxed{\nabla \log \pi(\boldsymbol{l}^{(m)})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.$$
$$\nabla \log \pi(\boldsymbol{x}) \approx \left(\operatorname{prox}_{f_1}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x}\right) / \lambda - \nabla f_2(\boldsymbol{x})$$

- No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made arbitrarily small. To achieve precision target ϵ requires:
 - Worst case: order $N^5 \log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.
 - \bullet Strong convexity worst case: order $N\log(N)\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.

Computing proximity operators for the analysis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Let $\bar{g}(\boldsymbol{x}) = \bar{f}_1(\boldsymbol{x}) + \bar{f}_2(\boldsymbol{x})$, where $\boxed{ \bar{f}_1(\boldsymbol{x}) = \mu \|\boldsymbol{\Psi}^\dagger \boldsymbol{x}\|_1 }_{\text{Prior}} \text{ and } \boxed{ \boxed{ \bar{f}_2(\boldsymbol{x}) = \|\boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{x}\|_2^2 / 2\sigma^2 }_{\text{Likelihood}}$
- ullet Only need to compute proximity operator of f_1 , which can be computed analytically without any approximation:

$$\mathrm{prox}_{\bar{f}_1}^{\delta/2}(\boldsymbol{x}) = \boldsymbol{x} + \boldsymbol{\Psi} \left(\mathrm{soft}_{\mu\delta/2}(\boldsymbol{\Psi}^{\dagger}\boldsymbol{x}) - \boldsymbol{\Psi}^{\dagger}\boldsymbol{x}) \right) \ \bigg| \ .$$

Computing proximity operators for the analysis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- Let $\bar{g}(\boldsymbol{x}) = \bar{f}_1(\boldsymbol{x}) + \bar{f}_2(\boldsymbol{x})$, where $\boxed{\bar{f}_1(\boldsymbol{x}) = \mu \|\boldsymbol{\Psi}^\dagger \boldsymbol{x}\|_1}$ and $\boxed{\bar{f}_2(\boldsymbol{x}) = \|\boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{x}\|_2^2/2\sigma^2}$. Likelihood
- ullet Only need to compute proximity operator of f_1 , which can be computed analytically without any approximation:

$$oxed{ \operatorname{prox}_{ar{f}_1}^{\delta/2}(oldsymbol{x}) = oldsymbol{x} + oldsymbol{\Psi}\left(\operatorname{soft}_{\mu\delta/2}(oldsymbol{\Psi}^\daggeroldsymbol{x}) - oldsymbol{\Psi}^\daggeroldsymbol{x})
ight) } \ .$$

Computing proximity operators for the synthesis case

• Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.

• Let
$$\hat{g}(\boldsymbol{x}(\boldsymbol{a})) = \hat{f}_1(\boldsymbol{a}) + \hat{f}_2(\boldsymbol{a})$$
, where
$$\boxed{ \hat{f}_1(\boldsymbol{a}) = \mu \|\boldsymbol{a}\|_1 }_{\text{Prior}} \text{ and } \boxed{ \hat{f}_2(\boldsymbol{a}) = \|\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{\Psi}\boldsymbol{a}\|_2^2/2\sigma^2 }_{\text{Likelihood}} .$$

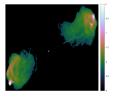
ullet Only need to compute proximity operator of f_1 , which can be computed analytically without any approximation:

$$\operatorname{prox}_{\hat{f}_1}^{\delta/2}(\boldsymbol{a}) = \operatorname{soft}_{\mu\delta/2}(\boldsymbol{a})$$
 .

Computing proximity operators for the synthesis case

- Recall posterior: $\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x}))$.
- ullet Only need to compute proximity operator of f_1 , which can be computed analytically without any approximation:

$$\operatorname{prox}_{\hat{f}_1}^{\delta/2}(\boldsymbol{a}) = \operatorname{soft}_{\mu\delta/2}(\boldsymbol{a})$$
.



(a) Ground truth

Figure: Cygnus A

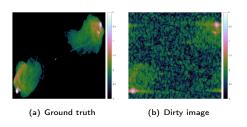


Figure: Cygnus A

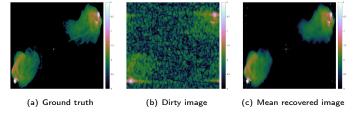


Figure: Cygnus A

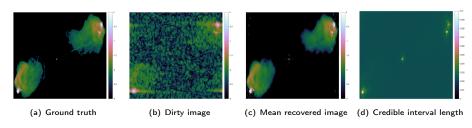


Figure: Cygnus A

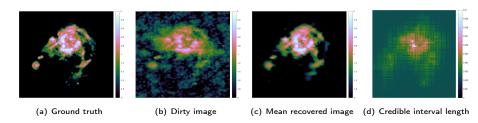


Figure: HII region of M31

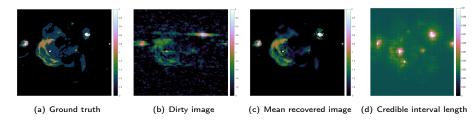


Figure: W28 Supernova remnant

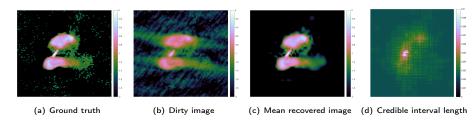


Figure: 3C288

Numerical experiments Computation time

Table: CPU time in minutes for Proximal MCMC sampling

Image	Method	CPU tir Analysis	me (min) Synthesis
Cygnus A	Px-MALA	2274	1762
	MYULA	1056	942
M31	Px-MALA	1307	944
	MYULA	618	581
W28	Px-MALA	1122	879
	MYULA	646	598
3C288	Px-MALA	1144	881
	MYULA	607	538

Hypothesis testing Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).

