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0 Radio Interferometry (RI)




Next-generation of radio interferometry rapidly approaching

@ Square Kilometre Array (SKA) first
observations planned for 2019.

@ Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP,
MeerKAT, MWA.

Figure: Artist impression of SKA dishes. [Credit: SKA
Organisation]

e

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization

Figure: SKA science goals. [Credit: SKA Organisation]
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Next-generation of radio interferometry rapidly approaching

@ Square Kilometre Array (SKA) first
observations planned for 2019.

@ Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP,
MeerKAT, MWA.

@ New modelling and imaging techniques
required to ensure the next-generation of
interferometric telescopes reach their full
potential.

Figure: Artist impression of SKA dishes. [Credit: SKA
Organisation]
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(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization

Figure: SKA science goals. [Credit: SKA Organisation]
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Radio interferometry

@ The complex visibility measured by an interferometer is given by

—i27u- dzl
yaw) = [ Q)@ (i) B 8,
Jp2 n(l)
visibilities
where the w-modulation C(]|Z||,) is given by
‘ c(ju) = &2 (1=Vi=I)

w-modulation
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@ Various assumptions are often made regarding the size of the field-of-view (FoV):

o Smallfieldwith| [P w1 | = | c(llf) ~1
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Radio interferometry

@ The complex visibility measured by an interferometer is given by

—i27u- dzl
yaw) = [ Q)@ (i) B 8,
Jp2 n(l)
visibilities
where the w-modulation C(]|Z||,) is given by
‘ c(ju) = &2 (1=Vi=I)

w-modulation

@ Various assumptions are often made regarding the size of the field-of-view (FoV):

o Small-field with| [[[*w < 1| = | c(f]2) =1
o Smalifield with | 1w < 1| = | (i) = eI
o Wide-field = | ) = 2 (=VI=iTR) .
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

=z

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

=)

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator| ® = MF CA | may incorporate:

e primary beam A of the telescope;
e w-modulation modulation C;
e Fourier transform F;

@ masking M which encodes the incomplete measurements taken by the interferometer.
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

=)

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator| ® = MF CA | may incorporate:

e primary beam A of the telescope;
e w-modulation modulation C;
e Fourier transform F;

@ masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements. ]
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Compressive sensing

“Nothing short of revolutionary.”

— National Science Foundation

@ Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho




Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
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Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — compressive sensing.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
‘and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera




Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
@ Move compression to the acquisition stage — compressive sensing.

@ Acquisition versus imaging.

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
‘and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera




An introduction to compressive sensing
Operator description

@ Linear operator (linear algebra) representation of signal decomposition:

| |
x(t):Za,-‘I/;(t) — x:Z\I/,-a,-: <\1/0) oo + (\L’]) ayp+ -0 =
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Operator description

@ Linear operator (linear algebra) representation of signal decomposition:

| |
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@ Linear operator (linear algebra) representation of measurement:
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An introduction to compressive sensing

Operator description

@ Linear operator (linear algebra) representation of signal decomposition:

|
x(t) = Za[‘l/;(l) - x= Z\I/,'Ot,' = <\1/0) oo + (\L’]) ayp+ -0 =
: i |

@ Linear operator (linear algebra) representation of measurement:
— Py —

N
@ Putting it together: y=dx =V

Y b
M x N

—
= Va




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y=&&x+n=oVa+n |
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@ lll-posed inverse problem:

y:@x—i-n:q?'\lla—l-n].

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x—&-n:@\lla—l—n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

)

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

where the signal is synthesising by x* = Y a*.
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@ lll-posed inverse problem:
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@ Recall norms given by:
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@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

)

where the signal is synthesising by x* = Y a*.

@ Solving this problem is difficult (combinatorial).




