

Towards Learned Exascale Computational Imaging for the SKA

Jason McEwen Mullard Space Science Laboratory (MSSL) University College London (UCL)

Towards Exascale-Ready Astrophysics (TERA) 2024

UK Atomic Energy Authority

Exascale computational challenges

\Rightarrow All require **Big-Compute**.

1. SKA Exascale

- 2. Imaging Strategy
- 3. Exascale Algorithms

Blocking for Distribution

Uncertainty Quantification

AI Data-Driven Prior

4. Demonstrations

SKA Exascale

Square Kilometre Array (SKA): next-gen radio interferometric telescope

Orders of magnitude improvement in sensitivity and resolution. **Unlock broad range of science goals**.

SKA partners

SKA sites

Jason McEwen

 \Rightarrow 8.5 Exabytes over the 15-year lifetime of initial high-priority science programmes (Scaife 2020).

Imaging Strategy

Radio interferometric telescopes acquire "Fourier" measurements

Radio interferometric telescopes acquire "Fourier" measurements

Interferometric imaging is an exascale computational inverse imaging problem.

Radio interferometric imaging **ill-posed inverse problem**:

 $y = \Phi(x) + n$

for data (visibilities) y, telescope model Φ , underlying image x and noise n.

Radio interferometric imaging **ill-posed inverse problem**:

$$y = \Phi(x) + n$$

 $y \xleftarrow{} forward model} x$

for data (visibilities) y, telescope model Φ , underlying image x and noise n.

Radio interferometric imaging **ill-posed inverse problem**:

$$y = \Phi(x) + n$$

 $y \leftarrow \frac{\text{forward model}}{x}$

for data (visibilities) y, telescope model Φ , underlying image x and noise n.

Radio interferometric imaging **ill-posed inverse problem**:

for data (visibilities) y, telescope model Φ , underlying image x and noise n.

Highly realistic wide-field telescope model

(Pratley, Johnston-Hollitt & McEwen 2019; Pratley, Johnston-Hollitt & McEwen 2020).

Radio interferometric imaging **ill-posed inverse problem**:

$$y = \Phi(x) + n$$

 $y \leftarrow \frac{\text{forward model}}{x} x$

for data (visibilities) y, telescope model Φ , underlying image x and noise n.

Highly realistic wide-field telescope model

(Pratley, Johnston-Hollitt & McEwen 2019; Pratley, Johnston-Hollitt & McEwen 2020).

 $Big-Data \Rightarrow Big-Compute$

since compute scales as $\mathcal{O}(M)$ for M data measurements.

Inverse problem is ill-posed so inject regularising prior information.

Inverse problem is ill-posed so inject regularising prior information.

Bayes Theorem:

 $p(\mathbf{x} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{x})p(\mathbf{x})$, *i.e.* posterior \propto likelihood \times prior

Define likelihood (assuming Gaussian noise) and prior:

$$p(\mathbf{y} | \mathbf{x}) = \mathcal{L}(\mathbf{x}) \propto \exp\left(-\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/(2\sigma^{2})\right)$$

$$p(\mathbf{x}) = \pi(\mathbf{x}) \propto \exp(-R(\mathbf{x}))$$

likelihood

prior

MAP estimation

- + Based on optimisation so computationally efficient.
- No uncertainties (traditionally).
- Hand-crafted priors (traditionally).

MCMC sampling

- Based on sampling so computationally demanding.
- + Uncertatinties encoded in posterior.
- Hand-crafted priors (traditionally).

Computational imaging strategy

Goals:

- + **Computationally efficient** (optimisation + distribution).
- + Quantifies uncertainties.
- + Data-driven AI priors (enhance reconstruction fidelity).

Computational imaging strategy

Goals:

- + **Computationally efficient** (optimisation + distribution).
- + Quantifies uncertainties.
- + Data-driven AI priors (enhance reconstruction fidelity).

Achieve by combining:

- 1. Statistical framework: Bayesian inference and MAP estimation.
- 2. Mathematical theory: probability concentration theorem for log-convex distributions.
- 3. Constrained AI model: convex AI model with explicit potential.