Hypothesis testing

Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1-\alpha)\%$ defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \le \gamma_{\alpha}\}$.

```
Hypothesis testing of physical structure
```

- \bigcirc Remove structure of interest from recovered image x^*
- ullet Inpaint background (noise) into region, yielding surrogate image $oldsymbol{x}'$
- igoplus Test whether $oldsymbol{x}' \in C_{lpha}$:
 - $(1-\alpha)\%, (2-\alpha)$
 - nature of the structure.

Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- ullet Let C_{lpha} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1-\alpha)\%$ defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$

Hypothesis testing of physical structure

- Remove structure of interest from recovered image x^* .

Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1-\alpha)\%$ defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \le \gamma_{\alpha}\}$.

Hypothesis testing of physical structure

- **1** Remove structure of interest from recovered image x^* .
- $oldsymbol{0}$ Inpaint background (noise) into region, yielding surrogate image x'.
- Test whether $x' \in C_{\alpha}$:

Hypothesis testing

Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1-\alpha)\%$ defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \le \gamma_{\alpha}\}$.

Hypothesis testing of physical structure

- **Q** Remove structure of interest from recovered image x^{\star} .
- $oldsymbol{\circ}$ Inpaint background (noise) into region, yielding surrogate image x'.
- **3** Test whether $x' \in C_{\alpha}$:
 - If $x' \notin C_{\alpha}$ then reject hypothesis that structure is an artifact with confidence $(1-\alpha)\%$, i.e. structure most likely physical.
 - If $x' \in C_{\alpha}$ uncertainly too high to draw strong conclusions about the physica nature of the structure.

Hypothesis testing

Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1-\alpha)\%$ defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \le \gamma_{\alpha}\}$.

Hypothesis testing of physical structure

- **Q** Remove structure of interest from recovered image x^{\star} .
- $oldsymbol{\circ}$ Inpaint background (noise) into region, yielding surrogate image x'.
- **Output** Test whether $x' \in C_{\alpha}$:
 - If $x' \notin C_{\alpha}$ then reject hypothesis that structure is an artifact with confidence $(1-\alpha)\%$, i.e. structure most likely physical.
 - If $x' \in C_{\alpha}$ uncertainly too high to draw strong conclusions about the physica nature of the structure.

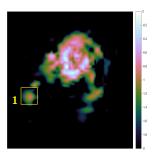
Hypothesis testing

Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1-\alpha)\%$ defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \le \gamma_{\alpha}\}$.

Hypothesis testing of physical structure

- **Q** Remove structure of interest from recovered image x^{\star} .
- $oldsymbol{\circ}$ Inpaint background (noise) into region, yielding surrogate image x'.
- \bullet Test whether $x' \in C_{\alpha}$:
 - If $x' \notin C_{\alpha}$ then reject hypothesis that structure is an artifact with confidence $(1-\alpha)\%$, i.e. structure most likely physical.
 - If $x' \in C_{\alpha}$ uncertainly too high to draw strong conclusions about the physical nature of the structure.



(a) Recovered image

Figure: HII region of M31

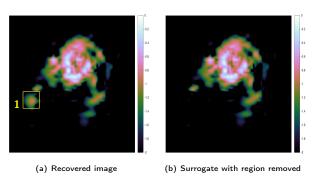
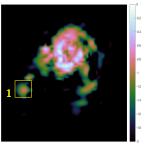
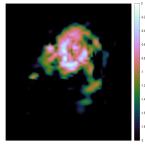


Figure: HII region of M31



(a) Recovered image

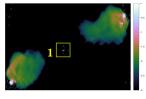


(b) Surrogate with region removed

Figure: HII region of M31

- 1. Reject null hypothesis
 - \Rightarrow structure physical

Hypothesis testing Numerical experiments



(a) Recovered image

Figure: Cygnus A

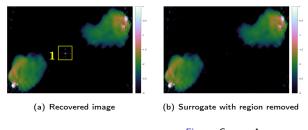
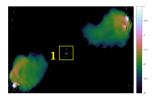
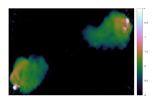


Figure: Cygnus A

Hypothesis testing Numerical experiments



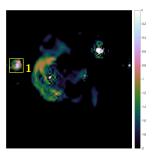
(a) Recovered image



(b) Surrogate with region removed

Figure: Cygnus A

- 1. Cannot reject null hypothesis
- ⇒ cannot make strong statistical statement about origin of structure



