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Radio interferometric telescopes
Very Large Array (VLA) in New Mexico
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Next-generation of radio interferometry rapidly approaching

Next-generation of radio interferometric telescopes will provide orders of magnitude
improvement in sensitivity.

Unlock broad range of science goals.

(a) Dark energy (b) General relativity (c) Cosmic magnetism

(d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Square Kilometre Array (SKA)
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The SKA poses a considerable big-data challenge
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Outline

1 Radio interferometric imaging

2 Proximal MCMC sampling and uncertainty quantification

3 MAP estimation and uncertainty quantification
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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx+ n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator, e.g. Φ = GFA , may incorporate:

primary beam A of the telescope;

Fourier transform F;

convolutional de-gridding G to interpolate to continuous uv-coordinates;

direction-dependent effects (DDEs). . .

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Sparse regularisation
Synthesis and analysis frameworks

Sparse synthesis regularisation problem:

xsynthesis = Ψ× arg min
α

[∥∥y −ΦΨα
∥∥2

2
+ λ

∥∥α∥∥
1

]
Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: x = Ψα .

Typically sparsity assumption justified by analysing example signals in transformed domain.

Different to synthesising signals.

Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

xanalysis = arg min
x

[∥∥y −Φx
∥∥2

2
+ λ

∥∥Ψ†x
∥∥

1

]
Analysis framework

(For orthogonal bases the two approaches are identical but otherwise very different.)
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Sparse regularisation
SARA algorithm

Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

Overcomplete dictionary composed of a concatenation of orthonormal bases:

Ψ =
[
Ψ1,Ψ2, . . . ,Ψq

]
with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight ⇒ concatenation of 9 bases.

Promote average sparsity by solving the constrained reweighted `1 analysis problem:

min
x∈RN

‖WΨ†x‖1 subject to ‖y −Φx‖2 ≤ ε and x ≥ 0

SA
R
A
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Distributed and parallelised convex optimisation

Solve resulting convex optimisation problems by proximal splitting.

Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet, & Wiaux 2016)

y =

 y1

...
ynd

 , Φ =

 Φ1

...
Φnd

 =

 G1M1

...
GndMnd

FZ .
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Distributed and parallelised convex optimisationScalable splitting algorithms for SKA 7

Algorithm 1 Dual forward-backward ADMM.
1: given x(0), r(0)

j , s
(0)
j , q

(0)
j , Ÿ, fl, Í

2: repeat for t = 1, . . .
3: b̃

(t) = FZx(t≠1)

4: ’j œ {1, . . . , nd} set
5: b

(t)
j = Mj b̃

(t)

6: end
7: ’j œ {1, . . . , nd} distribute b

(t)
j and do in parallel

8: r
(t)
j = PBj

1
Gjb

(t)
j + s

(t≠1)
j

2

9: s
(t)
j = s

(t≠1)
j + Í

!
Gjb

(t)
j ≠ r

(t)
j

"

10: q
(t)
j = G†j
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Gjb

(t)
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(t)
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(t)
j

2

11: end and gather q
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j

12: x̃(t) = x(t≠1) ≠ flZ†F†
ndÿ

j=1

M†
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(t)
j

13: x(t) = DualFB
!
x̃(t), Ÿ

"
14: until convergence

15: function DualFB
!
z, Ÿ

"

16: given d
(0)
i , ÷

17: z̄(0) = PC
!
z
"

18: repeat for k = 1, . . .
19: ’i œ {1, . . . , nb} do in parallel
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22: end
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24: until convergence
25: return z̄(k)

the proximity operator of the conjugates lúi with that of
the functions li, with I denoting the identity operator. The
computations involving each basis �†

i are to be performed in
parallel, locally. Distributed processing is problematic here
due to the large size of the image z̄(k) that would need to
be transmitted.

4.3 Primal-dual algorithms with randomisation

The main advantage that makes the PD algorithms attrac-
tive for solving inverse problems is their flexibility and scal-
ability. They are able to deal with both di�erentiable and
non-di�erentiable functions and are applicable to a broad
range of minimisation tasks. The inherent parallelisation on
the level of splitting the functions gives a direct approach for
solving (16). Another important aspect is given by the use of
randomisation, allowing the update for a given component
function to be performed less often and thus lowering the
computational cost per iteration. Block coordinate compu-
tations are also supported but are not explicitly used herein.

