

Exascale computational challenges

⇒ All require Big-Compute.

Overview

- 1. SKA Exascale
- 2. Imaging Strategy
- 3. Exascale Algorithms
	- Blocking for Distribution
	- Uncertainty Quantification
	- AI Data-Driven Prior
- 4. Demonstrations

SKA Exascale

Square Kilometre Array (SKA): next-gen radio interferometric telescope

SKA science goals

Orders of magnitude improvement in sensitivity and resolution.

Unlock broad range of science goals.

SKA partners

SKA sites

SKA data rates

⇒ 8.5 Exabytes over the 15-year lifetime of initial high-priority science programmes (Scaife 2020).

Jason McEwen 7

Imaging Strategy

Radio interferometric telescopes acquire "Fourier" measurements

Radio interferometric telescopes acquire "Fourier" measurements

Interferometric imaging is an exascale computational inverse imaging problem.

Radio interferometric imaging ill-posed inverse problem:

$$
y = \Phi(x) + n
$$

for data (visibilities) *y*, telescope model **Φ**, underlying image *x* and noise *n*.

Radio interferometric imaging ill-posed inverse problem:

$$
y = \Phi(x) + n
$$

$$
y \xleftarrow{\text{forward model}} x
$$

for data (visibilities) *y*, telescope model **Φ**, underlying image *x* and noise *n*.

Radio interferometric imaging ill-posed inverse problem:

for data (visibilities) *y*, telescope model **Φ**, underlying image *x* and noise *n*.

Radio interferometric imaging ill-posed inverse problem:

$$
y = \Phi(x) + n
$$

$$
y \xleftarrow{\text{forward model}} x
$$

$$
y \xrightarrow{\text{inverse inference}} x
$$

for data (visibilities) *y*, telescope model **Φ**, underlying image *x* and noise *n*.

Highly realistic wide-field telescope model

(Pratley, Johnston-Hollitt & McEwen 2019; Pratley, Johnston-Hollitt & McEwen 2020).

Radio interferometric imaging ill-posed inverse problem:

$$
y = \Phi(x) + n
$$

$$
y \xleftarrow{\text{forward model}} x
$$

$$
y \xrightarrow{\text{inverse inference}} x
$$

for data (visibilities) *y*, telescope model **Φ**, underlying image *x* and noise *n*.

Highly realistic wide-field telescope model

(Pratley, Johnston-Hollitt & McEwen 2019; Pratley, Johnston-Hollitt & McEwen 2020).

Big-Data *⇒* Big-Compute

since compute scales as *O*(*M*) for *M* data measurements.

Statistical framework

Inverse problem is ill-posed so inject regularising prior information.

Statistical framework

Inverse problem is ill-posed so inject regularising prior information.

Bayes Theorem:

 $p(x|y) \propto p(y|x)p(x)$, *i.e.* posterior \propto likelihood \times prior

Define likelihood (assuming Gaussian noise) and prior:

$$
p(\mathbf{y}|\mathbf{x}) = \mathcal{L}(\mathbf{x}) \propto \exp\left(-\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/(2\sigma^2)\right)
$$

$$
p(\mathbf{x}) = \pi(\mathbf{x}) \propto \exp(-R(\mathbf{x}))
$$

likelihood

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\hline\n\end{array}
$$
 prior

Optimisation vs sampling

MAP estimation

- + Based on optimisation so computationally efficient.
- *−* No uncertainties (traditionally).
- *−* Hand-crafted priors (traditionally).

MCMC sampling

- *−* Based on sampling so computationally demanding.
- + Uncertatinties encoded in posterior.
- *−* Hand-crafted priors (traditionally).

Computational imaging strategy

Goals:

- + Computationally efficient (optimisation + distribution).
- + Quantifies uncertainties.
- + Data-driven AI priors (enhance reconstruction fidelity).

Computational imaging strategy

Goals:

- + Computationally efficient (optimisation + distribution).
- + Quantifies uncertainties.
- + Data-driven AI priors (enhance reconstruction fidelity).

Achieve by combining:

- 1. Statistical framework: Bayesian inference and MAP estimation.
- 2. Mathematical theory: probability concentration theorem for log-convex distributions.
- 3. Constrained AI model: convex AI model with explicit potential.