Solve optimisation problem

Solve optimisation problem (MAP estimation by variation regularisation):

$$\mathbf{x}_{map} = \arg \max_{\mathbf{x}} \left[\log p(\mathbf{y} | \mathbf{x}) \right] = \arg \min_{\mathbf{x}} \left[\left\| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \right\|_{2}^{2} + \frac{\lambda R(\mathbf{x})}{\lambda R(\mathbf{x})} \right]$$

regulariser

Solve optimisation problem

Solve optimisation problem (MAP estimation by variation regularisation):

$$\mathbf{x}_{map} = \arg \max_{\mathbf{x}} \left[\log p(\mathbf{y} | \mathbf{x}) \right] = \arg \min_{\mathbf{x}} \left[\left\| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \right\|_{2}^{2} + \frac{\lambda R(\mathbf{x})}{regulariser} \right]$$

Traditionally, hand-crafted regularisers used

(*e.g.* $R(\mathbf{x}) = \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}$ to promote sparsity in some (wavelet) dictionary $\mathbf{\Psi}$).

Instead, adopt **data-driven AI prior** for regulariser (**small-AI**) trained on simulations (**big-sims**).

Solve optimisation problem

Solve optimisation problem (MAP estimation by variation regularisation):

$$\mathbf{x}_{map} = \arg \max_{\mathbf{x}} \left[\log p(\mathbf{y} | \mathbf{x}) \right] = \arg \min_{\mathbf{x}} \left[\left\| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \right\|_{2}^{2} + \frac{\lambda R(\mathbf{x})}{regulariser} \right]$$

Traditionally, hand-crafted regularisers used

(*e.g.* $R(\mathbf{x}) = \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}$ to promote sparsity in some (wavelet) dictionary $\mathbf{\Psi}$).

Instead, adopt **data-driven AI prior** for regulariser (**small-AI**) trained on simulations (**big-sims**).

⇒ Highly distributed and parallelised optimisation algorithms, with low communication overhead.

Exascale Algorithms

Exascale Algorithms Blocking for Distribution

Block distribution

Solve resulting convex optimisation problem by proximal splitting.

Block algorithm to distribute data and compute (telescope model):

(Carrillo, McEwen & Wiaux 2014; Onose *et al.* (inc. McEwen) 2016; Pratley, Johnston-Hollitt & McEwen 2019; Pratley, McEwen *et al.* 2019; Pratley, Johnston-Hollitt & McEwen 2020)

Block distribution

Solve resulting convex optimisation problem by proximal splitting.

Block algorithm to distribute data and compute (telescope model):

(Carrillo, McEwen & Wiaux 2014; Onose *et al.* (inc. McEwen) 2016; Pratley, Johnston-Hollitt & McEwen 2019; Pratley, McEwen *et al.* 2019; Pratley, Johnston-Hollitt & McEwen 2020)

- ▷ Stochastic updates to support big-data.
- ▷ Two internal distribution strategies:
 - 1. Distribute image (*i.e.* distribute $\mathbf{\Phi}_i$)
 - 2. Distribute Fourier grid (*i.e.* distribute G_iM_i)

Block distribution

Solve resulting convex optimisation problem by proximal splitting.

Block algorithm to distribute data and compute (telescope model):

(Carrillo, McEwen & Wiaux 2014; Onose *et al.* (inc. McEwen) 2016; Pratley, Johnston-Hollitt & McEwen 2019; Pratley, McEwen *et al.* 2019; Pratley, Johnston-Hollitt & McEwen 2020)

- ▷ Stochastic updates to support big-data.
- ▷ Two internal distribution strategies:
 - 1. Distribute image (*i.e.* distribute $\mathbf{\Phi}_i$)
 - 2. Distribute Fourier grid (*i.e.* distribute G_iM_i)

Benchmarking performed in Pratley, McEwen et al. 2019 (although out of date).