We define the minimisation task to be solved using PD
methods, similarly to (16), as

min
x
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nbÿ

i=1
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ix) +

ndÿ

j=1

hj(�jx), (27)

where “ is an additional tuning parameter. Note that the
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Figure 1. The diagram of the structure of ADMM, detailed in
Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
algorithm can be seen as composed of interlaced clean-like proxi-
mal splitting and FB updates running in parallel in multiple data,
prior, and image spaces.
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Standard algorithms
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Highly distributed and parallelised algorithms
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Public open-source codes

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d’Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux, Kartik, d’Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

Jason McEwen High-dimensional uncertainty quantification (Extra)
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Imaging observations from the VLA and ATCA with PURIFY

(a) NRAO Very Large Array (VLA)

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered

Jason McEwen High-dimensional uncertainty quantification (Extra)



RI Imaging Proximal MCMC MAP Estimation Sparse regularisation Algorithms Results

PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Outline

1 Radio interferometric imaging

2 Proximal MCMC sampling and uncertainty quantification

3 MAP estimation and uncertainty quantification
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MCMC sampling and uncertainty quantification

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: p(x|y)

HPD credible regions: Cα

Point estimator: x∗

Pixel-wise credible
intervals: (ξ−, ξ+)

Hypothesis testing
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MCMC sampling the full posterior distribution

Sample full posterior distribution P(x |y).

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity priors, which shown to be highly effective.
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MCMC sampling with gradients
Langevin dynamics

Consider posteriors of the following form:

P(x |y) = π(x)

Posterior

∝ exp
(
− g(x)

Smooth

)

If g(x) differentiable can adopt MALA (Langevin dynamics).

Based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so cannot support sparse priors.
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Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = arg min
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = arg min
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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Proximal MCMC methods

Exploit proximal calculus.

“Replace gradients with sub-gradients”.

Figure: Illustration of sub-gradients [Credit: Wikipedia (Maksim)]
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Proximal MALA
Moreau approximation

Moreau approximation of f(x) ∝ exp(−g(x)):

fMA
λ (x) = sup

u∈RN
f(u) exp

(
−
‖u− x‖2

2λ

)

Important properties of fMA
λ (x):

1 As λ→ 0, fMA
λ (x)→ f(x)

2 ∇ log fMA
λ (x) = (proxλg (x)− x)/λ

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
− g(x)

C
on

ve
x )

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau approximation to π:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw

(m)
.

Metropolis-Hastings accept-reject step.
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Proximal MALA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ḡ (x) = argmin

u∈RN

{
µ‖Ψ†u‖1 +

‖y −Φu‖22
2σ2

+
‖u− x‖22

δ

}
.

Taylor expansion at point x: ‖y −Φu‖22 ≈ ‖y −Φx‖22 + 2(u− x)>Φ†(Φx− y).

Then proximity operator approximated by

prox
δ/2
ḡ (x) ≈ prox

δ/2

f̄1

(
x− δΦ†(Φx− y)/2σ2

)
.

Single forward-backward iteration
Analytic approximation:

prox
δ/2
ḡ (x) ≈ v̄ + Ψ

(
softµδ/2(Ψ†v̄)−Ψ†v̄)

)
, where v̄ = x− δΦ†(Φx− y)/2σ2.
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Proximal MALA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ĝ (a) = argmin

u∈RL

{
µ‖u‖1 +

‖y −ΦΨu‖22
2σ2

+
‖u− a‖22

δ

}
.

Taylor expansion at point a: ‖y −ΦΨu‖22 ≈ ‖y −ΦΨa‖22 + 2(u− a)>Ψ†Φ†(ΦΨa− y).

Then proximity operator approximated by

prox
δ/2
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δ/2

f̂1

(
a− δΨ†Φ†(ΦΨa− y)/2σ2

)
.

