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Radio interferometric measurement equation

@ The complex visibility measured by an interferometer is given by
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where the w-modulation C(]|/||,) is given by

‘ i) = ez (1=v1=IIF)

w-modulation

@ Various assumptions are often made regarding the size of the field-of-view (FoV):
o Small-fieldwith| [[[]7w< 1| = | (i) ~1

w12
o Small-field with | [|Z]|* w < 1 = c(||7)2) =~ Il

o Wide-field =

(i) = &2 (1=VI=TI?) ’
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@ Consider the ill-posed inverse problem of radio interferometric imaging:

o).

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and r is instrumental noise.

@ Measurement operator| ® = MF CA | may incorporate:

@ primary beam A of the telescope;
e w-modulation modulation C;
o Fourier transform F;

@ masking M which encodes the incomplete measurements taken by the interferometer.

@ Compressive sensing imaging solves sparse optimisations problems:

BPDN

‘ o* — argmin||a]|, such that |y — ®¥al), < e
(8]

=
vV
=}

‘ ‘min |[WU'E||, subjectto |y — ®¥|, <e and
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Sparsity and coherence

@ What drives the quality of compressive sensing reconstruction?

@ Number of measurements M required to achieve exact reconstruction given by

M > c,uZKlogN ,

where K is the sparsity and N the dimensionality.

@ Coherence between the measurement vectors and atoms of sparsity dictionary given by

1= VA max| (¥, )| ’
L]
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Review

@ Non-coplanar baselines and wide fields — w-modulation — spread spectrum effect
(first considered by Wiaux et al. 2009b).

@ Recall, w-modulation operator C has elements defined by

C(l,m) = eiz’”"(I’ Vi=E—n?) ~ ™Il for et w < 1

giving rise to to a linear chirp.

(a) Real part (b) Imaginary part

'
Figure: Chirp modulation.
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Spread spectrum effect in a nutshell

@ Radio interferometers take (essentially) Fourier measurements.

@ Recall, the coherence is the maximum inner product between
measurement vectors and sparsifying atoms.

@ Thus, coherence is (essentially) the maximum of the Fourier coefficients of
the atoms of the sparsifying dictionary.

© w-modulation spreads the spectrum of the atoms of the sparsifying
dictionary, reducing the maximum Fourier coefficient.

@ Spreading the spectrum reduces coherence, thus improving
reconstruction fidelity.

@ Improved reconstruction fidelity of the spread spectrum effect demonstrated with
simulations by Wiaux et al. (2009b) with constant w (for simplicity).

@ Here we study the spread spectrum effect for varying w, realistic images and
various sparse representations. .




Sparse w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

®=MFCA = &=CFA|.




Sparse w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

®=MFCA = &=CFA|.

@ Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.




Sparse w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

®=MFCA = &=CFA|.

@ Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.

@ Different w for each (u, v), while still exploiting FFT.




Sparse w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

®=MFCA = &=CFA|.

@ Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.

@ Different w for each (u, v), while still exploiting FFT.

@ Many of the elements of C will be close to zero.
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Sparsity of w-modulation kernel in Fourier space
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Figure: Rows of Fourier representation of w-modulation operator C.
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Sparse w-projection
Dynamic sparsification
© We make a sparse matrix approximation of C to speed up its computational application and
reduce memory requirements.
@ Sparsify C by dynamic thresholding.
@ Retain E% of the energy content for each visibility measurement.

@ Support of w-modulation kernel in Fourier space determined dynamically, so don’t require
any prior information about structure.

@ Generic procedure applicable for any direction-dependent effect (DDE).
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Sparsified w-modulation kernels
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Figure: w-modulation kernel.
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Figure: w-modulation kernel.
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Figure: Percentage of non-zero entries as a function of preserved energy proportion. -
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Figure: Relative runtime as a function of preserved energy proportion for 10% (dashed) and 50% (solid)
visibility coverages.
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Figure: Reconstruction quality as a function of preserved energy proportion for 10% (dashed) and 50% (solid
visibility coverages.
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Results
Ground truth for simulations

@ Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w.

@ Consider idealised simulations.

