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Goal

Bayesian parameter estimation and model selection

for inverse imaging problems.
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Nested sampling



Bayesian inference: parameter estimation

Bayes’ theorem

likelihood prior
p(y|0,M) p(6|M)
p(o]y. M) =
posterior p(y[M)
evidence

for parameters 6, model M and observed data y.
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Bayesian inference: parameter estimation

Bayes’ theorem

likelihood prior likelihood  prior
p(y |6, M) p(6|M) £(0) w(0)
posterior p(y | M)
evidence evidence

for parameters 6, model M and observed data y.
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Bayesian inference: parameter estimation

Bayes’ theorem

likelihood prior likelihood  prior
p(y |6, M) p(6|M) £(0) w(0)
posterior p(y | M)
evidence evidence

for parameters 6, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Bayesian inference: model selection

By Bayes’ theorem for model M;:

oy Py M;)p(M))
PIIY) = S oty TM)p(M,)
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Bayesian inference: model selection

By Bayes’ theorem for model M;: For model selection, consider posterior model odds:
vy — PV IM)P(M) p(Mly) _ ply|M) p(M)
p(M;1y) S p(y[M)p(M)) - = X
PV | M)p(M; p(Mz|y) p(y | M) p(M2)

posterior odds  Bayes factor  prior odds
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Bayesian inference: model selection

By Bayes’ theorem for model M;: For model selection, consider posterior model odds:
vy — PV IM)P(M) p(Mly) _ ply|M) p(M)
p(M;1y) S p(y[M)p(M)) - = X
PV | M)p(M; p(Mz|y) p(y | M) p(M2)

posterior odds  Bayes factor  prior odds

Must compute the Bayesian model evidence or marginal likelihood given by the
normalising constant

z=p(y|M) :/de £(0) (0) -
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Bayesian inference: model selection
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Occam’s razor

The Bayesian model evidence naturally incorporates Occam'’s razor, trading off model
complexity and goodness of fit.

- In Bayesian formalism models specified as Z:
probability distributions over datasets. ¥
- Each model has limited “probability budget”. ~ =
- Complex models can represent a wide range S é
of datasets well, but spreads predictive = =
g
probability widely. — ‘just right’ ;
- In doing so, model evidence of complex J_ —:L §
models penalised if complexity not required. D -
all possible datasets of size n
SCIAl
| ~UC]


http://www.jasonmcewen.org

- Physics-informed priors
e.g. mass constrained to be positive

- Uninformative prior
e.g. invariance to symmetry transformations

e.g. regularize by imposing sparsity in dictionary
- Data-informed priors

e.g. prior ~ old data, likelihood ~ new data, posterior ~ old and new data

e.g. empirical Bayes (estimate prior from data), learn by machine learning (generative models)
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Nested sampling: reparameterising the likelihood

Nested sampling is ingenious approach to evaluate the evidence (Skilling 2006).

Consider Q- = {x|£(x) > L*}, which groups the parameter
space Q into a series of nested subspaces.

Define the prior volume & within Q- by £(L*) = / m(x)dx.
Ghe

The marginal likelihood integral can then be rewritten as

z- | ' £(e)de.

which is a one-dimensional integral over the prior volume &.

Nested subspaces

Reparameterised
likelihood

Feroz et al. (2013)

Feroz et al. (2013)
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)

1. Draw Njve live samples from prior, with prior volume & = 1.
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
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2. Remove sample with smallest likelihood, say L;.


http://www.jasonmcewen.org

Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.
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1. Draw Njve live samples from prior, with prior volume & = 1.
2. Remove sample with smallest likelihood, say L;.
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than L.
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)
1. Draw Njve live samples from prior, with prior volume & = 1.
2. Remove sample with smallest likelihood, say L;.

3. Replace removed sample with new
than L.

4. Estimate (stochastically) prior volume & enclosed by likelihood level-set L;.
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)
1. Draw Njve live samples from prior, with prior volume & = 1.
2. Remove sample with smallest likelihood, say L;.

3. Replace removed sample with new
than L.

4. Estimate (stochastically) prior volume & enclosed by likelihood level-set L;.
5. Repeat 2-5.


http://www.jasonmcewen.org

Nested sampling: estimating enclosed prior volume stochastically

Enclosed prior volume decreases exponentially at each step: & = tj1&;.

Shrinkage ratio can be estimated stochastically since E(logt) = —1/Njjye.

