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Preliminaries
Radio interferometric measurement equation

The complex visibility measured by an interferometer is given by

y(u,w) =

∫
D2

A(l) x(l) C(‖l‖2) e−i2πu·l d2l
n(l)

visibilities

,

where the w-modulation C(‖l‖2) is given by

C(‖l‖2) ≡ ei2πw
(

1−
√

1−‖l‖2
)

w-modulation

.

Various assumptions are often made regarding the size of the field-of-view (FoV):

Small-field with ‖l‖2 w� 1 ⇒ C(‖l‖2) ' 1

Small-field with ‖l‖4 w� 1 ⇒ C(‖l‖2) ' eiπw‖l‖2

Wide-field ⇒ C(‖l‖2) = ei2πw
(

1−
√

1−‖l‖2
)
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Preliminaries
Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx + n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator Φ = M F C A may incorporate:

primary beam A of the telescope;

w-modulation modulation C;

Fourier transform F;

masking M which encodes the incomplete measurements taken by the interferometer.

Compressive sensing imaging solves sparse optimisations problems:

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε

B
P

D
N

min
x̄∈RN

‖WΨT x̄‖1 subject to ‖y− Φx̄‖2 ≤ ε and x̄ ≥ 0

S
A

R
A
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Preliminaries
Sparsity and coherence

What drives the quality of compressive sensing reconstruction?

Number of measurements M required to achieve exact reconstruction given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

Coherence between the measurement vectors and atoms of sparsity dictionary given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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Spread spectrum effect
Review

Non-coplanar baselines and wide fields→ w-modulation→ spread spectrum effect
(first considered by Wiaux et al. 2009b).

Recall, w-modulation operator C has elements defined by

C(l,m) ≡ ei2πw
(

1−
√

1−l2−m2
)
' eiπw‖l‖2

for ‖l‖4 w� 1 ,

giving rise to to a linear chirp.

(a) Real part (b) Imaginary part

Figure: Chirp modulation.
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Spread spectrum effect
Review

Spread spectrum effect in a nutshell

1 Radio interferometers take (essentially) Fourier measurements.

2 Recall, the coherence is the maximum inner product between
measurement vectors and sparsifying atoms.

3 Thus, coherence is (essentially) the maximum of the Fourier coefficients of
the atoms of the sparsifying dictionary.

4 w-modulation spreads the spectrum of the atoms of the sparsifying
dictionary, reducing the maximum Fourier coefficient.

5 Spreading the spectrum reduces coherence, thus improving
reconstruction fidelity.

Improved reconstruction fidelity of the spread spectrum effect demonstrated with
simulations by Wiaux et al. (2009b) with constant w (for simplicity).

Here we study the spread spectrum effect for varying w, realistic images and
various sparse representations.
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Sparse w-projection

Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

Φ = M F C A ⇒ Φ = Ĉ F A .

Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.

Different w for each (u, v), while still exploiting FFT.

Many of the elements of Ĉ will be close to zero.
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Sparse w-projection
Sparsity of w-modulation kernel in Fourier space
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Figure: Rows of Fourier representation of w-modulation operator Ĉ.
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Sparse w-projection
Dynamic sparsification

We make a sparse matrix approximation of Ĉ to speed up its computational application and
reduce memory requirements.

Sparsify Ĉ by dynamic thresholding.

Retain E% of the energy content for each visibility measurement.

Support of w-modulation kernel in Fourier space determined dynamically, so don’t require
any prior information about structure.

Generic procedure applicable for any direction-dependent effect (DDE).
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Sparse w-projection
Sparsified w-modulation kernels

wd = 0.1

wd = 0.5

wd = 1.0
E = 0.25 E = 0.50 E = 0.75 E = 1.00

Figure: w-modulation kernel.
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Sparse w-projection
Proportion of non-zero entries
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Figure: Percentage of non-zero entries as a function of preserved energy proportion.
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Sparse w-projection
Runtime improvements
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Figure: Relative runtime as a function of preserved energy proportion for 10% (dashed) and 50% (solid)
visibility coverages.
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Sparse w-projection
Impact on reconstruction quality
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Figure: Reconstruction quality as a function of preserved energy proportion for 10% (dashed) and 50% (solid)
visibility coverages.