(a) Recovered image

Figure: Supernova remnant W28

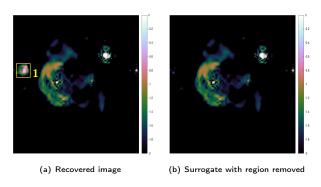


Figure: Supernova remnant W28

Hypothesis testing Numerical experiments

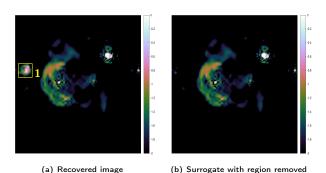
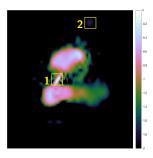


Figure: Supernova remnant W28

- 1. Reject null hypothesis
- \Rightarrow structure physical



(a) Recovered image

Figure: 3C288

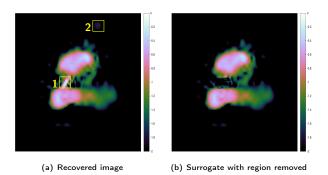
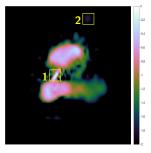
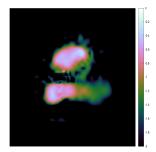


Figure: 3C288

Hypothesis testing Numerical experiments



(a) Recovered image



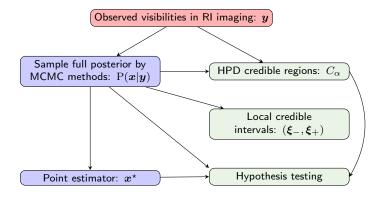
(b) Surrogate with region removed

- 1. Reject null hypothesis
 - ⇒ structure physical
 - 2. Cannot reject null hypothesis
- ⇒ cannot make strong statistical statement about origin of structure

Figure: 3C288

- MAP estimation and uncertainty quantification

Proximal MCMC sampling and uncertainty quantification



Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

- Analytic approximation of γ_{α} :

$$\tilde{\gamma}_{\alpha} = g(\boldsymbol{x}^{\star}) + N(\tau_{\alpha} + 1)$$

Approximate Bayesian credible regions for MAP estimation

- Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
- Recall C_{α} denotes the highest posterior density (HPD) Bayesian credible region with confidence level $(1-\alpha)\%$ defined by posterior iso-contour: $C_{\alpha} = \{x: g(x) \leq \gamma_{\alpha}\}.$
- Analytic approximation of γ_{α} :

$$\tilde{\gamma}_{\alpha} = g(\boldsymbol{x}^{\star}) + N(\tau_{\alpha} + 1)$$

where $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)/N}$ and $\alpha \in (4 \exp(-N/3), 1)$ (Pereyra 2016b).

- Define approximate HPD regions by $\tilde{C}_{\alpha} = \{x : g(x) \leq \tilde{\gamma}_{\alpha}\}.$
- $oldsymbol{x}^*$ by sparse regularisation, then estimate local Bayesian credible intervals and perform hypothesis testing using approximate HPD regions.

Approximate Bayesian credible regions for MAP estimation

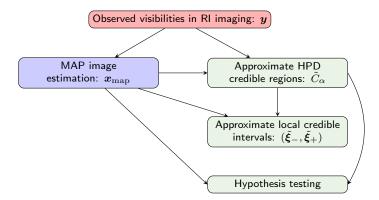
- Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
- Recall C_{α} denotes the highest posterior density (HPD) Bayesian credible region with confidence level $(1-\alpha)\%$ defined by posterior iso-contour: $C_{\alpha} = \{x: g(x) \leq \gamma_{\alpha}\}.$
- Analytic approximation of γ_{α} :

$$\tilde{\gamma}_{\alpha} = g(\boldsymbol{x}^{\star}) + N(\tau_{\alpha} + 1)$$

where $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)/N}$ and $\alpha \in (4 \exp(-N/3), 1)$ (Pereyra 2016b).

- Define approximate HPD regions by $\tilde{C}_{\alpha} = \{x : g(x) \leq \tilde{\gamma}_{\alpha}\}.$
- $oldsymbol{x}$ Compute $oldsymbol{x}^*$ by sparse regularisation, then estimate local Bayesian credible intervals and perform hypothesis testing using approximate HPD regions.

MAP estimation and uncertainty quantification



Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction

(Cai, Pereyra & McEwen 2017b)

Let Ω define the area (or pixel) over which to compute the credible interval $(\tilde{\xi}_-, \tilde{\xi}_+)$ and ζ be an index vector describing Ω (i.e. $\zeta_i=1$ if $i\in\Omega$ and 0 otherwise).