-2 -1.5 -1 -0.5 0

(a) HIl region in M31 (b) 30 Doradus (30Dor)

Figure: Ground truth images in logarithmic scale. .




Results
Reconstructed images

(a) wg = 0 — SNR= 5dB

Figure: Reconstructed images of M31 for 10% coverage.
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Figure: Reconstructed images of M31 for 10% coverage.
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Results
Reconstructed images

(b) wq ~ U(0,1) — SNR= 16dB (¢) wg = 1 — SNR= 19dB

Figure: Reconstructed images of M31 for 10% coverage.
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Reconstructed images

(a) wg = 0 — SNR= 2dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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(a) wg = 0 — SNR= 2dB (¢) wg = 1 — SNR= 150dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Reconstructed images

(a) wg = 0 — SNR= 2dB (b) wq ~ U(0,1) — SNR= 12dB (¢) wg = 1 — SNR= 150dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Figure: Reconstruction fidelity for M31.
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Figure: Reconstruction fidelity for 30Dor.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

@ As expected, for the case where coherence is already optimal, there is little improvement. -



Results
Reconstruction performance
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Visibility coverage proportion Visibility coverage proportion
(a) M31 (b) 30 Dor

Figure: Reconstruction fidelity using SARA.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

@ As expected, for the case where coherence is already optimal, there is little improvement. -
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@ ...or for a given number of baselines, reconstruction quality is improved.
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Conclusions
o If the non-coplanar baseline and wide FoV setting is modeled accurately, then due to the

spread spectrum effect. ..

@ ...the same image reconstruction quality can be achieved with considerably fewer baselines

@ ...or for a given number of baselines, reconstruction quality is improved.

Optimise future telescope configurations to promote large w-components
— enhance the spread spectrum effect
— enhance the fidelity of image reconstruction.
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Conclusions & outlook

Outlook
@ We have just released the PURIFY code to scale to the realistic setting.
@ Includes state-of-the-art convex optimisation algorithms implemented in C.
@ Integration with CASA is in progress and should be complete soon.

@ Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

Encourage you to apply PURIFY to your real observational data.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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Compressive sensing

“Nothing short of revolutionary.”

— National Science Foundation

@ Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho
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@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — compressive sensing.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
‘and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
@ Move compression to the acquisition stage — compressive sensing.

@ Acquisition versus imaging.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
‘and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing
Operator description

@ Linear operator (linear algebra) representation of signal decomposition:

|
x(t) = Za[‘l/;(l) - x= Z\I/,'Ot,' = <\1/0) oo + (\L’]) ayp+ -0 =
: i |

@ Linear operator (linear algebra) representation of measurement:
— Py —

N
@ Putting it together: y=dx =V

Y b
M x N

=
= Va




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y=&&x+n=oVa+n |




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x—i-n:q?'\lla—l-n].

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x—&-n:@\lla—l—n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

)

where the signal is synthesising by x* = Y a*.
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@ lll-posed inverse problem:

y:@x—&-n:@\lla—l—n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

)

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

where the signal is synthesising by x* = Y a*.
@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢, optimisation problem (convex):

‘ o* — argmin||al|; such that [y — dTal), < e
(84




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ Solutions of the ¢y, and ¢; problems are often the same.
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Promoting sparsity via ¢; minimisation
@ Solutions of the ¢y, and ¢; problems are often the same.
@ Restricted isometry property (RIP):
(1 =6p)llexl3 < @l < (1 +6k)llex3

for K-sparse «, where © = ®W.

(a) (b) (©

Figure: Geometry of (a) £q (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]
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Y o} \ «
—_—
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Coherence
@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by

M > ci’KlogN |,

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p= VN max |(¥;, &)
L]

Y o} \ «
—_—

= Va

@ Robust to noise.
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An introduction to compressive sensing
Analysis vs synthesis

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

a* = argmin ||e||; suchthat ||y — Pl <e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Va*.

@ Analysis-based framework:

x* = argmin || UTx||; such that |ly — ®x||» <,
x

where the signal x* is recovered directly.

@ Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, McEwen &
Wiaux 2013)

[@:[qf.,\yz,.--,\pq].]




	Preliminaries
	Spread spectrum effect
	Sparse w-projection
	Results
	Conclusions & outlook