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ lll-posed inverse problem:

y:@x—&-n:@\lla—l—n]‘

@ Recall norms given by:

1/2
||e]lo = no. non-zero elements el = E il el = (E |af\2>
i i

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e.
solve the following ¢, optimisation problem:

)

a* = argmin||c||p suchthat |ly — ®Pal, <e
a

where the signal is synthesising by x* = Y a*.
@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢, optimisation problem (convex):

‘ o* — argmin||al|; such that [y — dTal), < e
(84




An introduction to compressive sensing
Promoting sparsity via ¢; minimisation

@ Solutions of the ¢y, and ¢; problems are often the same.
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An introduction to compressive sensing
Promoting sparsity via ¢; minimisation
@ Solutions of the ¢y, and ¢; problems are often the same.
@ Restricted isometry property (RIP):
(1 =6p)llexl3 < @l < (1 +6k)llex3

for K-sparse «, where © = ®W.

(a) (b) (©

Figure: Geometry of (a) £q (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]




An introduction to compressive sensing
Coherence

@ In the absence of noise, compressed sensing is exact!
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M > ci’KlogN |,

where K is the sparsity and N the dimensionality.
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An introduction to compressive sensing
Coherence
@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by

M > ci’KlogN |,

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p= VN max |(¥;, &)
L]

Y o} \ «
—_—

= Va

@ Robust to noise.
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@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).
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@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

o = argmin ||a||; suchthat |y — PPl <e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Va*.

@ Analysis-based framework:

x* = argmin || UTx||; such that |ly — ®x||» <,
x

where the signal x* is recovered directly.




An introduction to compressive sensing
Analysis vs synthesis
@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

o = argmin ||a||; suchthat |y — PPl <e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Va*.

@ Analysis-based framework:

x* = argmin || UTx||; such that |ly — ®x||» <,
x

where the signal x* is recovered directly.

@ Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, McEwen &
Wiaux 2013)

[@:[qf.,\yz,.--,\pq].]
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@ Radio Interferometric Imaging with Compressive Sensing (RI+CS)




Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem

y=®x+n with ®=MFCA |,

by applying a prior on sparsity of the signal in a sparsifying dictionary .
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y=®x+n with ®=MFCA |,
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@ Basis pursuit (BP) denoising problem
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where the image is synthesised by x* = Va*.
@ Total Variation (TV) denoising problem
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Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem

y=®x+n with ®=MFCA |,

by applying a prior on sparsity of the signal in a sparsifying dictionary .
@ Basis pursuit (BP) denoising problem

a* = argmin||e||; suchthat |y — @Pal, <€,
«a

where the image is synthesised by x* = Va*.
@ Total Variation (TV) denoising problem

x* = argmin||x||ry such that ||y — ®x|[, <e.
x

@ Various choices for sparsifying dictionary W, e.g. Dirac basis, Daubechies wavelets.
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Algorithm

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)
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@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[U,¥,..., ¥,
Vi !

thus & € RVXP with D = ¢gN.

@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
= concatenation of 9 bases
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Algorithm
@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[0,0,,..., 0]

Va

thus & € RVXP with D = ¢gN.

@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min |W¥T%|; subjectto |ly— ®%|,<e¢ and >0,
XeRN

where W € RP*? is a diagonal matrix with positive weights.




SARA for radio interferometric imaging
Algorithm
@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[0,0,,..., 0]

Va

thus & € RVXP with D = ¢gN.

@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min ||WU%||; subjectto |y—®x|; <e and >0,
XeRN

where W € RP*? is a diagonal matrix with positive weights.

@ Solve a sequence of reweighted ¢; problems using the solution of the previous
problem as the inverse weights — approximate the ¢, problem.
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SARA for radio interferometric imaging
Results on simulations

(a) Original (b) BP (SNR=32.82 dB) (c) IUWT (SNR=32.12 dB)

(d) BPDb8 (SNR=33.70 dB) (e) TV (SNR=33.89 dB) (f) SARA (SNR=38.43 dB)



SARA for radio interferometric imaging
Results on simulations

(d) BPDb8 (SNR=24.53 dB) (e) TV (SNR=26.47 dB) (f) SARA (SNR=29.08 dB)



SARA for radio interferometric imaging
Results on simulations
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Figure: Reconstruction fidelity vs visibility coverage.




Outline

@ Spread Spectrum




Review of the spread spectrum effect

@ Wide field — w-modulation — spread spectrum effect
first considered by Wiaux et al. (2009b).




Review of the spread spectrum effect

@ Wide field — w-modulation — spread spectrum effect
first considered by Wiaux et al. (2009b).

