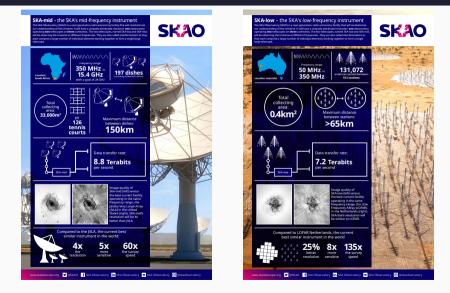
Learned Exascale Computational Imaging (LEXCI) overview

ExCALIBUR Programme Workshop

Jason D. McEwen (PI)

www.jasonmcewen.org


Mullard Space Science Laboratory (MSSL), UCL

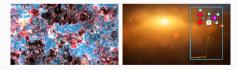
July 2022

Canonical application: Square Kilometre Array (SKA)

SKA sites

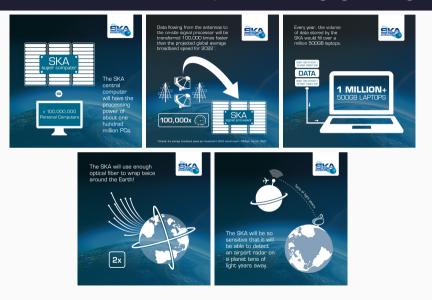
Next-generation of radio interferometry rapidly approaching

Next-generation of radio interferometric telescopes will provide orders of magnitude improvement in sensitivity and resolution.


Unlock broad range of science goals.

Dark energy

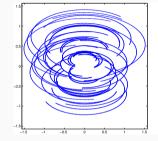
General relativity


Cosmic magnetism

Epoch of reionization

Exoplanets

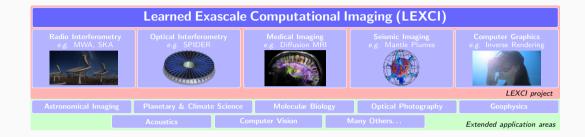
SKA poses a considerable exascale computational imaging challenge

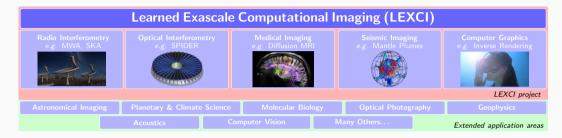


Radio interferometric telescopes acquire "Fourier" measurements

"Fourier" Measurements

 \Rightarrow


Radio interferometric telescopes acquire "Fourier" measurements


Interferometric imaging is an exascale computational inverse imaging problem:

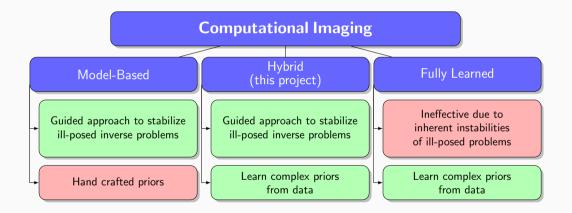
Recover an image from noisy and incomplete "Fourier" measurements.

LEXCI application domains more broadly

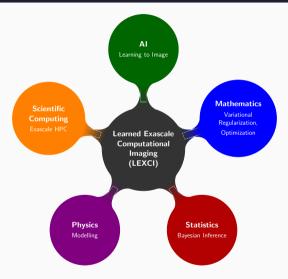
LEXCI application domains more broadly

Partners

- Radio interferometry: Prof. Melanie Johnston-Hollitt (Curtin), Dr Luke Pratley (Toronto)
- SPIDER: Prof. Ben Yoo (UC Davis)
- Medical Imaging: Prof. Gary Zhang (CMIC, UCL)
- Seismic Imaging: Prof. Ana Ferreira (Earth Sciences, UCL)
- Computer Graphics & Virtual Reality: Kagenova
- (ExCALIBUR Benchmarking for AI for Science at Exascale; BASE)


Classically, inverse imaging problems solved by **variational regularization**, where an optimization problem is posed that includes data fidelity and regularization terms:

$$\arg\min_{\boldsymbol{x}} \|\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{x}\|_2^2 + \lambda f(\boldsymbol{x}).$$

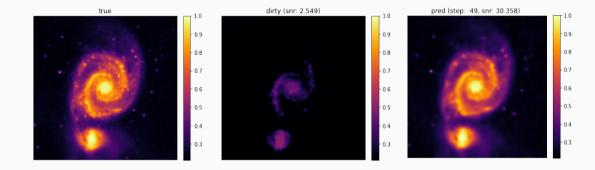

for observational model $\boldsymbol{\Phi}: \mathbb{R}^N \to \mathbb{R}^M$, data \boldsymbol{y} and underlying image \boldsymbol{x} .

Regularization functional $f : \mathbb{R}^N \to \mathbb{R}$ encodes prior knowledge.

Typically model-based regularizers are used, *e.g.* $f(\mathbf{x}) = \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}$ to promote sparsity in some dictionary $\mathbf{\Psi} : \mathbb{R}^{D} \to \mathbb{R}^{N}$.

Cross-cutting research areas

LEXCI team


Computational strategy

- ▷ Hybrid deep learning (data-driven) & model-based approach
- \triangleright Big data and big compute BUT moderate size models embedded in iterative algorithms
- > Training and prototyping in Python on current-generation hardware
- ▷ Imaging (production) in C++ on exascale hardware

▷ Computing paradigms

- Data partitioning algorithms
- ▷ Distributed compute, storage & memory
- Stochastic distributed algorithms
- ▷ Parallelized & distributed uncertainty quantification
- Exploit mixed-precision arithmetic

Excellent preliminary results

- ▷ Traditional conference in 2023: Computational Inverse Imaging
- ▷ Unconference in 2024: Applying LEXCI software to cross-cutting problems across domains

Public open-source codes

PURIFY code

https://github.com/astro-informatics/purify

Next-generation radio interferometric imaging

PURIFY is a highly distributed and parallelized open-source C++ code for radio interferometric imaging, leveraging recent developments in the field of variational regularization and convex optimisation.

SOPT code

https://github.com/astro-informatics/sopt

Sparse OPTimisation

SOPT is a highly distributed and parallelized open-source C++ code for variational regularization and convex optimisation.