Single forward-backward iteration
Analytic approximation:

prox
δ/2
ĝ (a) ≈ softµδ/2

(
a− δΨ†Φ†(ΦΨa− y)/2σ2

)
.
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ĝ (a) ≈ softµδ/2

(
a− δΨ†Φ†(ΦΨa− y)/2σ2

)
.

Jason McEwen High-dimensional uncertainty quantification (Extra)



RI Imaging Proximal MCMC MAP Estimation P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.
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Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
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MYULA
Moreau-Yosida approximation

Moreau-Yosida approximation (Moreau envelope) of f :

fMY
λ (x) = inf

u∈RN
f(u) +

‖u− x‖2

2λ

Important properties of fMY
λ (x):

1 As λ→ 0, fMY
λ (x)→ f(x)

2 ∇fMY
λ (x) = (x− proxλf (x))/λ

Figure: Illustration of Moreau-Yosida envelope of |x| for varying λ [Credit: Stack exchange (ubpdqn)]
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MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
−g(x)

)
, where

g(x) = f1(x)

C
on

ve
x

+ f2(x)

Sm
oo

th

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau-Yosida approximation to f1:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log π(x) ≈
(
proxλf1

(x)− x
)
/λ−∇f2(x)

+
√
δw

(m)
.

No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
arbitrarily small. To achieve precision target ε requires:

Worst case: order N5 log2(ε−1)ε−2 iterations.
Strong convexity worst case: order N log(N) log2(ε−1)ε−2 iterations.

Jason McEwen High-dimensional uncertainty quantification (Extra)



RI Imaging Proximal MCMC MAP Estimation P-MALA MYULA Experiments Hypothesis testing

MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
−g(x)

)
, where

g(x) = f1(x)

C
on

ve
x

+ f2(x)

Sm
oo

th

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau-Yosida approximation to f1:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log π(x) ≈
(
proxλf1

(x)− x
)
/λ−∇f2(x)

+
√
δw

(m)
.

No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
arbitrarily small. To achieve precision target ε requires:

Worst case: order N5 log2(ε−1)ε−2 iterations.
Strong convexity worst case: order N log(N) log2(ε−1)ε−2 iterations.

Jason McEwen High-dimensional uncertainty quantification (Extra)



RI Imaging Proximal MCMC MAP Estimation P-MALA MYULA Experiments Hypothesis testing

MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
−g(x)

)
, where

g(x) = f1(x)

C
on

ve
x

+ f2(x)

Sm
oo

th

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau-Yosida approximation to f1:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log π(x) ≈
(
proxλf1

(x)− x
)
/λ−∇f2(x)

+
√
δw

(m)
.

No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
arbitrarily small. To achieve precision target ε requires:

Worst case: order N5 log2(ε−1)ε−2 iterations.
Strong convexity worst case: order N log(N) log2(ε−1)ε−2 iterations.
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MYULA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̄1
(x) = x+ Ψ

(
softµδ/2(Ψ†x)−Ψ†x)

)
.
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MYULA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̂1
(a) = softµδ/2(a) .
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Numerical experiments
MYULA with analysis model

(a) Ground truth

(b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: HII region of M31
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: W28 Supernova remnant

Jason McEwen High-dimensional uncertainty quantification (Extra)



RI Imaging Proximal MCMC MAP Estimation P-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: 3C288
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Numerical experiments
Computation time

Table: CPU time in minutes for Proximal MCMC sampling

Image Method CPU time (min)
Analysis Synthesis

Cygnus A P-MALA 2274 1762
MYULA 1056 942

M31 P-MALA 1307 944
MYULA 618 581

W28 P-MALA 1122 879
MYULA 646 598

3C288 P-MALA 1144 881
MYULA 607 538
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Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:

If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

Figure: HII region of M31
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Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Cannot reject null
hypothesis

⇒ cannot make strong
statistical statement about

origin of structure

Figure: Cygnus A
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Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

Figure: Supernova remnant W28
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Outline

1 Radio interferometric imaging

2 Proximal MCMC sampling and uncertainty quantification

3 MAP estimation and uncertainty quantification
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Proximal MCMC sampling and uncertainty quantification

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: p(x|y)

HPD credible regions: Cα

Point estimator: x∗

Pixel-wise credible
intervals: (ξ−, ξ+)