Block distributed alternating direction method of multipliers (ADMM) algorithm

Block distributed primal dual algorithm

Block distributed primal dual algorithm with AI prior

Exascale Algorithms Uncertainty Quantification

Convex probability concentration for uncertainty quantification

Posterior credible region:

$$p(\mathbf{x} \in C_{\alpha}|\mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} p(\mathbf{x}|\mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha.$$

Consider the highest posterior density (HPD) region

 $C^*_{\alpha} = \{ \mathbf{x} : -\log p(\mathbf{x}) \le \gamma_{\alpha} \}, \text{ with } \gamma_{\alpha} \in \mathbb{R}, \text{ and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds.} \}$

Convex probability concentration for uncertainty quantification

Posterior credible region:

$$p(\mathbf{x} \in C_{\alpha}|\mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} p(\mathbf{x}|\mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha.$$

Consider the highest posterior density (HPD) region

$$C^*_{\alpha} = \{ \mathbf{x} : -\log p(\mathbf{x}) \le \gamma_{\alpha} \}, \text{ with } \gamma_{\alpha} \in \mathbb{R}, \text{ and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds.}$$

Theorem 3.1 (Pereyra 2017)

Suppose the posterior $\log p(\mathbf{x}|\mathbf{y}) \propto \log \mathcal{L}(\mathbf{x}) + \log \pi(\mathbf{x})$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4e^{[(-N/3)]}, 1)$, the HPD region C^*_{α} is contained by

$$\hat{\mathcal{C}}_{\alpha} = \left\{ \mathbf{X} : \log \mathcal{L}(\mathbf{X}) + \log \pi(\mathbf{X}) \leq \hat{\gamma}_{\alpha} = \log \mathcal{L}(\hat{\mathbf{X}}_{\mathsf{MAP}}) + \log \pi(\hat{\mathbf{X}}_{\mathsf{MAP}}) + \sqrt{N}\tau_{\alpha} + N \right\},\$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

Convex probability concentration for uncertainty quantification

Posterior credible region:

$$p(\mathbf{x} \in C_{\alpha}|\mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} p(\mathbf{x}|\mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha.$$

Consider the highest posterior density (HPD) region

$$C^*_{\alpha} = \{ \mathbf{x} : -\log p(\mathbf{x}) \le \gamma_{\alpha} \}, \text{ with } \gamma_{\alpha} \in \mathbb{R}, \text{ and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds.}$$

Theorem 3.1 (Pereyra 2017)

Suppose the posterior $\log p(\mathbf{x}|\mathbf{y}) \propto \log \mathcal{L}(\mathbf{x}) + \log \pi(\mathbf{x})$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4e^{[(-N/3)]}, 1)$, the HPD region C^*_{α} is contained by

$$\hat{\mathcal{C}}_{\alpha} = \left\{ \mathbf{X} : \log \mathcal{L}(\mathbf{X}) + \log \pi(\mathbf{X}) \leq \hat{\gamma}_{\alpha} = \log \mathcal{L}(\hat{\mathbf{X}}_{\mathsf{MAP}}) + \log \pi(\hat{\mathbf{X}}_{\mathsf{MAP}}) + \sqrt{N}\tau_{\alpha} + N \right\},\$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

Need only evaluate $\log \mathcal{L} + \log \pi$ for the MAP estimate x_{MAP} !

Jason McEwen

Local Bayesian credible intervals for sparse reconstruction

(Cai, Pereyra & McEwen 2018b)

Let Ω define the area (or pixel) over which to compute the credible interval $(\tilde{\xi}_{-}, \tilde{\xi}_{+})$ and ζ be an index vector describing Ω (*i.e.* $\zeta_i = 1$ if $i \in \Omega$ and 0 otherwise).

Consider the test image with the Ω region replaced by constant value ξ :

 $\mathbf{x}' = \mathbf{x}^{\star}(\mathcal{I} - \boldsymbol{\zeta}) + \xi \boldsymbol{\zeta}$.

Given $ilde{\gamma}_{lpha}$ and \mathbf{x}^{\star} , compute the credible interval by

$$egin{aligned} & ilde{\xi}_{-} = \min_{\xi} ig\{ \xi \mid \log \mathcal{L}(\mathbf{X}') + \log \pi(\mathbf{X}') \leq ilde{\gamma}_{lpha}, \ orall \xi \in [-\infty, +\infty) ig\}, \ & ilde{\xi}_{+} = \max_{\xi} ig\{ \xi \mid \log \mathcal{L}(\mathbf{X}') + \log \pi(\mathbf{X}') \leq ilde{\gamma}_{lpha}, \ orall \xi \in [-\infty, +\infty) ig\}. \end{aligned}$$

Hypothesis testing of physical structure

(Pereyra 2017; Cai, Pereyra & McEwen 2018a)

- 1. Remove structure of interest from recovered image x^* .
- 2. Inpaint background (noise) into region, yielding surrogate image x'.
- 3. Test whether $\mathbf{x'} \in C_{\alpha}$:
 - ▷ If $\mathbf{x}' \notin C_{\alpha}$ then reject hypothesis that structure is an artifact with confidence (1α) %, *i.e.* structure most likely physical.
 - ▷ If $\mathbf{x}' \in C_{\alpha}$ uncertainly too high to draw strong conclusions about the physical nature of the structure.

