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Radio interferometric measurement equation

@ The complex visibility measured by an interferometer is given by
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where the w-modulation C(]|/||,) is given by

‘ i) = ez (1=v1=IIF)

w-modulation

@ Various assumptions are often made regarding the size of the field-of-view (FoV):
o Small-fieldwith| [[[]7w< 1| = | (i) ~1

w12
o Small-field with | [|Z]|* w < 1 = c(||7)2) =~ Il

o Wide-field =

(i) = &2 (1=VI=TI?) ’
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@ Consider the ill-posed inverse problem of radio interferometric imaging:

o).

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and r is instrumental noise.

@ Measurement operator| ® = MF CA | may incorporate:

@ primary beam A of the telescope;
e w-modulation modulation C;
o Fourier transform F;

@ masking M which encodes the incomplete measurements taken by the interferometer.

@ Compressive sensing imaging solves sparse optimisations problems:

BPDN

‘ o* — argmin||a]|, such that |y — ®¥al), < e
(8]

=
vV
=}

‘ ‘min |[WU'E||, subjectto |y — ®¥|, <e and
XcRY
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Sparsity and coherence

@ What drives the quality of compressive sensing reconstruction?

@ Number of measurements M required to achieve exact reconstruction given by

M > c,uZKlogN ,

where K is the sparsity and N the dimensionality.

@ Coherence between the measurement vectors and atoms of sparsity dictionary given by

1= VA max| (¥, )| ’
L]
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Review

@ Non-coplanar baselines and wide fields — w-modulation — spread spectrum effect
(first considered by Wiaux et al. 2009b).

@ Recall, w-modulation operator C has elements defined by

C(l,m) = eiz’”"(I’ Vi=E—n?) ~ ™Il for et w < 1

giving rise to to a linear chirp.

(a) Real part (b) Imaginary part

'
Figure: Chirp modulation.
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Spread spectrum effect in a nutshell

@ Radio interferometers take (essentially) Fourier measurements.

@ Recall, the coherence is the maximum inner product between
measurement vectors and sparsifying atoms.

@ Thus, coherence is (essentially) the maximum of the Fourier coefficients of
the atoms of the sparsifying dictionary.

© w-modulation spreads the spectrum of the atoms of the sparsifying
dictionary, reducing the maximum Fourier coefficient.

@ Spreading the spectrum reduces coherence, thus improving
reconstruction fidelity.

@ Improved reconstruction fidelity of the spread spectrum effect demonstrated with
simulations by Wiaux et al. (2009b) with constant w (for simplicity).

@ Here we study the spread spectrum effect for varying w, realistic images and
various sparse representations. .




Sparse w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

®=MFCA = &=CFA|.




Sparse w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

®=MFCA = &=CFA|.

@ Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.




Sparse w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

®=MFCA = &=CFA|.

@ Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.

@ Different w for each (u, v), while still exploiting FFT.




Sparse w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

®=MFCA = &=CFA|.

@ Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.

@ Different w for each (u, v), while still exploiting FFT.

@ Many of the elements of C will be close to zero.
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Sparsity of w-modulation kernel in Fourier space
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Figure: Rows of Fourier representation of w-modulation operator C.
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Sparse w-projection
Dynamic sparsification
© We make a sparse matrix approximation of C to speed up its computational application and
reduce memory requirements.
@ Sparsify C by dynamic thresholding.
@ Retain E% of the energy content for each visibility measurement.

@ Support of w-modulation kernel in Fourier space determined dynamically, so don’t require
any prior information about structure.

@ Generic procedure applicable for any direction-dependent effect (DDE).
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Sparsified w-modulation kernels
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Figure: w-modulation kernel.
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Figure: w-modulation kernel.
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Figure: Percentage of non-zero entries as a function of preserved energy proportion. -
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Figure: Relative runtime as a function of preserved energy proportion for 10% (dashed) and 50% (solid)
visibility coverages.
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Figure: Reconstruction quality as a function of preserved energy proportion for 10% (dashed) and 50% (solid
visibility coverages.
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Results
Ground truth for simulations

@ Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w.

@ Consider idealised simulations.

