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Goal

Bayesian parameter estimation and model selection
for inverse imaging problems...
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Goal

Bayesian parameter estimation and model selection
for inverse imaging problems...

with data-driven priors (learned regularisation).
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Questions that can be addressed by model selection

> What is the best forward model?

> (How set regularisation strength?)

> What is the best learned data-driven prior (regulariser)?
> What is the best training data-set?

B oo

Address these questions .. hot by, e.g., cross-validation.
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Leveraging paradigms

Statistics

e.g. Bayesian Inference,
Probability Theory

Leveraging

Paradigms

Computer Science Applied Math
. e.g. Machine Learning, e.g. Optimization,
S C I A | Scientific Computing Proximal Calculus
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1. Nested sampling
2. Proximal nested sampling

3. Learned data-driven priors
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Nested sampling



Bayesian inference: parameter estimation

First, let's set the notation (and colour code)...
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Bayesian inference: parameter estimation

First, let's set the notation (and colour code)...

Bayes’ theorem

likelihood prior likelihood prior
p(y |6, M) p(6|M) £(0) w(0)
p(ely,M) = =
posterior p(y M)
evidence evidence

for parameters #, model M and observed data y.
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Bayesian inference: parameter estimation

First, let's set the notation (and colour code)...

Bayes’ theorem

likelihood prior likelihood prior
p(y |6, M) p(6|M) £(0) w(0)
p(ely,M) = =
posterior p(y M)
evidence evidence

for parameters #, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
SCIAl

[ *UCL |
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Bayesian inference: model selection

By Bayes’ theorem for model M;:

v Py M)p(M))
PIMIY) = oy TMIp(M,)
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Bayesian inference: model selection

By Bayes’ theorem for model M;: For model selection, consider posterior model odds:
v — _PYIM)Pp(M) p(Mly) _ py|IM:) p(Mi)
p(M;1y) MM = X
> Py [ Mj)p(M)) p(M]y) p(y | M2) p(M;)

posterior odds  Bayes factor prior odds
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Bayesian inference: model selection

By Bayes’ theorem for model M;: For model selection, consider posterior model odds:
Mi]y) = LYIM)PIM) p(Mily) _ pyIM)  p(Mi)
Y= S ply TMp(M) - "
j P I M;)PM; p(M2y) Py |Ma) p(M2)

posterior odds  Bayes factor prior odds

Must compute the Bayesian model evidence or marginal likelihood given by the
normalising constant

z=ply|M) = [ 46 L(O)n(6) .
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Bayesian inference: model selection

By Bayes’ theorem for model M;: For model selection, consider posterior model odds:
Mi]y) = LYIM)PIM) p(Mily) _ pyIM)  p(Mi)
Y= S ply TMp(M) - "
j P I M;)PM; p(M2y) Py |Ma) p(M2)

posterior odds  Bayes factor prior odds

Must compute the Bayesian model evidence or marginal likelihood given by the
normalising constant

z=ply|M) = [ 46 L(O)n(6) .
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Occam’s razor

The marginal likelihood naturally incorporates Occam’s razor, trading off model
complexity and goodness of fit.

A =
)
> In Bayesian formalism models specified as g
. . . . =
probability distributions over datasets. Z
> Each model has limited “probability budget”. g ©
o
> Complex models can represent a wide range of : %
datasets well, but spreads predictive probability. o
: : . —_— ‘just right’ ©
> In doing so, marginal likelihood of complex . J - <
models penalised if complexity not required. : [C]

D =

all possible datasets of size n
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> Physics-informed priors

e.g. mass constrained to be positive

> Uninformative prior

e.g. objective Bayes, invariance to symmetry transformations
e.g. regularize by imposing sparsity in dictionary
> Data-informed priors

e.g. prior ~ old data, likelihood ~ new data, posterior ~ old and new data

e.g. empirical Bayes (estimate prior from data), learn by machine learning (generative models)
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Nested sampling: reparameterising the likelihood

Nested sampling is ingenious approach to evaluate the marginal likelihood (Skilling 2006).

Consider Q- = {x|£(x) > L*}, which groups the parameter
space Q into a series of nested subspaces.

Define the prior volume & within Q- by £(L*) = / m(x)dx.
Ghe

The marginal likelihood integral can then be rewritten as

= [ ' £(e)de.

which is a one-dimensional integral over the prior volume &.