Solve optimisation problem

Solve optimisation problem (MAP estimation by variation regularisation):

$$
x_{\text{map}} = \arg \max_{x} \left[\log p(y | x) \right] = \arg \min_{x} \left[\left\| y - \Phi x \right\|_{2}^{2} + \left[\lambda R(x) \right] \right]
$$

regulariser

Solve optimisation problem

Solve optimisation problem (MAP estimation by variation regularisation):

$$
x_{\text{map}} = \arg \max_{x} \left[\log p(y | x) \right] = \arg \min_{x} \left[\left\| y - \Phi x \right\|_{2}^{2} + \left[\lambda R(x) \right] \right]
$$

regulariser

Traditionally, hand-crafted regularisers used

(*e.g. R*(*x*) = *∥***Ψ***† x∥*¹ to promote sparsity in some (wavelet) dictionary **Ψ**).

Instead, adopt data-driven AI prior for regulariser (small-AI) trained on simulations (big-sims).

Solve optimisation problem

Solve optimisation problem (MAP estimation by variation regularisation):

$$
x_{\text{map}} = \arg \max_{x} \left[\log p(y | x) \right] = \arg \min_{x} \left[\left\| y - \Phi x \right\|_{2}^{2} + \left[\lambda R(x) \right] \right]
$$

regulariser

Traditionally, hand-crafted regularisers used

(*e.g. R*(*x*) = *∥***Ψ***† x∥*¹ to promote sparsity in some (wavelet) dictionary **Ψ**).

Instead, adopt data-driven AI prior for regulariser (small-AI) trained on simulations (big-sims).

> *⇒* Highly distributed and parallelised optimisation algorithms, with **low communication** overhead.

Exascale Algorithms

Exascale Algorithms Blocking for Distribution

Block distribution

Solve resulting convex optimisation problem by proximal splitting.

Block algorithm to distribute data and compute (telescope model):

 $\overline{}$ r.

(Carrillo, McEwen & Wiaux 2014; Onose *et al.* (inc. McEwen) 2016; Pratley, Johnston-Hollitt & McEwen 2019; Pratley, McEwen *et al.* 2019; Pratley, Johnston-Hollitt & McEwen 2020)

$$
y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_d} \end{bmatrix} , \quad \Phi = \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_{n_d} \end{bmatrix} = \begin{bmatrix} G_1 M_1 \\ \vdots \\ G_{n_d} M_{n_d} \end{bmatrix} FZ \ .
$$

Block distribution

Solve resulting convex optimisation problem by proximal splitting.

Block algorithm to distribute data and compute (telescope model):

(Carrillo, McEwen & Wiaux 2014; Onose *et al.* (inc. McEwen) 2016; Pratley, Johnston-Hollitt & McEwen 2019; Pratley, McEwen *et al.* 2019; Pratley, Johnston-Hollitt & McEwen 2020)

- *▷* Stochastic updates to support big-data.
- *▷* Two internal distribution strategies:
	- 1. Distribute image (*i.e.* distribute **Φ***i*)
	- 2. Distribute Fourier grid (*i.e.* distribute *GiMi*)

Block distribution

Solve resulting convex optimisation problem by proximal splitting.

Block algorithm to distribute data and compute (telescope model):

(Carrillo, McEwen & Wiaux 2014; Onose *et al.* (inc. McEwen) 2016; Pratley, Johnston-Hollitt & McEwen 2019; Pratley, McEwen *et al.* 2019; Pratley, Johnston-Hollitt & McEwen 2020)

- *▷* Stochastic updates to support big-data.
- *▷* Two internal distribution strategies:
	- 1. Distribute image (*i.e.* distribute **Φ***i*)
	- 2. Distribute Fourier grid (*i.e.* distribute *GiMi*)

Benchmarking performed in Pratley, McEwen *et al.* 2019 (although out of date).