Jason McEwen Revisiting the Spread Spectrum Effect



Preliminaries Spread spectrum Sparse w-projection Results Outlook

Results
Ground truth for simulations

Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w.

Consider idealised simulations.

 

 

−2 −1.5 −1 −0.5 0

(a) HII region in M31

 

 

−2 −1.5 −1 −0.5 0

(b) 30 Doradus (30Dor)

Figure: Ground truth images in logarithmic scale.
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Results
Reconstructed images
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(c) wd = 1→ SNR= 19dB

Figure: Reconstructed images of M31 for 10% coverage.
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Results
Reconstructed images
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Figure: Reconstructed images of 30Dor for 10% coverage.
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Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Figure: Reconstruction fidelity using SARA.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Conclusions & outlook
Conclusions

If the non-coplanar baseline and wide FoV setting is modeled accurately, then due to the
spread spectrum effect. . .

. . . the same image reconstruction quality can be achieved with considerably fewer baselines

. . . or for a given number of baselines, reconstruction quality is improved.

Optimise future telescope configurations to promote large w-components
→ enhance the spread spectrum effect
→ enhance the fidelity of image reconstruction.
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Outlook

We have just released the PURIFY code to scale to the realistic setting.

Includes state-of-the-art convex optimisation algorithms implemented in C.

Integration with CASA is in progress and should be complete soon.

Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

Encourage you to apply PURIFY to your real observational data.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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Compressive sensing

“Nothing short of revolutionary.”

– National Science Foundation

Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho
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Compressive sensing

Next evolution of wavelet analysis→ wavelets are a key ingredient.

The mystery of JPEG compression (discrete cosine transform; wavelet transform).

Move compression to the acquisition stage→ compressive sensing.

Acquisition versus imaging.

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing
Operator description

Linear operator (linear algebra) representation of signal decomposition:

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0 +

 |Ψ1
|

α1 + · · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Jason McEwen Revisiting the Spread Spectrum Effect



Preliminaries Spread spectrum Sparse w-projection Results Outlook

An introduction to compressive sensing
Operator description

Linear operator (linear algebra) representation of signal decomposition:

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0 +

 |Ψ1
|

α1 + · · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Jason McEwen Revisiting the Spread Spectrum Effect



Preliminaries Spread spectrum Sparse w-projection Results Outlook

An introduction to compressive sensing
Operator description

Linear operator (linear algebra) representation of signal decomposition:

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0 +

 |Ψ1
|

α1 + · · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Jason McEwen Revisiting the Spread Spectrum Effect



Preliminaries Spread spectrum Sparse w-projection Results Outlook

An introduction to compressive sensing
Promoting sparsity via `1 minimisation

Ill-posed inverse problem:

y = Φx + n = ΦΨα + n .

Recall norms given by:

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e.
solve the following `0 optimisation problem:

α? = arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .
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An introduction to compressive sensing
Promoting sparsity via `1 minimisation

Solutions of the `0 and `1 problems are often the same.

Restricted isometry property (RIP):

(1− δK)‖α‖2
2 ≤ ‖Θα‖2

2 ≤ (1 + δK)‖α‖2
2 ,

for K-sparse α, where Θ = ΦΨ.

[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why !2
reconstruction fails to find the sparse
solution that can be identified by !1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K " 3, so
any intuition based on three dimensions
may be misleading.) The !2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the !2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the !1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the !1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.

S

(a) (b) (c)

S

S

HH

S

S

[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.

(a)

(b) (c)

Scene

Photodiode

DMD
Array RNG

A/D
Bitstream

Reconstruction Image

(continued on page 124)

IEEE SIGNAL PROCESSING MAGAZINE [120] JULY 2007

Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.
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[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.
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Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing
Coherence

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.
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An introduction to compressive sensing
Analysis vs synthesis

Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

Synthesis-based framework:

α? = arg min
α

‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

where we synthesise the signal from its recovered wavelet coefficients by x? = Ψα?.

Analysis-based framework:

x? = arg min
x
‖ΨTx‖1 such that ‖y− Φx‖2 ≤ ε ,

where the signal x? is recovered directly.

Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, McEwen &
Wiaux 2013)

Ψ = [Ψ1,Ψ2, · · · ,Ψq] .
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