Given $ilde{\gamma}_{lpha}$ and $oldsymbol{x}^{\star}$, compute the credible interval by

$$\begin{split} \tilde{\xi}_{-} &= \min_{\xi} \left\{ \xi \mid g_{\boldsymbol{y}}(\boldsymbol{x}') \leq \tilde{\gamma}_{\alpha}, \ \forall \xi \in [-\infty, +\infty) \right\}, \\ \tilde{\xi}_{+} &= \max_{\xi} \left\{ \xi \mid g_{\boldsymbol{y}}(\boldsymbol{x}') \leq \tilde{\gamma}_{\alpha}, \ \forall \xi \in [-\infty, +\infty) \right\}, \end{split}$$

where

$$x' = x^*(\mathcal{I} - \zeta) + \xi \zeta$$
.

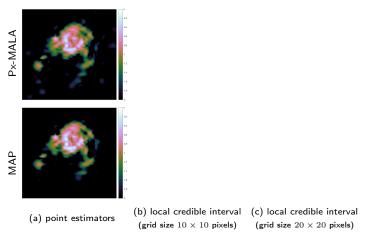


Figure: Length of local credible intervals for M31 for the analysis model.

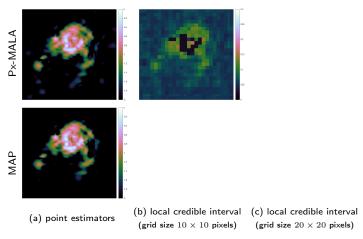


Figure: Length of local credible intervals for M31 for the analysis model.

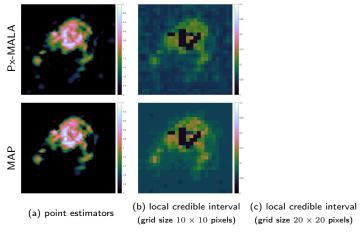


Figure: Length of local credible intervals for M31 for the analysis model.

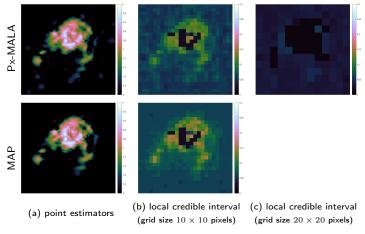


Figure: Length of local credible intervals for M31 for the analysis model.

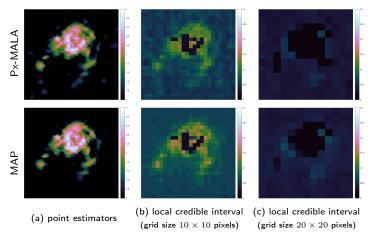
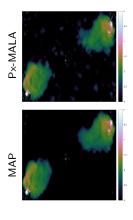


Figure: Length of local credible intervals for M31 for the analysis model.



- (a) point estimators
- (b) local credible interval (c) local credible interval (grid size 10×10 pixels)
 - (grid size 20×20 pixels)

Figure: Length of local credible intervals for Cygnus A for the analysis model.

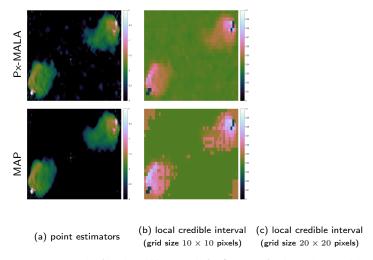


Figure: Length of local credible intervals for Cygnus A for the analysis model.

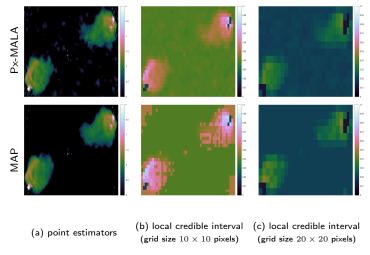
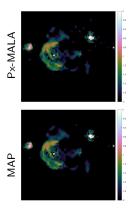


Figure: Length of local credible intervals for Cygnus A for the analysis model.



- (a) point estimators
- (b) local credible interval (c) local credible interval (grid size 10×10 pixels)
 - (grid size 20×20 pixels)

Figure: Length of local credible intervals for W28 for the analysis model.

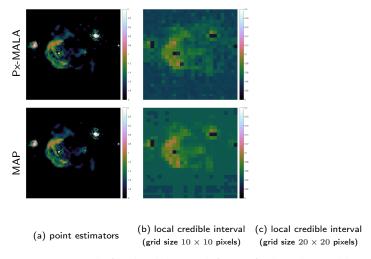


Figure: Length of local credible intervals for W28 for the analysis model.

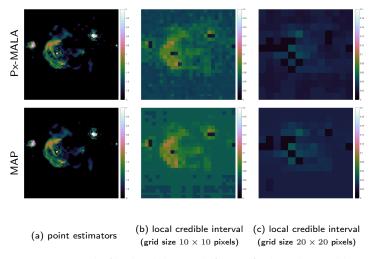
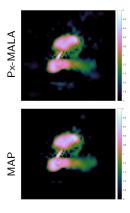


Figure: Length of local credible intervals for W28 for the analysis model.



- (a) point estimators
- (b) local credible interval (c) local credible interval (grid size 10×10 pixels)
 - (grid size 20×20 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.

