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Bianchi VII, cosmologies

@ Relax assumptions about the global structure of spacetime by allowing anisotropy about each
point in the Universe.

@ Yields more general solutions to Einstein’s field equations — Bianchi cosmologies.

@ For small anisotropy, as already demanded by current observations, linear perturbation about
the standard FRW model may be applied.

@ Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded
in the usual stochastic anisotropies.
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Bianchi VII, cosmologies

@ Relax assumptions about the global structure of spacetime by allowing anisotropy about each
point in the Universe.

@ Yields more general solutions to Einstein’s field equations — Bianchi cosmologies.

@ For small anisotropy, as already demanded by current observations, linear perturbation about
the standard FRW model may be applied.

@ Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded
in the usual stochastic anisotropies.

@ First examined by Collins & Hawking (1973) and Barrow et al. (1985), however dark energy
not included.

@ Focus on Bianchi VII, using solutions derived by Anthony Lasenby that do incorporate dark
energy (also derived independently by Jaffe et al. 2006).
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Bianchi VII, cosmologies

@ Bianchi VI, models describe a universe with overall rotation, with angular velocity w, and a
three-dimensional rate of shear, specified by the antisymmetric tensor o;;. Throughout we
assume equality of shear modes o = o1, = o3 (cf. Jaffe et al. 2005).

@ The amplitude of induced CMB temperature fluctuations may be characterised by the
dimensionless vorticity (w/H)o, which influences the amplitude of the induced temperature
contribution only and not its morphology.
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Bianchi VII, cosmologies

@ Bianchi VI, models describe a universe with overall rotation, with angular velocity w, and a
three-dimensional rate of shear, specified by the antisymmetric tensor o;;. Throughout we
assume equality of shear modes o = o1, = o3 (cf. Jaffe et al. 2005).

@ The amplitude of induced CMB temperature fluctuations may be characterised by the
dimensionless vorticity (w/H)o, which influences the amplitude of the induced temperature
contribution only and not its morphology.

@ The model has a free parameter, denoted x, describing the comoving length-scale over which
the principal axes of shear and rotation change orientation.
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Bianchi VII, cosmologies

@ Bianchi VI, models describe a universe with overall rotation, with angular velocity w, and a
three-dimensional rate of shear, specified by the antisymmetric tensor o;;. Throughout we
assume equality of shear modes o = o1, = o3 (cf. Jaffe et al. 2005).

@ The amplitude of induced CMB temperature fluctuations may be characterised by the
dimensionless vorticity (w/H)o, which influences the amplitude of the induced temperature
contribution only and not its morphology.

@ The model has a free parameter, denoted x, describing the comoving length-scale over which
the principal axes of shear and rotation change orientation.

@ The orientation and handedness of the coordinate system is also free.
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Bianchi VII, cosmologies

@ Bianchi VI, models describe a universe with overall rotation, with angular velocity w, and a
three-dimensional rate of shear, specified by the antisymmetric tensor o;;. Throughout we
assume equality of shear modes o = o1, = o3 (cf. Jaffe et al. 2005).

@ The amplitude of induced CMB temperature fluctuations may be characterised by the
dimensionless vorticity (w/H)o, which influences the amplitude of the induced temperature
contribution only and not its morphology.

@ The model has a free parameter, denoted x, describing the comoving length-scale over which
the principal axes of shear and rotation change orientation.

@ The orientation and handedness of the coordinate system is also free.
@ Bianchi VI, models may be described by the parameter vector:

Op = (&Zm, Qa, x, (w/H)o, a,ﬁ.’y) .
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Figure: Simulated deterministic CMB temperature contributions in Bianchi VI, cosmologies for varying x and
(left-to-right Qo € {0.10,0.30, 0.95}; top-to-bottom x € {0.1,0.3,0.7, 1.5}). — t
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Bayesian analysis of Bianchi VII, cosmologies

@ Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013)
http://arxiv.org/abs/arXiv:1303.3409

and applied to WMAP previously.
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Bayesian analysis of Bianchi VII, cosmologies

@ Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013)
http://arxiv.org/abs/arXiv:1303.3409

and applied to WMAP previously.
@ Posterior distribution of the parameters © of model of interest M given data d, as
P(©|d,M) < P(d|O,M)P(O|M) .
@ Consider open and flat cosmologies with cosmological parameters:
Oc = (Ay, ns, T, Qh?, Qh*, Qp, ).

