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Next-generation of radio interferometry rapidly approaching

Square Kilometre Array (SKA) first
observations planned for 2019.

Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP,
MeerKAT, MWA.

Broad range of science goals.

New modelling and imaging techniques
required to ensure the next-generation of
interferometric telescopes reach their full
potential.

Figure: Artist impression of SKA dishes. [Credit: SKA
Organisation]

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Radio interferometric inverse problem

The complex visibility measured by an interferometer is given by

y(u,w) =

∫
D2

A(l) x(l) C(‖l‖2) e−i2πu·l d2l
n(l)

visibilities

,

where the w-modulation C(‖l‖2) is given by

C(‖l‖2) ≡ ei2πw
(

1−
√

1−‖l‖2
)

w-modulation

.

Various assumptions are often made regarding the size of the field-of-view:

Small-field with ‖l‖2 w� 1 ⇒ C(‖l‖2) ' 1

Small-field with ‖l‖4 w� 1 ⇒ C(‖l‖2) ' eiπw‖l‖2

Wide-field ⇒ C(‖l‖2) = ei2πw
(

1−
√

1−‖l‖2
)
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx + n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator Φ = M F C A may incorporate:

primary beam A of the telescope;

w-modulation modulation C;

Fourier transform F;

masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Interferometric imaging with compressed sensing

Solve the interferometric imaging problem

y = Φx + n with Φ = M F C A ,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

Basis pursuit (BP) denoising problem

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε ,

B
P

D
N

where the image is synthesised by x? = Ψα?.

Total Variation (TV) denoising problem

x? = arg min
x
‖x‖TV such that ‖y− Φx‖2 ≤ ε .

TV
D

N
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SARA for radio interferometric imaging
Algorithm

Sparsity averaging reweighted analysis (SARA) for RI imaging
(Carrillo, McEwen & Wiaux 2012)

Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

Ψ =
1
√

q
[Ψ1,Ψ2, . . . ,Ψq],

thus Ψ ∈ RN×D with D = qN.

We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
⇒ concatenation of 9 bases

Promote average sparsity by solving the reweighted `1 analysis problem:

min
x̄∈RN

‖WΨT x̄‖1 subject to ‖y− Φx̄‖2 ≤ ε and x̄ ≥ 0 ,

S
A

R
A

where W ∈ RD×D is a diagonal matrix with positive weights.

Solve a sequence of reweighted `1 problems using the solution of the previous
problem as the inverse weights→ approximate the `0 problem.

Jason McEwen Radio interferometric imaging with compressive sensing
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SARA for radio interferometric imaging
Results on simulations
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Figure: Reconstruction example of 30Dor from 30% of visibilities.Jason McEwen Radio interferometric imaging with compressive sensing
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Spread spectrum effect
Preliminaries: sparsity and coherence

What drives the quality of compressive sensing reconstruction?

Number of measurements M required to achieve exact reconstruction given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

Coherence between the measurement vectors and atoms of sparsity dictionary given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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Spread spectrum effect
Review

Non-coplanar baselines and wide fields→ w-modulation→ spread spectrum effect
(first considered by Wiaux et al. 2009b).

The w-modulation operator C has elements defined by

C(l,m) ≡ ei2πw
(

1−
√

1−l2−m2
)
' eiπw‖l‖2

for ‖l‖4 w� 1 ,

giving rise to to a linear chirp.

(a) Real part (b) Imaginary part

Figure: Chirp modulation.
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Spread spectrum effect
Review

Spread spectrum effect in a nutshell

1 Radio interferometers take (essentially) Fourier measurements.

2 Recall, the coherence is the maximum inner product between
measurement vectors and sparsifying atoms.

3 Thus, coherence is (essentially) the maximum of the Fourier coefficients of
the atoms of the sparsifying dictionary.

4 w-modulation spreads the spectrum of the atoms of the sparsifying
dictionary, reducing the maximum Fourier coefficient.