The enclosed prior volume can then be estimated by

&iv1 = exp(—i/Nive) -
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Nested sampling: evidence estimation and posterior inference

Given the sequence of decreasing prior volumes {¢; ,-N:O and corresponding likelihoods
L; = L(¢&;), the model evidence can be computed numerically using standard quadrature:

N
2= Z Liw;
i=1

for quadrature weight w; (e.g. the trapezium rule with w; = (§_1 + &41)/2).
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Nested sampling: evidence estimation and posterior inference

Given the sequence of decreasing prior volumes {¢; ,-N:O and corresponding likelihoods
L; = L(¢&;), the model evidence can be computed numerically using standard quadrature:

N
2= Z Liw;
i=1

for quadrature weight w; (e.g. the trapezium rule with w; = (§_1 + &41)/2).

Posterior inferences can also be computed by assigning importances weights

~_ Liw
pi = Z
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Nested sampling: challenge

Recall: to compute the marginal likelihood by nested sampling require strategy to
generate likelihoods L; and associated prior volumes &;.

Achieved by
sampling from the prior 7(x), such that £(x) > L*.

L ~UC|
1
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Nested sampling: challenge

Recall: to compute the marginal likelihood by nested sampling require strategy to
generate likelihoods L; and associated prior volumes &;.

Achieved by ,l.e.
sampling from the prior 7(x), such that £(x) > L*.

This is the in applying nested sampling to high-dimensional problems.

L ~UC|
1
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Proximal calculus



Motivating example: high-dimensional inverse imaging problems

Classical high-dimensional imaging problems often consider Gaussian likelihood and
sparsity-promoting prior (e.g. in wavelet representation W):

ply1x) < exp(~ly — @x[3/@20%)  p(x) o< exp(—[Wixi])

Likelihood Prior
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Motivating example: high-dimensional inverse imaging problems

Classical high-dimensional imaging problems often consider Gaussian likelihood and
sparsity-promoting prior (e.g. in wavelet representation W):

ply1x) < exp(~ly — @x[3/@20%)  p(x) o< exp(—[Wixi])
Likelihood Prior

Often compute MAP estimator (variational regularisation):

arg max log p(x | y) argmin[ ||yf¢‘X||§ + Awix
X X
Data fidelity Regulariser
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Motivating example: high-dimensional inverse imaging problems

Often compute MAP estimator (variational regularisation):

arg maxlog p(x |y) = arg min ||yf¢‘X||§ + Awix
X X
Data fidelity Regulariser
= Often solved by convex optimisation algorithms (e.g. splitting algorithms).
SCIA|
[ UL |
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Proximity operator

Proximity operator
The prox of a convex function f: R" — R
is given by

prox (x) = argmin|f(u) + [|u — x||*/2x
u

[llustration of prox (Parikh & Boyd 2013)

> Thin black lines level curves of convex function.

. > Thick black line indicates domain boundary of
SClAl function.

> Evaluating proxs at blue points — red points. 3
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Moreau-Yosida approximation

Morea-Yosida (M-Y) approximation
The of a
convex function f: R” — R is given by
the infimal convolution:

lu —x]*

PO = jof fu)+

UeRN

SciAl \ /

Bl o3 | M-Y envelope of |x| for varying A.

Jason McEwen

14
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Moreau-Yosida approximation

Morea-Yosida (M-Y) approximation Important properties of f*(x):

The of a 1 AsA— 0,AX) = f(x)
convex function f: R” — R is given by N \
the infimal convolution: 2. VfA(x) = (x — proxg (x))/A

lu —x]*

PO = inf flu) + 2

UeRN

SciAl \ /

Bl o3 | M-Y envelope of |x| for varying A.

Jason McEwen

14
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Moreau-Yosida approximation

Morea-Yosida (M-Y) approximation Important properties of f*(x):

s of a 1 As A= 0,A(x) = f(x)
convex function f: R” — R is given by N \
the infimal convolution: 2. VfA(x) = (x — proxg (x))/A
Ay _ lu —x||°
f (X)*UIQMENJC( )+ N

> Regularise non-differentiable function
(e.g. likelihood level-set constraint!)

> Compute gradient by prox.

" ) > Leverage gradient-based Bayesian
i L ' computation.
SciAl

Bl o3 | M-Y envelope of |x| for varying A.

