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Next-generation of radio interferometry rapidly approaching

Many pathfinder radio interferometric
telescopes coming online, e.g. LOFAR,
ASKAP, MeerKAT, MWA.

Square Kilometre Array (SKA) construction
scheduled to begin 2018.

Broad range of science goals.

Figure: Artist impression of SKA dishes. [Credit: SKA
Organisation]

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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SKA sites
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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx + n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator Φ = M F C A may incorporate:

primary beam A of the telescope;

w-modulation modulation C;

Fourier transform F;

masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Compressive sensing

Developed by Candes et al. 2006 and Donoho 2006 (and others).

Although many underlying ideas around for a long time.

Exploits the sparsity of natural signals.

Acquisition versus imaging.

(a) Emmanuel Candes (b) David Donoho
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Interferometric imaging with compressed sensing

Solve the interferometric imaging problem

y = Φx + n with Φ = M F C A ,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

Basis Pursuit (BP) denoising problem

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε ,

B
P

D
N

where the image is synthesised by x? = Ψα?.
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SARA algorithm for radio interferometric imaging
Algorithm

Sparsity averaging reweighted analysis (SARA) for RI imaging
(Carrillo, McEwen & Wiaux 2012)

Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

Ψ =
1
√

q
[Ψ1,Ψ2, . . . ,Ψq],

thus Ψ ∈ RN×D with D = qN.

We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
⇒ concatenation of 9 bases

Promote average sparsity by solving the reweighted `1 analysis problem:

min
x̄∈RN

‖WΨT x̄‖1 subject to ‖y− Φx̄‖2 ≤ ε and x̄ ≥ 0 ,

S
A

R
A

where W ∈ RD×D is a diagonal matrix with positive weights.

Solve a sequence of reweighted `1 problems using the solution of the previous
problem as the inverse weights→ approximate the `0 problem.
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SARA for radio interferometric imaging
Results on simulations
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Supporting continuous visibilities
Algorithm

Ideally we would like to model the continuous Fourier transform operator

Φ = Fc .

But this is impracticably slow!

Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2014).

Model with measurement operator

Φ = G F D Z ,

where we incorporate:
convolutional gridding operator G;

fast Fourier transform F;

normalisation operator D to undo the convolution gridding;

zero-padding operator Z to upsample the discrete visibility space.
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Supporting continuous visibilities
Results on simulations
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Optimising telescope configurations
Spread spectrum effect

Use theory of compressive sensing to optimise telescope configurations.

Non-coplanar baselines and wide fields→ w-modulation→ spread spectrum effect which
reduces coherence→ improves reconstruction quality (first considered by Wiaux et al. 2009b).

Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w (Wolz, McEwen et al. 2013).
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Optimising telescope configurations
Results on simulations
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1 Radio interferometry and the SKA

2 Interferometric imaging with compressive sensing

3 Scalable algorithms
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Block algorithm

Block algorithm to split data and measurement operator
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

y =


y1
...

ynd

 , Φ =


Φ1

...
Φnd

 =


G1M1

...
Gnd Mnd

 FZ.

For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

Ψ =
1
√

q
[Ψ1,Ψ2, . . . ,Ψq].

Leads to a highly distributed and parallelised algorithmic structure.
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Public codes

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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http://basp-group.github.io/sopt/
http://basp-group.github.io/purify/


Radio Interferometry Interferometric Imaging Scalable Algorithms

Conclusions & outlook

Effectiveness of compressive sensing for radio interferometric imaging demonstrated.

Theory of compressive sensing can be used to optimise telescope configuration.

State-of-the-art convex optimisation algorithms that support distribution.

Applying to observations made by real interferometric telescopes.

Developing fast convex optimisation algorithms that are parallelised
and distributed to scale to big-data.

Supported by:
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