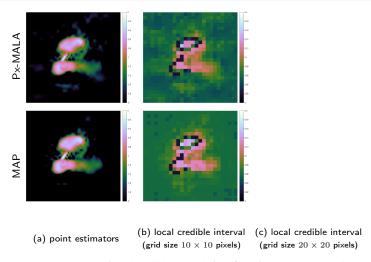


Figure: Length of local credible intervals for 3C288 for the analysis model.

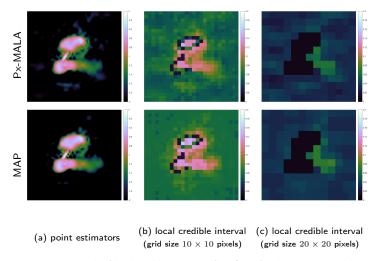


Figure: Length of local credible intervals for 3C288 for the analysis model.

Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

Image	Method	CPU time (min) Analysis Synthesis	
M31	Px-MALA	1307	944
	MYULA	618	581
	MAP	.03	.02
Cygnus A	Px-MALA	2274	1762
	MYULA	1056	942
	MAP	.07	.04
W28	Px-MALA	1122	879
	MYULA	646	598
	MAP	.06	.04
3C288	Px-MALA	1144	881
	MYULA	607	538
	MAP	.03	.02

Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Image	Test	Ground	Method	Hypothesis
	area	truth		test
M31	1	1	Px-MALA	/
			MYULA	✓
			MAP	✓
Cygnus A	1	✓	Px-MALA	Х
			MYULA*	X
			MAP	×
W28	1	✓	Px-MALA	√
			MYULA	✓
			MAP	✓
3C288 –	1	1	Px-MALA	√
			MYULA	✓
			MAP	✓
	2	X	Px-MALA	Х
			MYULA	×
			MAP	X

(* Can correctly detect physical structure if use median point estimator.)

- Sparsity-promoting priors shown to be highly effective and scalable to big-data.
 - PURIFY code provides robust framework for imaging interferometric observations (http://basp-group.github.io/purify/).
 - SOPT code for distributed sparse regularisation (http://basp-group.github.io/sopt/).
- Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:
 - Recover Bayesian credible intervals.
 - Perform hypothesis testing to test whether structure physical
- MAP estimation (sparse regularisation) with approximate uncertainty quantification:
 - Recover Bayesian credible intervals.
 - Perform hypothesis testing to test whether structure physical.

Scalable to big-data (computational time saving $\sim 10^5)$

- Sparsity-promoting priors shown to be highly effective and scalable to big-data.
 - PURIFY code provides robust framework for imaging interferometric observations (http://basp-group.github.io/purify/).
 - SOPT code for distributed sparse regularisation (http://basp-group.github.io/sopt/).
- Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:
 - Recover Bayesian credible intervals.
 - Perform hypothesis testing to test whether structure physical.
- MAP estimation (sparse regularisation) with approximate uncertainty quantification:
 - Recover Bayesian credible intervals.
 - Perform hypothesis testing to test whether structure physical

Scalable to big-data (computational time saving $\sim 10^5)$

- Sparsity-promoting priors shown to be highly effective and scalable to big-data.
 - PURIFY code provides robust framework for imaging interferometric observations (http://basp-group.github.io/purify/).
 - SOPT code for distributed sparse regularisation (http://basp-group.github.io/sopt/).
- Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:
 - Recover Bayesian credible intervals.
 - Perform hypothesis testing to test whether structure physical.
- MAP estimation (sparse regularisation) with approximate uncertainty quantification:
 - Recover Bayesian credible intervals.
 - Perform hypothesis testing to test whether structure physical.

Scalable to big-data (computational time saving $\sim 10^5)\,$

- Sparsity-promoting priors shown to be highly effective and scalable to big-data.
 - PURIFY code provides robust framework for imaging interferometric observations (http://basp-group.github.io/purify/).
 - SOPT code for distributed sparse regularisation (http://basp-group.github.io/sopt/).
- Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:
 - Recover Bayesian credible intervals.
 - Perform hypothesis testing to test whether structure physical.
- MAP estimation (sparse regularisation) with approximate uncertainty quantification:
 - Recover Bayesian credible intervals.
 - Perform hypothesis testing to test whether structure physical.

Scalable to big-data (computational time saving $\sim 10^5$)

Extra Slides

Analysis vs synthesis

Bayesian interpretations

Distribution and parallelisation

PURIFY reconstructions

Extra Slides

Analysis vs synthesis

Analysis vs synthesis

- Typically sparsity assumption is justified by analysing example signals in terms of atoms of the dictionary.
- Different to synthesising signals from atoms.
- Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

$$egin{aligned} oldsymbol{x}^\star = rg \min_{oldsymbol{x}} \| oldsymbol{\Omega} oldsymbol{x} \|_1 \ & ext{ subject to } \| oldsymbol{y} - \Phi oldsymbol{x} \|_2 \leq \epsilon \ . \end{aligned}$$
 analysis

Contrast with synthesis-based approach:

$$egin{aligned} x^\star = \Psi & ext{arg min } \|lpha\|_1 ext{ subject to } \|oldsymbol{y} - \Phi\Psilpha\|_2 \leq \epsilon \ . \end{aligned}$$
 synthesis

 \bullet For orthogonal bases $\Omega=\Psi^\dagger$ and the two approaches are identical.