Nested subspaces

Reparameterised
likelihood

Feroz et al. (2013)

Feroz et al. (2013)


http://www.jasonmcewen.org

Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)

1. Draw Njye live samples from prior, with prior volume & = 1.


http://www.jasonmcewen.org

Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)
1. Draw Njye live samples from prior, with prior volume & = 1.

2. Remove sample with smallest likelihood, say L;.
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)
1. Draw Njye live samples from prior, with prior volume & = 1.
2. Remove sample with smallest likelihood, say L;.

3. Replace removed sample with new
than L;.
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)
1. Draw Njye live samples from prior, with prior volume & = 1.
2. Remove sample with smallest likelihood, say L;.

3. Replace removed sample with new
than L;.

4. Estimate (stochastically) prior volume & enclosed by likelihood level-set L;.
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) L; and corresponding
prior volumes 0 < & < 1.

Nested sampling (Skilling 2006)
1. Draw Njye live samples from prior, with prior volume & = 1.
2. Remove sample with smallest likelihood, say L;.

3. Replace removed sample with new
than L;.

4. Estimate (stochastically) prior volume & enclosed by likelihood level-set L;.
5. Repeat 2-5.
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Nested sampling: evidence estimation and posterior inference

Given the sequence of decreasing prior volumes {&}Y, and corresponding likelihoods

L; = L(¢&), the marginal likelihood can be computed numerically using standard
quadrature:

N
zZ = Z Liw;
i=1

for quadrature weight w; (e.g. the trapezium rule with w; = (§_1 + &41)/2).
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Nested sampling: evidence estimation and posterior inference

Given the sequence of decreasing prior volumes {&}Y, and corresponding likelihoods

L; = L(¢&), the marginal likelihood can be computed numerically using standard
quadrature:

N
zZ = Z Liw;
i=1
for quadrature weight w; (e.g. the trapezium rule with w; = (§_1 + &41)/2).

Posterior inferences can also be computed by assigning importances weights

_ Liw;
= -
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Nested sampling: challenge

Recall: to compute the marginal likelihood by nested sampling require strategy to
generate likelihoods L; and associated prior volumes &;.

Crux: sample from the prior, subject to the likelihood level-set constraint, i.e. sample from
the prior 7(x), such that £(x) > L*.

This is the in applying nested sampling to high-dimensional problems.

Jason McEwen i
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Proximal nested sampling



Exploit common structure

Many high-dimensional inverse problems are log-convex, e.g. inverse imaging problems
with Gaussian data fidelity and sparsity-promoting prior.

Exploit structure (log convexity) of the problem.

= (Cai, McEwen & Pereyra 2022; arXiv:2106.03646)

SciA


https://arxiv.org/abs/2106.03646
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Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) o< exp(=g(x)) . 7(x) o< exp(—f(x)) .
Likelihood Prior
where g is convex lower semicontinuous function (prior need not be log-convex).
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Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) o< exp(=g(x)) . 7(x) o< exp(—f(x)) .
Likelihood Prior
where g is convex lower semicontinuous function (prior need not be log-convex).

Let ¢+ (x) and x.-(x) be the indicator and characteristic functions:

1, L L*, 0, L L*
= A g =AY 00 > L7, (1)
0, otherwise, +o00, otherwise.
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Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) o< exp(=g(x)) . 7(x) o< exp(—f(x)) .
Likelihood Prior
where g is convex lower semicontinuous function (prior need not be log-convex).

Let ¢+ (x) and x.-(x) be the indicator and characteristic functions:
1, L(x)>L*, 0, L(x) > L*,
LL*(X) = ( ) . and XL*(X) = ( ) . (1)
0, otherwise, +o00, otherwise.

Let 7« (X) = w(X)erx(X) represent prior distribution with hard likelihood constraint.

Equivalently, —logmi«(X) = —logm(X) + x5,(X) , B- := {X| —log L(X) < 7}, 7= —logL".

SCIA|
i [

Jason McEwen 13
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) is differentiable can adopt Langevin dynamics.

Jason McEwen 14
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.
If target distribution p(x) is differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = %v log p(x(t)) dt + dw(t),

where w is Brownian motion.