@ Recall Bianchi parameters:
O = (Qm, Qa, x, (w/H)o, a,B,7).
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Bayesian analysis of Bianchi VII, cosmologies

@ Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013)
http://arxiv.org/abs/arXiv:1303.3409

and applied to WMAP previously.
@ Posterior distribution of the parameters © of model of interest M given data d, as
P(©|d,M) < P(d|O,M)P(O|M) .
@ Consider open and flat cosmologies with cosmological parameters:
Oc = (Ay, ns, T, Qh?, Qh*, Qp, ).

@ Recall Bianchi parameters:
Op = (Qm, Qa, x, (w/H)o, o, 3,7).

@ Likelihood is given by

1 —x%(©¢,0p)/2
P(d|O5, O¢) 7e[ x{Se “)/] ,
[X(©c)]

where

X’ (Oc, Og) = [d —b(©)] T X7 (Oc) [d — b(O8)] ‘ .
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Bayesian analysis of Bianchi VII, cosmologies

@ Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013)
http://arxiv.org/abs/arXiv:1303.3409

and applied to WMAP previously.
@ Posterior distribution of the parameters © of model of interest M given data d, as
P(©|d,M) < P(d|O,M)P(O|M) .
@ Consider open and flat cosmologies with cosmological parameters:
Oc = (Ay, ns, T, Qh?, Qh*, Qp, ).

@ Recall Bianchi parameters:
Op = (Qm, Qa, x, (w/H)o, o, 3,7).

@ Likelihood is given by

1 —x%(©¢,0p)/2
P(d|O5, O¢) 7e[ x{Se “)/] ,
[X(©c)]

where

X’ (Oc, Og) = [d —b(©)] T X7 (Oc) [d — b(O8)] ‘ .
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Bayesian analysis of Bianchi VII, cosmologies

@ Bianchi VI, templates can be computed accurately and rotated efficiently in harmonic space
— consider harmonic space representation, where d = {d;,, } and b(©g) = {bs,(Os)}.
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Bayesian analysis of Bianchi VII, cosmologies

@ Bianchi VI, templates can be computed accurately and rotated efficiently in harmonic space
— consider harmonic space representation, where d = {d;,, } and b(©g) = {bs,(Os)}.

@ Partial-sky analysis that handles in harmonic space a mask applied in pixel space.

@ Add masking noise in order to marginalise the pixel values of the data contained in the
masked region, with variance for pixel i given by

> 2w €M
0777<w') = k <2 5
0, w; €S\M

where X2 is a constant masking noise variance.

m

HFi rovec




Bayesian Analysis
0@000

Bayesian analysis of Bianchi VII, cosmologies

@ Bianchi VI, templates can be computed accurately and rotated efficiently in harmonic space
— consider harmonic space representation, where d = {d;,, } and b(©g) = {bs,(Os)}.

@ Partial-sky analysis that handles in harmonic space a mask applied in pixel space.

@ Add masking noise in order to marginalise the pixel values of the data contained in the
masked region, with variance for pixel i given by

P 22w eM
0-;7 <wl) = " 2 9
0, w; €S\M

where X2 is a constant masking noise variance.

m

@ The covariance is then given by

[X(6c) = c(0c) + M|,

where

e C(O¢) is the diagonal CMB covariance defined by the power spectrum C; (O¢);
@ M is the non-diagonal noisy mask covariance matrix defined by

e'm’ 2
My, = (men ) = > 00 (@)Y (w0) Yo (wi) Qpix” -

wi

6

HFi rovec



Bayesian Analysis
[e]e] le]e}

Bayesian analysis of Bianchi VII, cosmologies

@ Compute the Bayesian evidence to determine preferred model:

=P(d|M) :/d@P(d\(—),M)P(@\M)

@ ( ’:1 planck
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Bayesian analysis of Bianchi VII, cosmologies

@ Compute the Bayesian evidence to determine preferred model:

E = P(d| M) :/d@P(d\(—),M)P(@\M)

@ Use MultiNest to compute the posteriors and evidences via nested sampling
(Feroz & Hobson 2008, Feroz et al. 2009).
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Bayesian analysis of Bianchi VII, cosmologies

@ Compute the Bayesian evidence to determine preferred model:

E = P(d| M) :/d@P(d\(—),M)P(@\M)

@ Use MultiNest to compute the posteriors and evidences via nested sampling
(Feroz & Hobson 2008, Feroz et al. 2009).
@ Consider two models:

o Flat-decoupled-Bianchi model: ©¢ and Oy fitted simultaneously but decoupled
— phenomenological

@ Open-coupled-Bianchi model: ©¢ and Oy, fitted simultaneously and coupled
— physical
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Validation with simulations
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Figure: Partial-sky simulation with embedded Bianchi VII;, component at £y, = 32.
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Validation with simulations
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Figure: Marginalised posterior distributions recovered from partial-sky simulation at £y, = 32.
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Planck results: flat-decoupled-Bianchi model

Planck Results
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Figure: Posterior distributions of Bianchi parameters recovered for the phenomenological flat-decoupled-Bianchi

model from Planck smIca (solid curves) and s

dashed curves) data.
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Planck results: flat-decoupled-Bianchi model

Table: Bayes factor relative to equivalent ACDM model (positive favours Bianchi model).