Exascale Algorithms Al Data-Driven Prior

Convex Al prior

Adopt neural-network-based convex regulariser R

(Goujon et al. 2022; Liaudat et al. McEwen 2024):

$$R(\mathbf{x}) = \sum_{n=1}^{N_c} \sum_{k} \psi_n \left((\mathbf{h}_n * \mathbf{x}) [k] \right),$$

 $\triangleright \psi_n$ are learned convex profile functions with Lipschitz continuous derivative;

 \triangleright *N*_C learned convolutional filters *h*_n.

Convex AI prior

Adopt neural-network-based convex regulariser R

(Goujon et al. 2022; Liaudat et al. McEwen 2024):

$$R(\mathbf{x}) = \sum_{n=1}^{N_c} \sum_{k} \psi_n \left((\mathbf{h}_n * \mathbf{x}) [k] \right),$$

 $\triangleright \psi_n$ are learned convex profile functions with Lipschitz continuous derivative;

 \triangleright N_C learned convolutional filters h_n .

Properties:

- 1. Convex + explicit \Rightarrow leverage convex UQ theory.
- 2. Smooth regulariser with known Lipschitz constant ⇒ theoretical convergence guarantees.

Demonstrations

Reconstructed images

Ground truth

Dirty image SNR=3.39 dB

Reconstruction (classical) SNR=23.05 dB Reconstruction (learned) SNR= 26.85 dB

(Liaudat et al. McEwen 2024)

Error (classical)

Error (learned)

Jason McEwen

Approximate local Bayesian credible intervals

LCI (super-pixel size 4×4)

MCMC standard deviation (super-pixel size 4 × 4)

Hypothesis testing of structure

Reconstructed image

Hypothesis testing of structure

Reconstructed image

Surrogate test image (region removed)

Hypothesis testing of structure

Reject null hypothesis ⇒ **structure physical**

Reconstructed image

Surrogate test image (region removed)

Hypothesis testing of substructure

Reconstructed image

Hypothesis testing of substructure

Reconstructed image

Surrogate test image (blurred)

Hypothesis testing of substructure

Reconstructed image

Surrogate test image (blurred)

Reject null hypothesis \Rightarrow substructure physical

Imaging 3C128 with VLA

Dirty image

PURIFY (Ours)

(Pratley, McEwen et al. 2018)

Imaging Puppis A with MWA

(Pratley, Johnston-Hollitt & McEwen 2019)

Imaging Fornax A with MWA

(Pratley, Johnston-Hollitt & McEwen 2020)

Imaging Fornax A with MWA

(Pratley, Johnston-Hollitt & McEwen 2020)

Open-source codes

PURIFY code

https://github.com/astro-informatics/purify

https://github.com/astro-informatics/sopt

Next-generation radio interferometric imaging

PURIFY is a highly distributed and parallelized open-source C++ code for radio interferometric imaging, leveraging recent developments in the field of variational regularization, convex optimisation, and learned imaging.

SOPT code

 $\langle \cdot \rangle$

Sparse OPTimisation

SOPT is a highly distributed and parallelized open-source C++ code for variational regularization and convex optimisation, with learned data-driven priors.

Application domains more broadly

Summary

▷ SKA is an exascale experiment.

- ▶ Learned exascale computational inverse imaging (LEXCI) framework
 - 1. Highly distributed and parallelised
 - 2. Highly realistic telescope modelling (exact wide-field corrections)
 - 3. Superior reconstruction quality by using learned AI data-driven priors
 - 4. Uncertainty quantification for exascale imaging with learned priors for the first time.
 - 5. Validated by MCMC sampling (for low-dimensional setting)
- ▷ Next steps
 - 1. Integrating AI priors and uncertainty quantification into PURIFY and SOPT
 - 2. Benchmark computational performance
 - 3. Apply full framework to real observations