14
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.
If target distribution p(x) is differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = % Viogp(x(t)) dt+ dw(t),

Gradient

where w is Brownian motion.

Need gradients so not directly applicable =

14
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Moreau-Yosida approximation

Morea-Yosida (M-Y) approximation
The of a
convex function f: R” — R is given by
the infimal convolution:

o lu —x|*
fAx) = inf f(“)+T

UeRN

ScCiAl ... -
g M-Y envelope of |x| for varying A.

Jason McEwen
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Moreau-Yosida approximation

Morea-Yosida (M-Y) approximation Important properties of f*(x):

e of a 1 ASA— 0, (x) = f(x)
convex function f: R” — R is given by N \
the infimal convolution: 2. VF(x) = (x = prox; (x))/A

. u x|
PO = inf flu) + 1

N/

SCIAl | -
g M-Y envelope of |x| for varying A.

Jason McEwen
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Moreau-Yosida approximation

Morea-Yosida (M-Y) approximation Important properties of f*(x):

e of a 1 ASA— 0, (x) = f(x)
convex function f: R” — R is given by N \
the infimal convolution: 2. VF(x) = (x = prox; (x))/A

P00 = inf flu) + LXE

UerX 22 > Regularise non-differentiable function
(e.g. likelihood level-set constraint!)

> Compute gradient by prox.

} > Leverage gradient-based Bayesian
. computation.

ScCiAl ... -
g M-Y envelope of |x| for varying A.

Jason McEwen
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Proximal nested sampling

(Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

> Constrained sampling formulation
> Langevin MCMC sampling

> Moreau-Yosida approximation of constraint (and any non-differentiable prior)
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Proximal nested sampling

(Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

> Constrained sampling formulation
> Langevin MCMC sampling

> Moreau-Yosida approximation of constraint (and any non-differentiable prior)

Proximal nested sampling Markov chain:

XD = x(R) 4 gV log m(x(M) — % [x®) —prox, . (xX*)] + VowD)


https://arxiv.org/abs/2106.03646
http://www.jasonmcewen.org

Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

) 0
xH) = xR SV log r(x) — < x® —prox,,, (x*N)] + Vew+.

2\
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

X84 = 4 4 27 log (x) - 2

o [x® — prox,, (x*H] + vow*.

1. x®) is already in B,: term [x®) — prox} , (x¥)]

disappears and recover usual Langevin MCMC.
20

SCiAl Likelihood
constraint set
| ~UC] X8,
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

) 0
xH) = xR SV log r(x) — < x® —prox,,, (x*N)] + Vew+.

2\

1. x® is already in B, term [x) — prox}, (x")]

disappears and recover usual Langevin MCMC.
N O)

2. x®) is not in B;: a step is also taken in the direction
—[x® - Prox,, (x)], which moves the next iteration
in the direction of the projection of x*) onto the
convex set B.. Acts to push the Markov chain back
into the constraint set B; if it wanders outside of it.

SCiAl Likelihood

constraint set
| *UCH |

XBr
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

) 0
X =x" 4+ > V log n(x\") ™

1. x®) is already in B,: term [x®) — prox} , (x¥)]
disappears and recover usual Langevin MCMC.

2. x®) is not in B;: a step is also taken in the direction
—[x® - Prox,, (x)], which moves the next iteration
in the direction of the projection of x*) onto the
convex set B.. Acts to push the Markov chain back
into the constraint set B; if it wanders outside of it.

x® —prox,, (xX)] + Vow*.

pr OFx BT

Likelihood
constraint set
XB-
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

X84 = 4 4 27 log (x) - 2

o [x® — prox,, (x*H] + vow*.

1. x® is already in B-: term [x*) — prox;BT (x™)] (B +1)

disappears and recover usual Langevin MCMC. o

2. x®) is not in B;: a step is also taken in the direction
—[x® — prox} . (x)], which moves the next iteration

pr OFx BT

in the direction of the projection of x*) onto the z:"*”
convex set B,. Acts to push the Markov chain back \
into the constraint set B; if it wanders outside of it.

SCiAl Likelihood

constraint set
| *UCH |

XBr
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Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.
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Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.