Block distributed alternating direction method of multipliers (ADMM) algorithm

Block distributed primal dual algorithm

Block distributed primal dual algorithm with AI prior

Exascale Algorithms Uncertainty Quantification

Convex probability concentration for uncertainty quantification

Posterior credible region:

$$
p(\mathbf{x} \in C_{\alpha}|\mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^N} p(\mathbf{x}|\mathbf{y}) \mathbb{1}_{C_{\alpha}} d\mathbf{x} = 1 - \alpha.
$$

Consider the highest posterior density (HPD) region

 $C^*_{\alpha} = \{x : -\log p(x) \leq \gamma_{\alpha}\}, \text{ with } \gamma_{\alpha} \in \mathbb{R}, \text{ and } p(x \in C^*_{\alpha}|y) = 1 - \alpha \text{ holds.}$

Convex probability concentration for uncertainty quantification

Posterior credible region:

$$
p(\mathbf{x} \in C_{\alpha}|\mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^N} p(\mathbf{x}|\mathbf{y}) \mathbb{1}_{C_{\alpha}} d\mathbf{x} = 1 - \alpha.
$$

Consider the highest posterior density (HPD) region

$$
\mathcal{C}^*_\alpha = \big\{x: -\log p(x) \leq \gamma_\alpha\big\}, \quad \text{with } \gamma_\alpha \in \mathbb{R}, \quad \text{and } p(x \in \mathcal{C}^*_\alpha | y) = 1 - \alpha \text{ holds}.
$$

Theorem 3.1 (Pereyra 2017)

Suppose the posterior log *p*(*x|y*) *∝* log *L*(*x*) + log *π*(*x*) is log-concave on R *N* . Then, for any $\alpha \in (4e^{\left[\frac{\alpha}{2}\right]}\cdot 1)$, the HPD region C^*_{α} is contained by

$$
\hat{C}_{\alpha} = \left\{x : \log \mathcal{L}(x) + \log \pi(x) \leq \hat{\gamma}_{\alpha} = \log \mathcal{L}(\hat{x}_{\text{MAP}}) + \log \pi(\hat{x}_{\text{MAP}}) + \sqrt{N}\tau_{\alpha} + N\right\}
$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(x|y)$.

,

Convex probability concentration for uncertainty quantification

Posterior credible region:

$$
p(\mathbf{x} \in C_{\alpha}|\mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^N} p(\mathbf{x}|\mathbf{y}) \mathbb{1}_{C_{\alpha}} d\mathbf{x} = 1 - \alpha.
$$

Consider the highest posterior density (HPD) region

$$
\mathcal{C}^*_\alpha = \big\{x: -\log p(x) \leq \gamma_\alpha\big\}, \quad \text{with } \gamma_\alpha \in \mathbb{R}, \quad \text{and } p(x \in \mathcal{C}^*_\alpha | y) = 1 - \alpha \text{ holds}.
$$

Theorem 3.1 (Pereyra 2017)

Suppose the posterior log *p*(*x|y*) *∝* log *L*(*x*) + log *π*(*x*) is log-concave on R *N* . Then, for any $\alpha \in (4e^{\left[\frac{\alpha}{2}\right]}\cdot 1)$, the HPD region C^*_{α} is contained by

$$
\hat{C}_{\alpha} = \left\{x : \log \mathcal{L}(x) + \log \pi(x) \leq \hat{\gamma}_{\alpha} = \log \mathcal{L}(\hat{x}_{\text{MAP}}) + \log \pi(\hat{x}_{\text{MAP}}) + \sqrt{N}\tau_{\alpha} + N\right\}
$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(x|y)$.

Need only evaluate $\log \mathcal{L} + \log \pi$ for the MAP estimate x_{MAP} !

,

Local Bayesian credible intervals

Local Bayesian credible intervals for sparse reconstruction

(Cai, Pereyra & McEwen 2018b)

Let ^Ω define the area (or pixel) over which to compute the credible interval (*ξ*˜*−, ^ξ*˜+) and *^ζ* be an index vector describing $Ω$ (*i.e.* $ζ_i = 1$ if *i* ∈ $Ω$ and 0 otherwise).

Consider the test image with the Ω region replaced by constant value *ξ*:

 $x' = x^*(I - \zeta) + \xi \zeta$.