Analysis vs synthesis Comparison

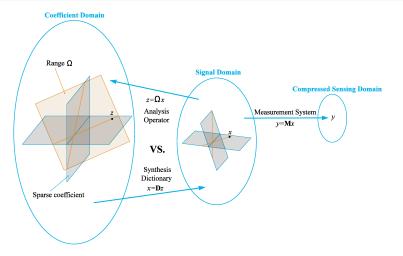


Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].

Analysis vs synthesis

Comparison

- Synthesis-based approach is more general, while analysis-based approach more restrictive.
- More restrictive analysis-based approach may make it more robust to noise.
- The greater descriptive power of the synthesis-based approach may provide better signal representations (too descriptive?).

Extra Slides

Bayesian interpretations

Bayesian interpretations

One Bayesian interpretation of the synthesis-based approach

Consider the inverse problem:

$$y = \Phi \Psi \alpha + n$$
.

Assume Gaussian noise, yielding the likelihood:

$$P(\boldsymbol{y} \mid \boldsymbol{\alpha}) \propto \exp\left(\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha}\|_2^2/(2\sigma^2)\right).$$

Consider the Laplacian prior:

$$P(\boldsymbol{\alpha}) \propto \exp(-\beta \|\boldsymbol{\alpha}\|_1)$$
.

• The maximum *a-posteriori* (MAP) estimate (with $\lambda = 2\beta\sigma^2$) is

$$\left| \begin{array}{l} \boldsymbol{x}_{\mathsf{MAP-synthesis}}^{\star} = \boldsymbol{\Psi} \, \cdot \, \arg\max_{\boldsymbol{\alpha}} \mathrm{P}(\boldsymbol{\alpha} \,|\, \boldsymbol{y}) = \boldsymbol{\Psi} \, \cdot \, \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1} \, . \end{array} \right|$$

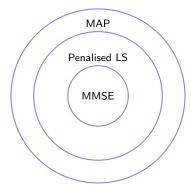
synthesis

- One possible Bayesian interpretation!
- Signal may be ℓ_0 -sparse, then solving ℓ_1 problem finds the correct ℓ_0 -sparse solution!

Bayesian interpretations

Other Bayesian interpretations of the synthesis-based approach

- Other Bayesian interpretations are also possible (Gribonval 2011).
- Minimum mean square error (MMSE) estimators
 - synthesis-based estimators with appropriate penalty function, i.e. penalised least-squares (LS)
 - MAP estimators



Bayesian interpretations

One Bayesian interpretation of the analysis-based approach

Analysis-based MAP estimate is

$$\boxed{ x_{\mathsf{MAP-analysis}}^{\star} = \boldsymbol{\Omega}^{\dagger} \, \cdot \, \mathop{\mathsf{arg \; min}}_{\boldsymbol{\gamma} \in \mathsf{column \; space} \; \boldsymbol{\Omega}} \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Omega}^{\dagger} \boldsymbol{\gamma} \|_{2}^{2} + \lambda \| \boldsymbol{\gamma} \|_{1} \; .}$$

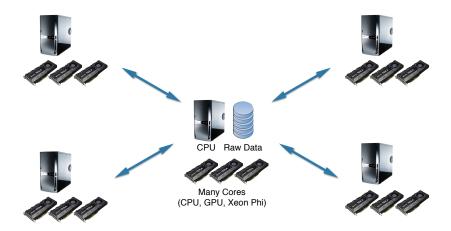
analysis

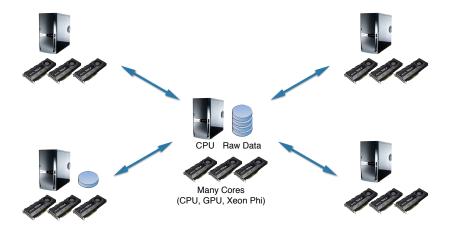
- ullet Different to synthesis-based approach if analysis operator Ω is not an orthogonal basis.
- Analysis-based approach more restrictive than synthesis-based.
- Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework for wavelet MEM (maximum entropy method).

