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Radio telescopes are big!

“Just checking.”



Radio telescopes are big!
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Radio Interferometry

Radio interferometric telescopes
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Next-generation of radio interferometry rapidly approaching

@ Many pathfinder radio interferometric
telescopes coming online, e.g. LOFAR,
ASKAP, MeerKAT, MWA.

@ Square Kilometre Array (SKA) construction
scheduled to begin 2018.

Figure: Artist impression of SKA dishes. [Credit: skA
Organisation]



Next-generation of radio interferometry rapidly approaching

@ Many pathfinder radio interferometric
telescopes coming online, e.g. LOFAR,
ASKAP, MeerkAT, MWA.

@ Square Kilometre Array (SKA) construction
scheduled to begin 2018.

@ Broad range of science goals.

Figure: Artist impression of SKA dishes. [Credit: skA
Organisation]

(a) Dark-energy (c) Cosmic magnetism (d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Square Kilometre Array

A €15 billion global science
project

Astronomers and engineers
from more than 70 institutes
in 20 countries

3000 dishes, each 15m wide

Using enough optical fibre to
wrap twice around the Earth

A combined collecting area of
about one square kilometre

In excess of 1 Exabyte of raw data

A prototype software
architecture to manage

Automated data
classification = faster
with fewer errors

Guided search = easier
access for scientists
and non-scientists alike
Frees researchers to
be more productive
and creative
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Radio Interferometry

The SKA poses a considerable big-data challenge

Astronomical Data Delu.ge

In excess of 1 Exabyte of raw data
in a single day - more than the
entire daily internet traffic
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Square Kilometre Array

€15b ﬁrg;; billion global science

Astronomers and engine
'S from more than 70 inst
in 20 countries

) 3000 dishes, each 15m wide

Automated data
classification = faster
with fewer errors

Guided search = easier
access for scientists
and non-scientists alike
Frees researchers to
be more productive
and creative

@ Using enough optical fibre to HHHHH
wrap twice around the Earth
IBM A prototype software
data to fill over Information architecture to manage
11,000,000 A combined collecting area of 15 4GB iPods Intensive the megadata
me about one square kilometre every day Framework generated by SKA
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Imaging SARA Continuous Visibilities Telescope Optimisation
Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements
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Imaging SARA Continuous Visibilities Telescope Optimisation
Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

(o)

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

(o)

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator| ® = MFC A | may incorporate:

e primary beam A of the telescope;
e w-modulation modulation C;
@ Fourier transform F;

e masking M which encodes the incomplete measurements taken by the interferometer.



Imaging SARA Continuous Visibilities Telescope Optimisation
Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

).

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator| ® = MFC A | may incorporate:

e primary beam A of the telescope;
e w-modulation modulation C;
@ Fourier transform F;

e masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Compressive sensing

@ Developed by Candes et al. 2006 and Donoho 2006 (and others).
@ Although many underlying ideas around for a long time.

@ Exploits the sparsity of natural signals.

(a) Emmanuel Candes (b) David Donoho



Imaging SARA Continuous Visibilities Telescope Optimisation
Compressive sensing

@ Developed by Candes et al. 2006 and Donoho 2006 (and others).
@ Although many underlying ideas around for a long time.
@ Exploits the sparsity of natural signals.

@ Acquisition versus imaging.

(a) Emmanuel Candes (b) David Donoho



Imaging SARA Continuous Visibilities Telescope Optimisation
Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem

y=®x+n with ®=MFCA |,

by applying a prior on sparsity of the signal in a sparsifying dictionary W.



Imaging SARA Continuous Visibilities Telescope Optimisation
Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem

y=®x+n with ®=MFCA |,

by applying a prior on sparsity of the signal in a sparsifying dictionary W.

@ Basis Pursuit (BP) denoising problem

‘ o* — argmin||al|; such that [y — ®¥al, < e,
(07

=z
[m]
o
o

where the image is synthesised by x* = T a*.
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SARA algorithm for radio interferometric imaging
Algorithm

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)
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SARA algorithm for radio interferometric imaging
Algorithm

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[¥,¥...,P,
Vi !

thus ¥ € RV*P with D = gN.
@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);

Daubechies wavelet bases two to eight.
=- concatenation of 9 bases
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SARA algorithm for radio interferometric imaging
Algorithm

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[¥,¥...,P,

V4

thus ¥ € RV*P with D = gN.

@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
=- concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

‘min [|[WU7%||; subjectto |y—®%|,<e and %>0,
XeRN

SARA

where W ¢ RP*P is a diagonal matrix with positive weights.