Given $\tilde{\gamma}_{\alpha}$ and x^* , compute the credible interval by

 $\tilde{\xi}-\min_{\xi}\left\{\xi\mid \log \mathcal{L}(\mathsf{X}')+\log \pi(\mathsf{X}')\leq \tilde{\gamma}_{\alpha},\ \forall \xi\in [-\infty,+\infty)\right\},$ $\tilde{\xi}_+ = \max_{\xi} \left\{ \xi \mid \log \mathcal{L}(x') + \log \pi(x') \leq \tilde{\gamma}_\alpha, \ \forall \xi \in [-\infty, +\infty) \right\}.$

Hypothesis testing

Hypothesis testing of physical structure

(Pereyra 2017; Cai, Pereyra & McEwen 2018a)

- 1. Remove structure of interest from recovered image *x ⋆* .
- 2. Inpaint background (noise) into region, yielding surrogate image *x ′* .
- 3. Test whether $x' \in C_{\alpha}$:
	- *▷* If *x ′ ∈/ C^α* then reject hypothesis that structure is an artifact with confidence (1 *− α*)%, *i.e.* structure most likely physical.
	- *▷* If *x ′ ∈ C^α* uncertainly too high to draw strong conclusions about the physical nature of the structure.

Exascale Algorithms AI Data-Driven Prior

Convex AI prior

Adopt neural-network-based convex regulariser *R* (Goujon *et al.* 2022; Liaudat *et al.* McEwen 2024):

College

$$
R(x) = \sum_{n=1}^{N_C} \sum_k \psi_n \left(\left(h_n * x \right) [k] \right),
$$

- *▷ ψⁿ* are learned convex profile functions with Lipschitz continuous derivative;
- *▷ N^C* learned convolutional filters *hn*.

Convex AI prior

Adopt neural-network-based convex regulariser *R* (Goujon *et al.* 2022; Liaudat *et al.* McEwen 2024):

m.

$$
R(x) = \sum_{n=1}^{N_C} \sum_k \psi_n \left(\left(h_n * x \right) [k] \right),
$$

- *▷ ψⁿ* are learned convex profile functions with Lipschitz continuous derivative;
- *▷ N^C* learned convolutional filters *hn*.

Properties:

- 1. Convex + explicit *⇒* leverage convex UQ theory.
- 2. Smooth regulariser with known Lipschitz constant *⇒* theoretical convergence guarantees.

Demonstrations

Reconstructed images

Ground truth

Dirty image SNR=3.39 dB

Reconstruction (classical) SNR=23.05 dB

 $SNR = 26.85 dB$

-2.5 -2.0 -1.5

-2.0 -1.5 -1.0 -0.5 0.0

Jason McEwen 22 Contract Contract

Approximate local Bayesian credible intervals

LCI (super-pixel size 4 *×* 4) MCMC standard deviation (super-pixel size 4 *×* 4)

Hypothesis testing of structure

Reconstructed image

Hypothesis testing of structure

Reconstructed image

Surrogate test image (region removed)

Hypothesis testing of structure

Reject null hypothesis *⇒* structure physical

Reconstructed image

Surrogate test image (region removed)

Hypothesis testing of substructure

Reconstructed image

Hypothesis testing of substructure

Reconstructed image

Surrogate test image (blurred)

Hypothesis testing of substructure

Reconstructed image

Surrogate test image (blurred)

Reject null hypothesis *⇒* substructure physical

Imaging 3C128 with VLA

Dirty image

CLEAN

(Pratley, McEwen *et al.* 2018)

0.5 PURIFY (Ours)

(Pratley, Johnston-Hollitt & McEwen 2019)

Imaging Fornax A with MWA

(Pratley, Johnston-Hollitt & McEwen 2020)

Imaging Fornax A with MWA

(Pratley, Johnston-Hollitt & McEwen 2020)

Open-source codes

Next-generation radio interferometric imaging

PURIFY is a highly distributed and parallelized open-source C++ code for radio interferometric imaging, leveraging recent developments in the field of variational regularization, convex optimisation, and learned imaging.

SOPT code **https://github.com/astro-informatics/sopt**

Sparse OPTimisation

SOPT is a highly distributed and parallelized open-source C++ code for variational regularization and convex optimisation, with learned data-driven priors.

Application domains more broadly

Summary

- *▷* SKA is an exascale experiment.
- *▷* Learned exascale computational inverse imaging (LEXCI) framework
	- 1. Highly distributed and parallelised
	- 2. Highly realistic telescope modelling (exact wide-field corrections)
	- 3. Superior reconstruction quality by using learned AI data-driven priors
	- 4. Uncertainty quantification for exascale imaging with learned priors for the first time.
	- 5. Validated by MCMC sampling (for low-dimensional setting)

▷ Next steps

- 1. Integrating AI priors and uncertainty quantification into PURIFY and SOPT
- 2. Benchmark computational performance
- 3. Apply full framework to real observations