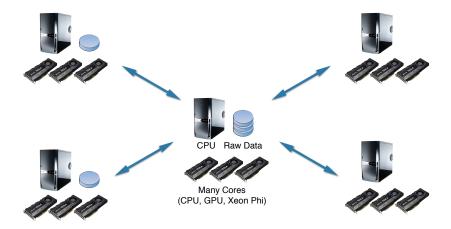
Extra Slides

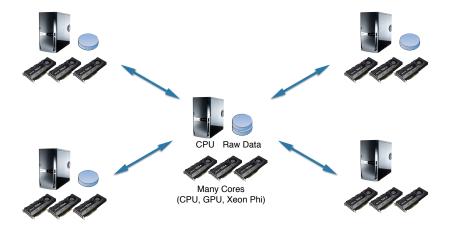
Distribution and parallelisation

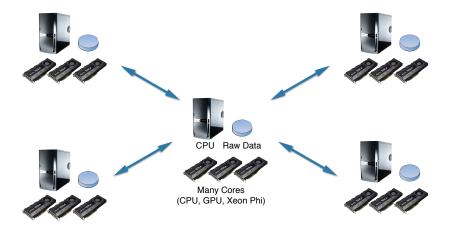
Standard algorithms

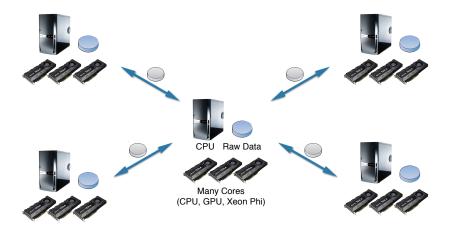


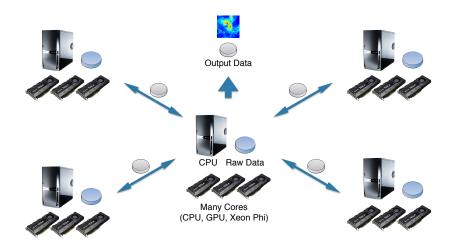












Extra Slides

PURIFY reconstructions

PURIFY reconstruction VLA observation of 3C129

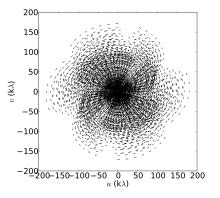


Figure: VLA visibility coverage for 3C129

PURIFY reconstruction VLA observation of 3C129

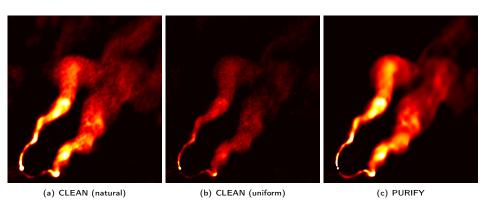
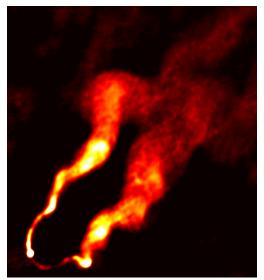


Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)

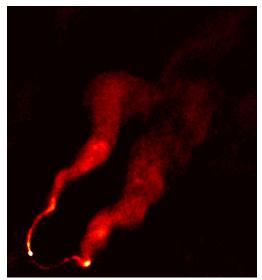
PURIFY reconstruction

VLA observation of 3C129 imaged by CLEAN (natural)

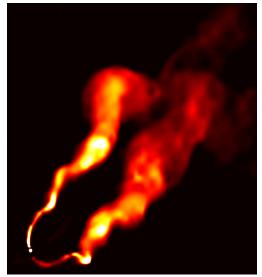


PURIFY reconstruction

VLA observation of 3C129 images by CLEAN (uniform)



PURIFY reconstruction VLA observation of 3C129 images by PURIFY



PURIFY reconstruction VLA observation of 3C129

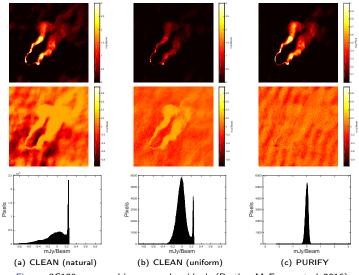


Figure: 3C129 recovered images and residuals (Pratley, McEwen, et al. 2016)

PURIFY reconstruction VLA observation of Cygnus A

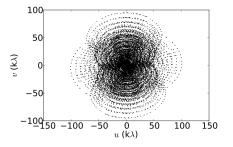


Figure: VLA visibility coverage for Cygnus A

PURIFY reconstruction VLA observation of Cygnus A

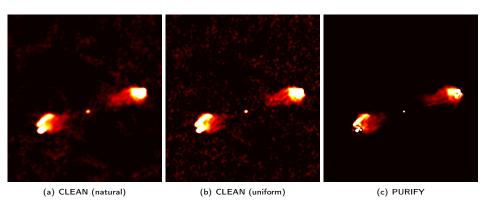
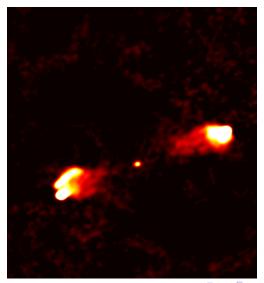


Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)

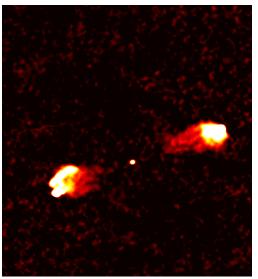
PURIFY reconstruction

VLA observation of Cygnus A imaged by CLEAN (natural)



PURIFY reconstruction

VLA observation of Cygnus A images by CLEAN (uniform)