@ Solve a sequence of reweighted ¢; problems using the solution of the previous
problem as the inverse weights — approximate the ¢, problem.
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SARA for radio interferometric imaging
Results on simulations

(a) Original
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SARA for radio interferometric imaging
Results on simulations

(a) Original (b) “CLEAN” (SNR=16.67 dB)
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SARA for radio interferometric imaging
Results on simulations

(a) Original (b) “CLEAN” (SNR=16.67 dB) (c) “MS-CLEAN” (SNR=17.87 dB)
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SARA for radio interferometric imaging
Results on simulations

(d) BPDb8 (SNR=24.53 dB) (€) TV (SNR=26.47 dB) (f) SARA (SNR=29.08 dB)



Imaging SARA Continuous Visibilities Telescope Optimisation
Supporting continuous visibilities
Algorithm

@ |deally we would like to model the continuous Fourier transform operator

@ But this is impracticably slow!



Interferometric Imaging Imaging SARA Continuous Visibilities Telescope Optimisation

Supporting continuous visibilities
Algorithm

@ |deally we would like to model the continuous Fourier transform operator

@ But this is impracticably slow!
@ Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2014).

@ Model with measurement operator

where we incorporate:

@ convolutional gridding operator G;
o fast Fourier transform F;
@ normalisation operator D to undo the convolution gridding;

@ zero-padding operator Z to upsample the discrete visibility space.
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Supporting continuous visibilities
Results on simulations

(a) Coverage (b) M31 (ground truth)

Figure: Reconstructed images from continuous visibilities.
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB)

Figure: Reconstructed images from continuous visibilities.
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB) (d) “MS-CLEAN” (SNR= 11.1dB)

Figure: Reconstructed images from continuous visibilities.
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB) (d) “MS-CLEAN” (SNR= 11.1dB) (e) SARA (SNR= 13.4dB)

Figure: Reconstructed images from continuous visibilities.
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Optimising telescope configurations
Spread spectrum effect

@ Use theory of compressive sensing to optimise telescope configurations.

@ Non-coplanar baselines and wide fields — w-modulation — spread spectrum effect which
reduces coherence — improves reconstruction quality (first considered by Wiaux et al. 2009b).

@ Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w (Wolz, McEwen et al. 2013).

(a) M31 (b) 30Dor

Figure: Ground truth images in logarithmic scale.
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Optimising telescope configurations
Results on simulations

(a) wqg = 0 — SNR= 5dB

Figure: Reconstructed images of M31 for 10% coverage.
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Optimising telescope configurations
Results on simulations

(a) wqg = 0 — SNR= 5dB (©) wg = 1 — SNR= 19dB

Figure: Reconstructed images of M31 for 10% coverage.
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Optimising telescope configurations
Results on simulations

(a) wqg = 0 — SNR= 5dB (b) wg ~ U(0, 1) — SNR= 16dB (©) wg = 1 — SNR= 19dB

Figure: Reconstructed images of M31 for 10% coverage.
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Optimising telescope configurations
Results on simulations

(a) wqg = 0 — SNR= 2dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Optimising telescope configurations
Results on simulations

(a) wqg = 0 — SNR= 2dB (©) wg = 1 — SNR= 15dB

Figure: Reconstructed images of 30Dor for 10% coverage.



Interferometric Imaging Imaging SARA Continuous Visibilities Telescope Optimisation

Optimising telescope configurations
Results on simulations

(a) wqg = 0 — SNR= 2dB (b) wg ~ U(0, 1) — SNR= 12dB (©) wg = 1 — SNR= 15dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Standard algorithms
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Standard Algorithms  Distributed Algorithms
Standard algorithms
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Output Data
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CPU Raw Data
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Many Cores
(CPU, GPU, Xeon Phi)
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Block algorithm

@ Block algorithm to split data and measurement operator
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

Y D, G, M,
y=|:|, e=1|:|= c Fz.

Vg ®,, Gy M,
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@ Block algorithm to split data and measurement operator
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

Y D, G, M,
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@ For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

1
U= —[U,¥,,..., T,
Va !




it i DI NEY AmitTe
Block algorithm

@ Block algorithm to split data and measurement operator
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

Y D, G, M,
y=|:|, e=1|:|= c Fz.

Vg ®,, Gy M,

@ For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

1
U= —[U,¥,,..., T,
Va !

@ Leads to a highly distributed and parallelised algorithmic structure.



Scalable Algorithms Standard Algorithms  Distributed Algorithms.

Highly parallelised and distributed algorithms
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Highly parallelised and distributed algorithms
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Highly parallelised and distributed algorithms
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Highly parallelised and distributed algorithms
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Highly parallelised and distributed algorithms
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Highly parallelised and distributed algorithms
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Highly parallelised and distributed algorithms
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Public codes

SOPT code http://basp-group.github.io/sopt/
Sparse OPTimisation
Carrillo, McEwen, Wiaux
SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.



http://basp-group.github.io/sopt/
http://basp-group.github.io/purify/
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Conclusions & outlook

o Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
@ Theory of compressive sensing can be used to optimise telescope configuration.

@ State-of-the-art convex optimisation algorithms that support distribution.

[ Applying to observations made by real interferometric telescopes. ]

Developing fast convex optimisation algorithms that are parallelised
and distributed to scale to big-data.
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