5 Spreading the spectrum reduces coherence, thus improving
reconstruction fidelity.

Consistent with findings of Carozzi et al. (2013) from information theoretic approach.

Studied for constant w (for simplicity) by Wiaux et al. (2009b).

Studied for varying w (with realistic images and various sparse representations) by
Wolz et al. (2013).

Jason McEwen Radio interferometric imaging with compressive sensing
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Spread spectrum effect
Sparse w-projection

Apply the w-projection algorithm (Cornwell et al. 2008) to shift the w-modulation through the
Fourier transform:

Φ = M F C A ⇒ Φ = Ĉ F A .

Naively, expressing the application of the w-modulation in this manner is computationally
less efficient that the original formulation but it has two important advantages.

Different w for each (u, v), while still exploiting FFT.

Many of the elements of Ĉ will be close to zero.

Support of w-modulation in Fourier space determined dynamically.
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Spread spectrum effect for varying w
Results on simulations

Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w.

Consider idealised simulations with uniformly random visibility sampling.
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(b) 30Dor

Figure: Ground truth images in logarithmic scale.
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Figure: Reconstructed images of M31 for 10% coverage.
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Spread spectrum effect for varying w
Results on simulations
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Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Results on simulations
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Figure: Reconstruction fidelity using SARA.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Inverse Problem Imaging Spread Spectrum Continuous Visibilities

Supporting continuous visibilities
Algorithm

Ideally we would like to model the continuous Fourier transform operator

Φ = Fc .

But this is impracticably slow!

Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2013).

Model with measurement operator

Φ = G F D Z ,

where we incorporate:
convolutional gridding operator G;

fast Fourier transform F;

normalisation operator D to undo the convolution gridding;

zero-padding operator Z to upsample the discrete visibility space.
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Supporting continuous visibilities
Results on simulations
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Conclusions & outlook

Effectiveness of compressive sensing for radio interferometric imaging demonstrated.

Theory of compressive sensing can guide telescope design.

We have just released the PURIFY code to scale to the realistic setting.

Includes state-of-the-art convex optimisation algorithms that support parallelisation.

Application of (unconstrained) BPDN to LOFAR by Garsden et al. 2014.

Apply to observations made by real interferometric telescopes.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

Jason McEwen Radio interferometric imaging with compressive sensing
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Sparse w-projection
Sparsity of w-modulation kernel in Fourier space
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Figure: Rows of Fourier representation of w-modulation operator Ĉ.
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Sparse w-projection
Dynamic sparsification

We make a sparse matrix approximation of Ĉ to speed up its computational application and
reduce memory requirements.

Sparsify Ĉ by dynamic thresholding.

Retain E% of the energy content for each visibility measurement.

Support of w-modulation kernel in Fourier space determined dynamically, so don’t require
any prior information about structure.

Generic procedure applicable for any direction-dependent effect (DDE).
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Sparsify Ĉ by dynamic thresholding.

Retain E% of the energy content for each visibility measurement.

Support of w-modulation kernel in Fourier space determined dynamically, so don’t require
any prior information about structure.

Generic procedure applicable for any direction-dependent effect (DDE).

Jason McEwen Radio interferometric imaging with compressive sensing



Inverse Problem Imaging Spread Spectrum Continuous Visibilities

Sparse w-projection
Dynamic sparsification
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Sparse w-projection
Sparsified w-modulation kernels

wd = 0.1

wd = 0.5

wd = 1.0
E = 0.25 E = 0.50 E = 0.75 E = 1.00

Figure: w-modulation kernel.
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Sparse w-projection
Proportion of non-zero entries
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Figure: Percentage of non-zero entries as a function of preserved energy proportion.
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Figure: Relative runtime as a function of preserved energy proportion for 10% (dashed) and 50% (solid)
visibility coverages.
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Figure: Reconstruction quality as a function of preserved energy proportion for 10% (dashed) and 50% (solid)
visibility coverages.
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