PURIFY reconstruction VLA observation of Cygnus A images by PURIFY

PURIFY reconstruction VLA observation of Cygnus A

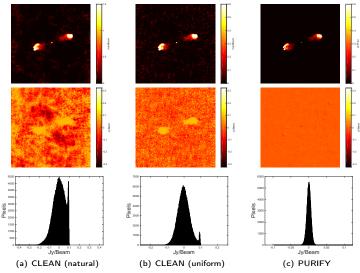


Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)

PURIFY reconstruction ATCA observation of PKS J0334-39

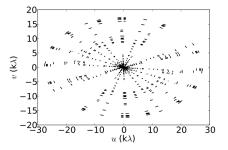


Figure: VLA visibility coverage for PKS J0334-39

PURIFY reconstruction ATCA observation of PKS J0334-39

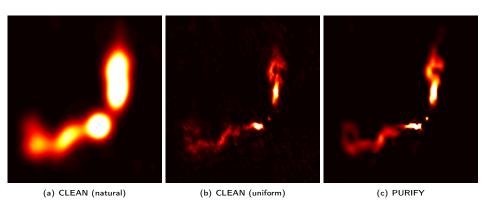
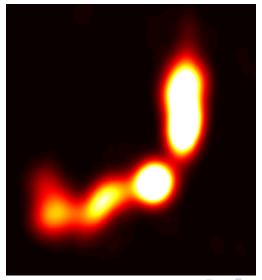
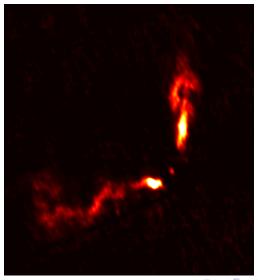


Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)

VLA observation of PKS J0334-39 imaged by CLEAN (natural)



VLA observation of PKS J0334-39 images by CLEAN (uniform)



PURIFY reconstruction VLA observation of PKS J0334-39 images by PURIFY



PURIFY reconstruction ATCA observation of PKS J0334-39

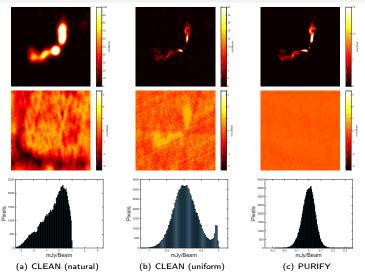


Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)

PURIFY reconstruction ATCA observation of PKS J0116-473

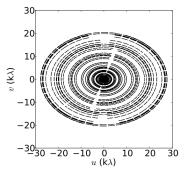


Figure: ATCA visibility coverage for Cygnus A

PURIFY reconstruction ATCA observation of PKS J0116-473

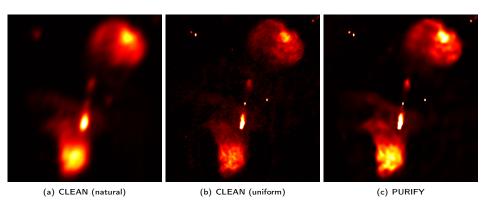
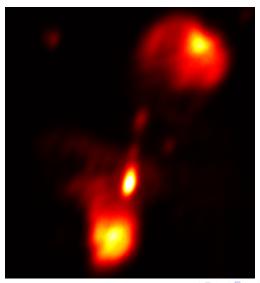
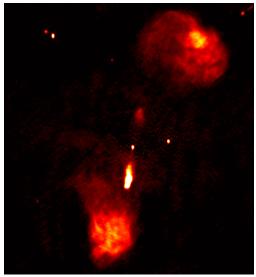


Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)

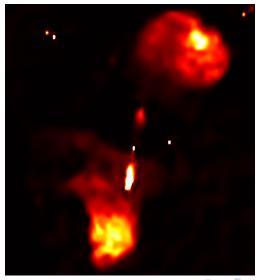
VLA observation of PKS J0116-473 imaged by CLEAN (natural)



PURIFY reconstruction VLA observation of PKS J0116-473 images by CLEAN (uniform)



PURIFY reconstruction VLA observation of PKS J0116-473 images by PURIFY



ATCA observation of PKS J0116-473

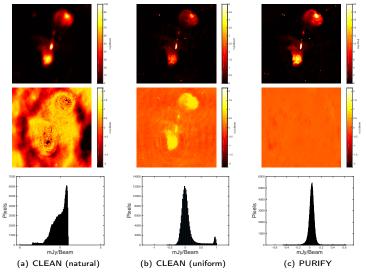


Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)

 ${\color{red}{\sf Table:}}\ {\color{blue}{\sf Root-mean-square}}\ {\color{blue}{\sf of}}\ {\color{blue}{\sf residuals}}\ {\color{blue}{\sf of}}\ {\color{blue}{\sf each}}\ {\color{blue}{\sf reconstruction}}\ ({\color{blue}{\sf units}}\ {\color{blue}{\sf in}}\ {\color{blue}{\sf mJy/Beam}})$

Observation	PURIFY	CLEAN	CLEAN
		(natural)	(uniform)
3C129	0.10	0.23	0.11
Cygnus A	6.1	59	36
PKS J0334-39	0.052	1.00	0.37
PKS J0116-473	0.054	0.88	0.24