-2 -1.5 -1 -0.5 0

(a) HIl region in M31 (b) 30 Doradus (30Dor)

Figure: Ground truth images in logarithmic scale. .




Results
Reconstructed images

(a) wg = 0 — SNR= 5dB

Figure: Reconstructed images of M31 for 10% coverage.
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Figure: Reconstructed images of M31 for 10% coverage.
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Results
Reconstructed images

(b) wq ~ U(0,1) — SNR= 16dB (¢) wg = 1 — SNR= 19dB

Figure: Reconstructed images of M31 for 10% coverage.
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Reconstructed images

(a) wg = 0 — SNR= 2dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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(a) wg = 0 — SNR= 2dB (¢) wg = 1 — SNR= 150dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Reconstructed images

(a) wg = 0 — SNR= 2dB (b) wq ~ U(0,1) — SNR= 12dB (¢) wg = 1 — SNR= 150dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Figure: Reconstruction fidelity for M31.
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Figure: Reconstruction fidelity for 30Dor.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

@ As expected, for the case where coherence is already optimal, there is little improvement. -



Results
Reconstruction performance

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Visibility coverage proportion Visibility coverage proportion
(a) M31 (b) 30 Dor

Figure: Reconstruction fidelity using SARA.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

@ As expected, for the case where coherence is already optimal, there is little improvement. -
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@ ...or for a given number of baselines, reconstruction quality is improved.
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Conclusions
o If the non-coplanar baseline and wide FoV setting is modeled accurately, then due to the

spread spectrum effect. ..

@ ...the same image reconstruction quality can be achieved with considerably fewer baselines

@ ...or for a given number of baselines, reconstruction quality is improved.

Optimise future telescope configurations to promote large w-components
— enhance the spread spectrum effect
— enhance the fidelity of image reconstruction.
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Conclusions & outlook

Outlook
@ We have just released the PURIFY code to scale to the realistic setting.
@ Includes state-of-the-art convex optimisation algorithms implemented in C.
@ Integration with CASA is in progress and should be complete soon.

@ Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

Encourage you to apply PURIFY to your real observational data.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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Compressive sensing

“Nothing short of revolutionary.”

— National Science Foundation

@ Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho
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@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — compressive sensing.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
‘and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
@ Move compression to the acquisition stage — compressive sensing.

@ Acquisition versus imaging.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
‘and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing
Operator description

@ Linear operator (linear algebra) representation of signal decomposition:

|
x(t) = Za[‘l/;(l) - x= Z\I/,'Ot,' = <\1/0) oo + (\L’]) ayp+ -0 =
: i |

@ Linear operator (linear algebra) representation of measurement:
— Py —

N
@ Putting it together: y=dx =V

Y b
M x N

=
= Va




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y=&&x+n=oVa+n |




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x—i-n:q?'\lla—l-n].

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x—&-n:@\lla—l—n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

)

where the signal is synthesising by x* = Y a*.
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@ lll-posed inverse problem:

y:@x—&-n:@\lla—l—n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

)

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

where the signal is synthesising by x* = Y a*.
@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢, optimisation problem (convex):

‘ o* — argmin||al|; such that [y — dTal), < e
(84




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ Solutions of the ¢y, and ¢; problems are often the same.
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Promoting sparsity via ¢; minimisation
@ Solutions of the ¢y, and ¢; problems are often the same.
@ Restricted isometry property (RIP):
(1 =6p)llexl3 < @l < (1 +6k)llex3

for K-sparse «, where © = ®W.

(a) (b) (©

Figure: Geometry of (a) £q (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]
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Y o} \ «
—_—

= Va
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Coherence
@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by

M > ci’KlogN |,

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p= VN max |(¥;, &)
L]

Y o} \ «
—_—

= Va

@ Robust to noise.
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An introduction to compressive sensing
Analysis vs synthesis

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

a* = argmin ||e||; suchthat ||y — Pl <e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Va*.

@ Analysis-based framework:

x* = argmin || UTx||; such that |ly — ®x||» <,
x

where the signal x* is recovered directly.

@ Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, McEwen &
Wiaux 2013)

[@:[qf.,\yz,.--,\pq].]




	Preliminaries
	Spread spectrum effect
	Sparse w-projection
	Results
	Conclusions & outlook