Jason McEwen

14
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Proximal nested sampling




Exploit common structure

Many high-dimensional inverse problems are log-convex, e.g. inverse imaging problems
with Gaussian data fidelity and sparsity-promoting prior.

Exploit structure (log convexity) of the problem.

= (Cai, McEwen & Pereyra 2022; arXiv:2106.03646)

SciA
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Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) = exp(=g(x)) . m(x) = exp(—f(x)) ,
Likelihood Prior
where g = —log £ is convex lower semicontinuous function (prior need not be log-convex).
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Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) = exp(=g(x)) . m(x) = exp(—f(x)) ,
Likelihood Prior
where g = —log £ is convex lower semicontinuous function (prior need not be log-convex).

Let ¢+ (x) and x.-(x) be the indicator and characteristic functions:

1, L(x)>L*, 0, L(x) > L*,
L * (X) = ( ) . and XL+ (X) = ( ) ) (1)
0, otherwise, +oo, otherwise.
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Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) = exp(=g(x)) . m(x) = exp(—f(x)) ,
Likelihood Prior
where g = —log £ is convex lower semicontinuous function (prior need not be log-convex).

Let ¢+ (x) and x.-(x) be the indicator and characteristic functions:

1, L(x)>L*, 0, L(x) > L*,
L * (X) = ( ) . and XL+ (X) = ( ) ) (1)
0, otherwise, +oo, otherwise.

Let - (X) = m(X)e~(x) represent prior distribution with hard likelihood constraint.

SciAl
| *UCL |

Jason McEwen 16
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Constrained sampling formulation

Taking the logarithm, we can write
— log mi- () = — log w(X) + x5, (X) .
where xz. () is the characteristic function associated with the convex set
B, :={x| —log L(X) < T},

for = —log L*.
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) is differentiable can adopt Langevin dynamics.
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.
If target distribution p(x) is differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

ax(t) = %v log p(X(£))dt + dw(t),

where w is Brownian motion.
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.
If target distribution p(x) is differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = % Viogp(x(t)) dt+ dw(t),
Gradient

where w is Brownian motion.

Need gradients so not directly applicable =
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Proximal nested sampling

(Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

> Constrained sampling formulation
> Langevin MCMC sampling

> Moreau-Yosida approximation of constraint (and any non-differentiable prior)

Jason McEwen 19


https://arxiv.org/abs/2106.03646
http://www.jasonmcewen.org

Proximal nested sampling

(Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

> Constrained sampling formulation
> Langevin MCMC sampling

> Moreau-Yosida approximation of constraint (and any non-differentiable prior)

Proximal nested sampling Markov chain:

) 1)
XUk — x(R) 4 5V log m(x®)) — N [x®) —prox,,,, (x(N)] + vow" )

Jason McEwen 19
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

XD = x(F) 4 gv log m(x(") x® —prox,,, (x)] + vow.

2

Jason McEwen 20
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

XD = x(F) 4 gv log m(x(") x® —prox,,, (x)] + vow.

2

1. x® is already in B.: term [x) — prox} . (x®)]
disappears and recover usual Langevin MCMC.
2
[ ]

SCiAl Likelihood
constraint set

XB-

Jason McEwen 20
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

XD = x(F) 4 gV log 7(x()) — % x® —prox,,, (x)] + vow.

1. x® is already in B.: term [x) — prox} . (x®)]
disappears and recover usual Langevin MCMC.

20

2. x® is not in B, a step is also taken in the direction
—[x® —prox},, (xV)], which moves the next iteration
in the direction of the projection of x*) onto the
convex set B-. Acts to push the Markov chain back
into the constraint set B, if it wanders outside of it.

SCiAl Likelihood
constraint set
| *UCH |

XB,
Jason McEwen

20
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

XD = x(F) 4 gV log 7(x()) — % x® —prox,,, (x)] + vow.

1. x® is already in B.: term [x) — prox} . (x®)]
disappears and recover usual Langevin MCMC.

2. x® is not in B, a step is also taken in the direction
—[x® —prox},, (xV)], which moves the next iteration
in the direction of the projection of x*) onto the
convex set B-. Acts to push the Markov chain back
into the constraint set B, if it wanders outside of it.

SCiAl Likelihood
constraint set
| *UCH |

XB,
Jason McEwen

20
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

XD = x(F) 4 gV log 7(x()) — % x® —prox,,, (x)] + vow.