For sparsity-promoting non-differentiable priors f(x) (e.g. —log 7(x) = ||Wx|1), can also
make Moreau-Yosida approximation fA(x) and leverage prox to compute gradient Vf*:
)

)
XU = x(R) o [x®) — prox® e - (x®)] — ) [x® — prox,, (xM)] + Vow*+D
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Explicit forms of proximal nested sampling

Must compute the proximity operators.

Jason McEwen 19
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Explicit forms of proximal nested sampling

Must compute the proximity operators.

Consider common imaging problem as example:

—log m(x) = ||Wix]||, + const.
Prior

Prox? g (X) = X + W(softy, (Vx') — wix),

Jason McEwen 19
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Explicit forms of proximal nested sampling

Must compute the proximity operators.

Consider common imaging problem as example:

—log L(x) = |ly — tl)x||2 + const. —log m(x) = ||Wix]||, + const.
Likelihood Prior
Straightforward when @ is identity. Proxt o (%) = X + W (softy, (Wix') — wix),

Otherwise express as equivalent
saddle-point problem and solve using
primal-dual method.

SCIA|
i [

Jason McEwen 19
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Computing proximal operator for likelihood

Prox for the likelihood is equivalent to the saddle-point problem

+ i
ax {ZTdx — v&, X—=Xx15/2;.
Xrg]glzrgcf{ xp:, (@) + |l 15/2}

Solve iteratively by primal dual method:

1200 =20 4 510%0 — prox, (2 + 6:9x7),

0

) Z, ifze B.,,
where prox,., (2) = prOJB;/(Z) = { T

Hz yn V2712 +y, otherwise.

2. X = (x4 XD — 5,072 /2
3. )—<l+‘\) _ r+1 +6( (i4+1) X(l))

Jason McEwen 20
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Validation on Gaussian problem

100 — - 4
2.5 X 10
+ Proximal nested sampling o

50 TR ’
. ' ,’M‘" th&, ma,\m_ww,‘l | R | Ground truth o
N 0 MW,{“L" it N
> . %%@ X s i
> R} DG > 2
% Y T
-100 - Akl eer
° Glpde o |
LREVENS 1
-150 ¢ e e
sgielly
o—MC integration © o %0 0.5
-200 - | . proximal nested sampling s
Ground truth
-250 0
0 50 100 150 200 0 2 4 6 8 10 12
. . . . 4
Dimension Dimension x10

Comparison of proximal nested sampling (red), naive MC integration (blue) and ground truth (black).

Also validated in 10° dimensions.
SciA|  Truth: 23850 x10°  Proximal nested sampling: (2.3851+ 0.0002) x 10°

[ *UCL |
21
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Denoising wavelet dictionary experiment

22


http://www.jasonmcewen.org

Denoising wavelet dictionary experiment

Prior log z RMSE (Requires ground truth)
V=] —6.54 x 10" 41.07
¥ =DB2 —3.06 x 10" 14.29
¥ =DB8 —3.09 x 10* 14.51

Evidence computed by proximal nested sampling correctly compares wavelet dictionaries.

Jason McEwen 23
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Learned data-driven priors




Empirical Bayes: deep data-driven priors

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough.

Consider empirical Bayes approach with data-driven priors learned from training data.

Jason McEwen 24
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Empirical Bayes: deep data-driven priors

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough.

Consider empirical Bayes approach with data-driven priors learned from training data.

Aim: integrate learned deep data-driven priors into proximal nested sampling.

Proximal nested sampling requires only likelihood to be convex, so prior can be arbitrarily
complex (e.g. deep learned model).

Jason McEwen 24
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Proximal nested sampling with deep data driven-priors

(McEwen, Liaudat, Price, Cai & Pereyra 2023; arXiv:2307.00056)

Tobias Liaudat | Henry Aldridge Matt Price Marcelo Pereyra

Jason McEwen 25
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Tweedie's formula

Tweedie’s formula (Robins 1956)
Consider noisy observations x ~ N(z, o%1) of z sampled from some underlying prior.

formula gives the posterior expectation of z given x as
E(z|x) = x + 0’V log p(x),

where p(x) is the marginal distribution of x.

Jason McEwen 26


http://www.jasonmcewen.org

Tweedie's formula

Tweedie’s formula (Robins 1956)
Consider noisy observations x ~ N(z, o%1) of z sampled from some underlying prior.

formula gives the posterior expectation of z given x as
E(z|x) = x + 0’V log p(x),
where p(x) is the marginal distribution of x.
> Can be interpreted as a denoising strategy.