Hypothesis testing

Jason McEwen High-dimensional uncertainty quantification (Extra)



RI Imaging Proximal MCMC MAP Estimation Local credible intervals Experiments Hypothesis testing

MAP estimation and uncertainty quantification

Observed visibilities in RI imaging: y

MAP image
estimation: xmap

Approximate HPD
credible regions: C̃α

Approximate local credible
intervals: (ξ̃−, ξ̃+)

Hypothesis testing
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Approximate Bayesian credible regions for MAP estimation

Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

Recall Cα denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Analytic approximation of γα:

γ̃α = g(x?) +N(τα + 1)

where τα =
√

16 log(3/α)/N and α ∈ (4exp(−N/3), 1) (Pereyra 2016b).

Define approximate HPD regions by C̃α = {x : g(x) ≤ γ̃α}.

Compute x? by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b)

Let Ω define the area (or pixel) over which to compute the credible interval (ξ̃−, ξ̃+) and ζ be an index
vector describing Ω (i.e. ζi = 1 if i ∈ Ω and 0 otherwise).

Consider the test image with the Ω region replaced by constant value ξ:

x
′

= x
?
(I − ζ) + ξζ .

Given γ̃α and x?, compute the credible interval by

ξ̃− = min
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

ξ̃+ = max
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
.
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Numerical experiments
P
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A
LA

M
A
P

(a) point estimators
(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10× 10 pixels) (grid size 20× 20 pixels) (grid size 30× 30 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Figure: Length of local credible intervals for W28 for the analysis model.
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Figure: Length of local credible intervals for 3C288 for the analysis model.
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Figure: Length of local credible intervals for 3C288 for the analysis model.
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Figure: Length of local credible intervals for 3C288 for the analysis model.
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Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

Image Method CPU time
Analysis Synthesis

Cygnus A
P-MALA 2274 1762
MYULA 1056 942
MAP .07 .04

M31
P-MALA 1307 944
MYULA 618 581
MAP .03 .02

W28
P-MALA 1122 879
MYULA 646 598
MAP .06 .04

3C288
P-MALA 1144 881
MYULA 607 538
MAP .03 .02
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Hypothesis testing
Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Image Test Ground Method Hypothesis
area truth test

M31 1 3
P-MALA 3
MYULA 3
MAP 3

Cygnus A 1 3
P-MALA 7
MYULA∗ 7
MAP 7

W28 1 3
P-MALA 3
MYULA 3
MAP 3

3C288

1 3
P-MALA 3
MYULA 3
MAP 3

2 7
P-MALA 7
MYULA 7
MAP 7

(∗ Can correctly detect physical structure if use median point estimator.)
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Conclusions

1 Sparse priors shown to be highly effective and scalable to big-data.
PURIFY code provides robust framework for imaging interferometric observations
(http://basp-group.github.io/purify/).

SOPT code for distributed sparse regularisation (http://basp-group.github.io/sopt/).

2 Proximal MCMC sampling can support sparse priors in full Bayesian framework:
Recover Bayesian credible intervals.

Perform hypothesis testing to test whether structure physical.

3 MAP estimation (sparse regularisation) with approximate uncertainty quantification:
Recover Bayesian credible intervals.

Perform hypothesis testing to test whether structure physical.

Scalable to big-data (computational time saving ∼ 105)

Supported by:
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

Different to synthesising signals from atoms.

Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x? = arg min
x

‖Ωx‖1 subject to ‖y − Φx‖2 ≤ ε .

analysis

Contrast with synthesis-based approach:

x? = Ψ · arg min
α

‖α‖1 subject to ‖y − ΦΨα‖2 ≤ ε .

synthesis

For orthogonal bases Ω = Ψ† and the two approaches are identical.
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Analysis vs synthesis
Comparison

Figure 4: A schematic overview of analysis cosparse vs synthesis sparse models in relation
with compressed sensing.

a projection (through the dictionary D) of a high-dimensional vector z living
in the union of sparse coefficient subspaces; in the analysis model, the signal
lives in the pre-image by the analysis operator Ω of the intersection between
the range of Ω and this union of subspaces. For a given sparsity of z, this is
usually a set of much smaller dimensionality.