1. x® is already in B.: term [x) — prox} . (x®)]
disappears and recover usual Langevin MCMC. o

2. x® is not in B, a step is also taken in the direction
—[x® —prox},, (xV)], which moves the next iteration
in the direction of the projection of x*) onto the
convex set B-. Acts to push the Markov chain back
into the constraint set B, if it wanders outside of it.

SCiAl Likelihood
constraint set
| *UCH |

XB,
Jason McEwen

20
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Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.

Jason McEwen 21
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Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.

For sparsity-promoting non-differentiable priors f(x) (e.g. —log w(x) = ||WTx]1), can also
make Moreau-Yosida approximation fA(x) and leverage prox to compute gradient Vf*:

) )
XU = xR _ ) [x®) — prox® o, - (x®)] — N [x®) —prox,,,, (x()] + Vow" )

21
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Explicit forms of proximal nested sampling

But how do we compute the proximity operators?

Jason McEwen 22
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Explicit forms of proximal nested sampling

But how do we compute the proximity operators?

Consider common imaging problem as example:

— log m(x) = ||W'x]||, + const.
Prior

Prox? o (%) = X + W (softy, (Wix') — wix),

Jason McEwen 22
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Explicit forms of proximal nested sampling

But how do we compute the proximity operators?

Consider common imaging problem as example:

—log £(x Hy d)tz o+ const. —log w(x) = ||\IlJfX||1 + const.
Likelihood Prior
Straightforward when & is identity. Prox? g (X) = X + W (softy, (Vx') — wix),

Otherwise express as equivalent
saddle-point problem and solve using
primal-dual method.

SCIAl

[ *UCL |

Jason McEwen 22
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Computing proximal operator for likelihood

Prox for the likelihood is equivalent to the saddle-point problem

T /1|2
min max {Z' ®x — B, + X=X 2;.
xeRdzeCK{ X, (2) + | 2/ }

Solve iteratively by primal dual method:

1.2 =20 4 0% — prox, , (2 + 6:9%7),

=0

) z, ifze B,
where prox, ., @) = prOJB;/(z) = {

V27ro? +y, otherwise.

HZ yH

2. XD = (x' + x0 — 5,072y /2

3. R ) 4 g (56 _ 40
GIAl
U

Jason McEwen 23
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Validation on Gaussian problem

100 P
25 X 10 ;
T tegre LA « Proximal nested sampling "
%0 T w\,’r«rfv\vﬁ.&-’\'fwl\“ﬁr Ground truth A
— Mw;;/‘t T " i — 2 sl
) 0 purmstngdive”) o N
X % X
< -50 . ~ 1.5 2
& ®
kS -100 gS) c
-150
o~ MC integration 0.5
-200 | . proximal nested sampling !
Ground truth )
-250 0
0 50 100 150 200 0 2 4 6 8 10 12
Dimension Dimension x10*

Comparison of proximal nested sampling (red), naive MC integration (blue) and ground truth (black).

Also validated in

| *UCL |
2%
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Denoising wavelet dictionary experiment

25
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Denoising wavelet dictionary experiment

Prior log z RMSE (Requires ground truth)
V=] —6.54 x 10" 41.07
¥ =DB2 —3.06 x 10" 14.29
¥ =DB8 —3.09 x 10* 14.51

Evidence computed by proximal nested sampling correctly compares wavelet dictionaries.

Jason McEwen 26
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Proxnest code

) Tests g ) Docs g codecov - pypi package B License GPL arXiv

Proximal nested sampling for high-dimensional Bayesian

model selection

ProxNest is an open source, well tested and documented Python implementation of the proximal nested sampling
framework (Cai et al. 2022) to compute the Bayesian model evidence or marginal likelihood in high-dimensional
log-convex settings. Furthermore, non-smooth sparsity-promoting priors are also supported.

Github: https://github.com/astro-informatics/proxnest

Docs: https://astro-informatics.github.io/proxnest

27
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Learned deep data-driven priors




Empirical Bayes: deep data-driven priors

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough.

Consider empirical Bayes approach with data-driven priors learned from training data.

Jason McEwen 28
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Empirical Bayes: deep data-driven priors

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough.

Consider empirical Bayes approach with data-driven priors learned from training data.

Aim: integrate learned deep data-driven priors into proximal nested sampling.

Proximal nested sampling requires only likelihood to be convex, so prior can be arbitrarily
complex (e.g. deep learned model).