Model AlnE
SMICA SEVEM

Flat-decoupled-Bianchi (left-handed) 2.8 +0.1 1.5+ 0.1
Flat-decoupled-Bianchi (right-handed) 0.5+£0.1 0.540.1

@ On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VI, component would be
termed strong (significant) for SMICA (SEVEM) component-separated data.

@ A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.

@ Planck data favour the inclusion of a phenomenological Bianchi VI, component.
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Planck results: flat-decoupled-Bianchi model

Table: Bayes factor relative to equivalent ACDM model (positive favours Bianchi model).

Model AlnE
SMICA SEVEM

Flat-decoupled-Bianchi (left-handed) 2.8 +0.1 1.5+ 0.1
Flat-decoupled-Bianchi (right-handed) 0.5+£0.1 0.540.1

@ On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VI, component would be
termed strong (significant) for SMICA (SEVEM) component-separated data.

@ A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.
@ Planck data favour the inclusion of a phenomenological Bianchi VI, component.

@ Best-fit Bianchi VI, template is similar to that first found in WMAP data by Jaffe et al. 2005.
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Planck results: flat-decoupled-Bianchi model
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Figure: Best-fit template of flat-decoupled-Bianchi VI, model found in Planck sMIca component-separated data.
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Planck results: flat-decoupled-Bianchi model

=500, I +500.

Figure: Planck sM1CA component-separated data.
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Planck results: flat-decoupled-Bianchi model
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Figure: Planck sMIca component-separated data minus best-fit template of flat-decoupled-Bianchi VI, model.
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Planck results: flat-decoupled-Bianchi model

@ BUT the flat-Bianchi-decoupled model is phenomenological and not physical!

Table: Parameters recovered for flat-decoupled-Bianchi model.

Bianchi Parameter SMICA SEVEM
MAP Mean MAP Mean

B 0.38 0.32 4 0.12 0.35 0.31 £0.15
S‘z% 0.20 0.31 4 0.20 0.22 0.30 + 0.20

x 0.63 0.67 +0.16 0.66 0.62 + 0.23

(w/H)o 88x 10710 (7.14£1.9) x 10710 94 x 10710  (5.942.4) x 10710

@ 38.8° 51.3° 4 47.9° 40.5° 77.4° 4 80.3°
B8 28.2° 33.7° £ 19.7° 28.4° 45.6° £ 32.7°

v 309.2° 292.2° 4 51.9° 317.0° 271.5° + 80.7°




Planck Results
00000000

Planck results: open-coupled-Bianchi model
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Figure: Posterior distributions of Bianchi parameters recovered for the physical open-coupled-Bianchi model from
Planck sm1ca (solid curves) and sEVEM (dashed curves) data.
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Planck results: open-coupled-Bianchi model

Table: Bayes factor relative to equivalent ACDM model (positive favours Bianchi model).

Model AlnE
SMICA SEVEM

Open-coupled-Bianchi (left-handed) 0.0 0.1 0.0 0.1
Open-coupled-Bianchi (right-handed) —0.4+0.1 —0.4+0.1

@ In the physical setting where the standard cosmological and Bianchi parameters are coupled,
Planck data do not favour the inclusion of a Bianchi VI, component.

@ We find no evidence for Bianchi VII, cosmologies and constrain the vorticity of such models to
(w/H)o < 8.1 x 107! (95% confidence level).
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Summary

@ Perform a Bayesian analysis of partial-sky Planck data for evidence of Bianchi VII,
cosmologies.

@ Planck data support the inclusion of a phenomenological Bianchi template. ..

@ BUT this model is non-physical and the recovered cosmological parameters are inconsistent
with standard constraints!
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Summary

@ Perform a Bayesian analysis of partial-sky Planck data for evidence of Bianchi VII,
cosmologies.

@ Planck data support the inclusion of a phenomenological Bianchi template. ..

@ BUT this model is non-physical and the recovered cosmological parameters are inconsistent
with standard constraints!

@ In the physical model where the cosmological and Bianchi parameters are coupled, Planck
data do not favour the inclusion of a Bianchi VI, component.

@ We constrain vorticity of Bianchi VII, cosmologies to (w/H)y < 8.1 x 10~'% (95% confidence
level).
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