4. Pursuit algorithms

Having a theoretical foundation for the uniqueness of the problem

x̂ = arg min
x

‖Ωx‖0 subject to Mx = y, (15)

we now turn to the question of how to solve it: algorithms. We present two
algorithms, both targeting the solution of problem (15). As in the uniqueness
discussion, we assume that M ∈ Rm×d, where m < d. This implies that the
equation Mx = y has infinitely many possible solutions, and the term ‖Ωx‖0

introduces the analysis model to regularize the problem.

4.1. The Cosparse Signal Recovery Problem is NP-complete

Related to (15), we can consider a cosparse signal recovery problem COSPARSE

consisting of a quintuplet (y,M,Ω, !, ε) in which we seek to find a vector x∗

that satisfies
‖y − Mx∗‖2 ≤ ε, ‖Ωx∗‖0 ≤ p − ! (16)

where p is the number of rows of Ω as before. It is easy to see that the decision
problem “given (y,M,Ω, !, ε), does there exist x∗ satisfying (16)?” is NP [25]:
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Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Analysis vs synthesis
Comparison

Synthesis-based approach is more general, while analysis-based approach more restrictive.

More restrictive analysis-based approach may make it more robust to noise.

The greater descriptive power of the synthesis-based approach may provide better signal
representations (too descriptive?).
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

Consider the inverse problem:
y = ΦΨα+ n .

Assume Gaussian noise, yielding the likelihood:

P(y |α) ∝ exp
(
‖y −ΦΨα‖22/(2σ2)

)
.

Consider the Laplacian prior:

P(α) ∝ exp
(
−β‖α‖1

)
.

The maximum a-posteriori (MAP) estimate (with λ = 2βσ2) is

x?MAP-synthesis = Ψ · arg max
α

P(α |y) = Ψ · arg min
α

‖y − ΦΨα‖22 + λ‖α‖1 .

synthesis

One possible Bayesian interpretation!

Signal may be `0-sparse, then solving `1 problem finds the correct `0-sparse solution!
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

Other Bayesian interpretations are also possible (Gribonval 2011).

Minimum mean square error (MMSE) estimators

⊂ synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

⊂ MAP estimators

MMSE

Penalised LS

MAP
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

Analysis-based MAP estimate is

x?MAP-analysis = Ω† · arg min
γ∈column space Ω

‖y − ΦΩ†γ‖22 + λ‖γ‖1 .

analysis

Different to synthesis-based approach if analysis operator Ω is not an orthogonal basis.

Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework
for wavelet MEM (maximum entropy method).
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Standard algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

 

 

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Output Data

Jason McEwen High-dimensional uncertainty quantification (Extra)



RI Imaging Proximal MCMC MAP Estimation

Highly distributed and parallelised algorithms
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PURIFY reconstruction
VLA observation of 3C129

Figure: VLA visibility coverage for 3C129
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of 3C129 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of 3C129 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of 3C129 images by PURIFY
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A

Figure: VLA visibility coverage for Cygnus A
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PURIFY reconstruction
VLA observation of Cygnus A
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Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of Cygnus A images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of Cygnus A images by PURIFY
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PURIFY reconstruction
VLA observation of Cygnus A
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Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

Figure: VLA visibility coverage for PKS J0334-39
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of PKS J0334-39 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of PKS J0334-39 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of PKS J0334-39 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)
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RI Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
ATCA observation of PKS J0116-473

Figure: ATCA visibility coverage for Cygnus A
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RI Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)
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RI Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of PKS J0116-473 imaged by CLEAN (natural)
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Jason McEwen High-dimensional uncertainty quantification (Extra)



RI Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of PKS J0116-473 images by CLEAN (uniform)
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RI Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
VLA observation of PKS J0116-473 images by PURIFY
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RI Imaging Proximal MCMC MAP Estimation

PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)
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RI Imaging Proximal MCMC MAP Estimation

PURIFY reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

Observation PURIFY CLEAN CLEAN
(natural) (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36

PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24

Jason McEwen High-dimensional uncertainty quantification (Extra)
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