Jason McEwen 28


http://www.jasonmcewen.org

Empirical Bayes: deep data-driven priors

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough.

Consider empirical Bayes approach with data-driven priors learned from training data.

Aim: integrate learned deep data-driven priors into proximal nested sampling.

Proximal nested sampling requires only likelihood to be convex, so prior can be arbitrarily
complex (e.g. deep learned model).

Score matching and denoising diffusion models achieve state-of-the-art performance in
deep generative modelling = denoising closely related to data-driven priors.

SCIA|
i [

Jason McEwen 28
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Proximal nested sampling with deep data driven-priors

(McEwen, Liaudat, Price, Cai & Pereyra 2023; arXiv:2307.00056)

Tobias Liaudat | Henry Aldridge Matt Price Marcelo Pereyra

Jason McEwen 29


https://arxiv.org/abs/2307.00056
http://www.jasonmcewen.org

Tweedie's formula

Tweedie’s formula
Consider noisy observations z ~ N(x, a?I) of x sampled from some underlying prior.

formula gives the posterior expectation of x given z as
E(x|z) = z + 0’V log p(2),

where p(z) is the marginal distribution of z.

Jason McEwen 30
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Tweedie's formula

Tweedie’s formula
Consider noisy observations z ~ N(x, a?I) of x sampled from some underlying prior.

formula gives the posterior expectation of x given z as
E(x|z) = z + 0’V log p(2),
where p(z) is the marginal distribution of z.
> Can be interpreted as a denoising strategy.

> Can be used to relate a denoiser (potentially a trained deep neural network) to the
score Vlog p(2).

Jason McEwen 30
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Learning score of regularised prior

No guarantee that data-driven prior is well-suited for gradient-based Bayesian
computation, e.g. it may not be differentiable.

= Consider regularised prior defined by Gaussian smoothing:

m.() = (@ne) 91 [ d¢ exp(| x — X B/(20) (),

Jason McEwen 31
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Learning score of regularised prior

No guarantee that data-driven prior is well-suited for gradient-based Bayesian
computation, e.g. it may not be differentiable.

= Consider regularised prior defined by Gaussian smoothing:

m.() = (@ne) 91 [ d¢ exp(| x — X B/(20) (),

Consider learned denoiser D, trained to recover x from noisy observations x. ~ N (x, el).

By Tweedie’s formula the score of the by

Vlog me(X) = € '(De(X) — X).

Jason McEwen 31
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Proximal nested sampling with learned data-driven priors

Substituting the denoiser Vlogm (x) = ¢ '(Dc(X) — X) into the proximal nested
sampling Markov chain update:

6 6
R+ R R R R R R+

Jason McEwen 32
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Hand-crafted vs data-driven priors

Consider simple radio interferometric imaging inverse problem with:

> hand-crafted prior based on sparsity-promoting wavelet representation;
> data-driven prior based on a deep convolutional neural network (Ryu et al. 2019).

T\

Ground truth Dirty Hand-crafted prior Data-driven prior
(DNCNN)

1.0

e‘l"’"t

_!‘J\"

Which model best?
SCIA' > SNR = data-driven priors best but :

BEVEN . payesian evidence = data-driven priors best ( ).
Jason McEwen 33
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Hand-crafted vs data-driven priors

Consider simple Galaxy denoising inverse problem with:

> hand-crafted prior based on sparsity-promoting wavelet representation;
> data-driven priors based on a deep neural networks
(Goujon et al. 2023, Ryu et al. 2019).

Ground Dirty Image DB8 Wavelets CRR-NN DnCNN
Truth PSNR: 27.21dB PSNR: 35.71dB PSNR: 39.80dB PSNR: 40.88dB

o logZ: —3.59x10* q logZ: —3.29x10* a log Z: —3.28x10*
0.8

0.6

0.4

0.2

0.0

Which model best?
. > SNR = data-driven priors best but :
SciAl .

EE[dN > Bayesian evidence = data-driven priors best ( ).
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Summary




> (arXiv:2106.03646) framework scales to high-dimensions,
opening up Bayesian model comparison for, e.g., imaging problems.

> Constrained to log-convex likelihoods, which are ubiquitous in imaging sciences.
> Prior not constrained to be log-convex so can be a deep neural network.

> Recently developed (arXiv:2307.00056) approach
to support data-driven priors in an empirical Bayes setting.
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