@ The w-modulation operator C has elements defined by

‘ C(l,m) = eizm"(P Vi-E=n?) ~ ™Il for )+ w < 1 ’7

(a) Real part (b) Imaginary part

giving rise to to a linear chirp.

Figure: Chirp modulation.

Jason McEwen Next-generation radio interferometric imaging



Spread Spectrum

Review of the spread spectrum effect
@ For the (essentially) Fourier measurements of interferometric telescopes the coherence is
the maximum modulus of the Fourier coefficients of atoms of the sparsifying dictionary.
@ w-modulation spreads the spectrum of the atoms of the sparsifying dictionary.

@ Consequently, spreading the spectrum increases the incoherence between the sensing and
sparsity bases, thus improving reconstruction fidelity.
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@ Improved reconstruction fidelity of the spread spectrum effect demonstrated with
simulations by Wiaux et al. (2009b).

@ However, previous analysis was restricted to constant w for simplicity.




Review of the spread spectrum effect

@ For the (essentially) Fourier measurements of interferometric telescopes the coherence is
the maximum modulus of the Fourier coefficients of atoms of the sparsifying dictionary.

w-modulation spreads the spectrum of the atoms of the sparsifying dictionary.

@ Consequently, spreading the spectrum increases the incoherence between the sensing and
sparsity bases, thus improving reconstruction fidelity.

Improved reconstruction fidelity of the spread spectrum effect demonstrated with
simulations by Wiaux et al. (2009b).

@ However, previous analysis was restricted to constant w for simplicity.

@ Examined the spread spectrum effect for varying w.

@ Work of Laura Wolz in collaboration with McEwen, Abdalla, Carrillo and Wiaux
(see Wolz et al. 2013).




Spread spectrum effect for varying w
w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the chirp modulation through
the Fourier transform:

[cb:MFCA = & =CFA |.

@ Consider different w for each (u, v) and threshold each Fourier transformed chirp (each row
of C) to approximate C accurately by a sparse matrix.




Spread spectrum effect for varying w
w-projection

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the chirp modulation through
the Fourier transform:

[cb:MFCA = & =CFA |.

@ Consider different w for each (u, v) and threshold each Fourier transformed chirp (each row
of C) to approximate C accurately by a sparse matrix.

@ Retain E% of the energy content of the w-modulation for each visibility measurement
(typically E = 75%).

@ Support of w-modulation in Fourier space determined dynamically.
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Spread spectrum effect for varying w
Approximation of w-modulation kernel

wg = 0.1

E=0.75

Figure: w-modulation kernel.

Jason McEwen Next-generation radio interferometric imaging



Spread Spectrum

Spread spectrum effect for varying w
Impact of approximation of w-modulation kernel
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Figure: Percentage of non-zero entries as a function of preserved energy proportion.
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Spread spectrum effect for varying w
Impact of approximation of w-modulation kernel
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Figure: Reconstruction quality of M31 (green lines marked with squares) and 30Dor (blue lines marked with
circles) as a function of preserved energy proportion for visibility coverages 10% (dashed) and 50% (sol
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Spread spectrum effect for varying w
Results on simulations

@ Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w.

@ Consider idealised simulations with uniformly random visibility sampling.

(a) M31 (b) 30Dor

Figure: Ground truth images in logarithmic scale.
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Spread spectrum effect for varying w
Results on simulations

(a) wg = 0 — SNR= 5dB

Figure: Reconstructed images of M31 for 10% coverage.




S Spread Spectrum Continuous Visibilities Outlook

Spread spectrum effect for varying w
Results on simulations

(a) wg = 0 — SNR= 5dB (¢) wg = 1 — SNR= 19dB

Figure: Reconstructed images of M31 for 10% coverage.