> Can be used to relate a denoiser (potentially a trained deep neural network) to the
score V log p(x).

Jason McEwen 26
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Learning score of regularised prior

No guarantee that data-driven prior is well-suited for gradient-based Bayesian
computation, e.g. it may not be differentiable.

= Consider regularised prior defined by Gaussian smoothing:

me(X) = (2me)~9/? / dx" exp(—Ix — X'||3/(2¢€)) m(x').

Jason McEwen 27
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Learning score of regularised prior

No guarantee that data-driven prior is well-suited for gradient-based Bayesian
computation, e.g. it may not be differentiable.

= Consider regularised prior defined by Gaussian smoothing:

me(X) = (2me)~9/? / dx" exp(—Ix — X'||3/(2¢€)) m(x').

Consider learned denoiser D, trained to recover x from noisy observations x. ~ N(x, €l).

By Tweedie’s formula the score of the by

Vlog me(X) = € (Dc(X) — X).

Jason McEwen 27
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Proximal nested sampling with learned data-driven priors

Substituting the denoiser Vlogm (x) = ¢ '(D(X) — x) into the proximal nested
sampling Markov chain update:

X(k'H) — X(k) _ 2é[x(h’) _ DG(X(k))] _ % I:X(k) _ prOXXBT (X(k))] 4L \/Sw(k‘H) .

€

Jason McEwen 28
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Hand-crafted vs data-driven priors

Consider simple radio interferometric imaging inverse problem with:

> hand-crafted prior based on sparsity-promoting wavelet representation;
> data-driven prior based on a deep convolutional neural network (Ryu et al. 2019).

T\

Ground truth Backprojected Hand-crafted prior Data-driven prior
(17.2dB) (23.0dB) (24.2dB)

1.0

e‘l"’"t

_!‘J\"

Which model best?
SCIA' > SNR = data-driven priors best but :

BEVEN . payesian evidence = data-driven priors best ( ).
Jason McEwen 29
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Hand-crafted vs data-driven priors

Consider simple Galaxy denoising inverse problem with:

> hand-crafted prior based on sparsity-promoting wavelet representation;
> data-driven priors based on deep neural networks
(Goujon et al. 2023, Ryu et al. 2019).

Ground Dirty Image DB8 Wavelets CRR-NN DnCNN
Truth PSNR: 27.21dB PSNR: 35.71dB PSNR: 39.80dB PSNR: 40.88dB

o logZ: —3.59x10* q logZ: —3.29x10* a log Z: —3.28x10*
0.8

0.6

0.4

0.2

0.0

Which model best?
. > SNR = data-driven priors best but :
SciAl .

EE[dN > Bayesian evidence = data-driven priors best ( ).
Jason McEwen 30
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Summary




> (arXiv:2106.03646) framework scales to high-dimensions,
opening up Bayesian model comparison for, e.g., imaging problems.

> Constrained to log-convex likelihoods, which are ubiquitous in imaging sciences.
> Prior not constrained to be log-convex so can be a deep neural network.
> (arXiv:2307.00056) approach to support

data-driven priors.

> Future work:

B More extensive experiments to showcase use
B Remove convexity constraint
B More expressive data-driven priors (e.g. denoising diffusion models)

Jason McEwen 31
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Extra Slides
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Alternatives to marginal likelihood

> Posterior predictive checks
@ Fine for model consistency checks
@ Not suitable for model comparison

B Does not guarantee Bayesian consistency
B Does not penalise model complexity

> Bayesian model complexity and
dimensionality
@ Only weakly dependent on prior through
posterior

> Bayesian leave one out (LOO) cross validation
@ Fine for validation
€ Not suitable for model comparison

B Does not guarantee Bayesian consistency
B Does not penalise model complexity

> Bayesian suspicious for testing for tensions
between datasets
@ Only weakly dependent on prior through
posterior

33
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Nested sampling: estimating enclosed prior volume stochastically

Enclosed prior volume decreases exponentially at each step: & = tj1&;.

Shrinkage ratio can be estimated stochastically since E(logt) = —1/Njjye.

The enclosed prior volume can then be estimated by

&iv1 = exp(—i/Nive) -

34
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