S Spread Spectrum Continuous Visibilities Outlook

Spread spectrum effect for varying w
Results on simulations

(a) wg = 0 — SNR= 5dB (b) wq ~ U(0,1) — SNR= 16dB (¢) wg = 1 — SNR= 19dB

Figure: Reconstructed images of M31 for 10% coverage.
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Spread spectrum effect for varying w
Results on simulations

(a) wg = 0 — SNR= 2dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Spread spectrum effect for varying w
Results on simulations

(a) wg = 0 — SNR= 2dB (¢) wg = 1 — SNR= 150dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Spread spectrum effect for varying w
Results on simulations

(a) wg = 0 — SNR= 2dB (b) wq ~ U(0,1) — SNR= 12dB (¢) wg = 1 — SNR= 150dB

Figure: Reconstructed images of 30Dor for 10% coverage.
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Spread spectrum effect for varying w
Results on simulations

01 02 03 04 05 06 07 08 09
Visibility coverage proportion

(a) Daubechies 8 (Db8) wavelets
Figure: Reconstruction fidelity for M31.
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Spread spectrum effect for varying w
Results on simulations

01 02 03 04 05 06 07 08 09
Visibility coverage proportion

(a) Daubechies 8 (Db8) wavelets
Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w! -
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Spread spectrum effect for varying w
Results on simulations

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

Visibility coverage proportion Visihilily coverage proportion
(a) Daubechies 8 (Db8) wavelets (b) Dirac basis

Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

@ As expected, for the case where coherence is already optimal, there is little improvement. -



Spread Spectrum

Spread spectrum effect for varying w
Results on simulations

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Visibility coverage proportion Visibility coverage proportion
(a) Daubechies 8 (Db8) wavelets (b) Dirac basis

Figure: Reconstruction fidelity for 30Dor.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

@ As expected, for the case where coherence is already optimal, there is little improvement. -
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Continuous Visibilities

Supporting continuous visibilities
Algorithm

@ |deally we would like to model the continuous Fourier transform operator

)

@ But this is impracticably slow!
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@ |deally we would like to model the continuous Fourier transform operator

@ But this is impracticably slow!
@ Incorporated gridding into our CS interferometric imaging framework.

@ Work of Rafael Carrillo, in collaboration with Wiaux and McEwen
(see Carrillo, McEwen, Wiaux 2013).




Continuous Visibilities

Supporting continuous visibilities
Algorithm

@ |deally we would like to model the continuous Fourier transform operator

)

@ But this is impracticably slow!
@ Incorporated gridding into our CS interferometric imaging framework.

@ Work of Rafael Carrillo, in collaboration with Wiaux and McEwen
(see Carrillo, McEwen, Wiaux 2013).

@ Model with measurement operator

=GFDZ |,

where we incorporate:
@ convolutional gridding operator G;

o fast Fourier transform F;

e normalisation operator D to undo the convolution gridding;

e zero-padding operator Z to upsample the discrete visibility space.
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Supporting continuous visibilities
Results on simulations

(a) Coverage

(b) M31 (ground truth)

Next-generation radio interferometric imaging
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) Dirac basis — SNR= 8.2dB (d) Db8 wavelets — SNR= 11.1dB
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) Dirac basis —+ SNR= 8.2dB (d) Db8 wavelets — SNR= 11.1dB (e) SARA — SNR= 13.4dB
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Outlook

o Effectiveness of compressive sensing for radio interferometric imaging demonstrated
(Wiaux et al. 2009a, Wiaux et al.2009b, Wiaux et al. 2009¢, McEwen & Wiaux 2011, Carrillo et al. 2012).

@ Important to take these methods to the realistic setting so that their advantages can be
realised on observations made by real radio interferometric telescopes.




Outlook

@ Taken first steps toward more realistic setting.




Outlook

@ Taken first steps toward more realistic setting.

@ Wide fields: studied the spread spectrum effect for varying w
(Wolz et al. 2013).

@ Continuous visibilities: incorporated gridding operator
(Carrillo et al. 2013).




Outlook

@ Just released the PURIFY code to scale to the realistic setting.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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Outlook

@ Just released the PURIFY code to scale to the realistic setting.

@ Includes state-of-the-art convex optimisation algorithms that support parallelisation.
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Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.



http://basp-group.github.io/purify/

Outlook

@ Just released the PURIFY code to scale to the realistic setting.
@ Includes state-of-the-art convex optimisation algorithms that support parallelisation.

@ Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
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@ Includes state-of-the-art convex optimisation algorithms that support parallelisation.
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Apply to observations made by real interferometric telescopes.
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