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Canonical application: Square Kilometre Array (SKA)
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SKA sites

SKA-mid – the SKA’s mid-frequency instrument
The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise 
our understanding of the Universe. It will have a uniquely distributed character: one observatory 
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid, 
will be observing the Universe at different frequencies. They are also called interferometers as they 
each comprise a large number of individual elements working together to form a single large 
telescope.

Compared to the JVLA, the current best 
similar instrument in the world:

5x 
more 

sensitive 

60x 
the survey 

speed

4x 
the 

resolution

Frequency range: 

350 MHz to 
15.4 GHz

with a goal of 24 GHz
Location:  
South Africa

Total 
collecting 

area: 
33,000m2

or 
126 

tennis 
courts

Maximum distance
between dishes:  

150km

197 dishes
(including 64 MeerKAT dishes)  

Data transfer rate: 

8.8 Terabits 
per second

SKA-mid

Image quality of  
SKA-mid (left) versus 
the best current facility 
operating in the same 
frequency range, the 
Jansky Very Large Array 
(JVLA) in the United 
States (right). SKA-mid’s 
resolution will be 4x 
better than JVLA.

www.skatelescope.org @SKAO SKA Observatory @skaobservatorySKA ObservatorySKA Observatory

Maximum distance
between stations:  

>65km

Compared to LOFAR Netherlands, the current 
best similar instrument in the world

8x 
more 

sensitive

135x 
 the survey 

speed

Frequency range: 

50 MHz to 
350 MHz

131,072
antennas spread between 

512 stations

Total 
collecting 

area: 

0.4km2

Location: Australia

25% 
better 

resolution

SKA-low – the SKA’s low-frequency instrument
The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise 
our understanding of the Universe. It will have a uniquely distributed character: one observatory 
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid, 
will be observing the Universe at different frequencies. They are also called interferometers as 
they each comprise a large number of individual elements working together to form a single 
large telescope.

Data transfer rate: 

7.2 Terabits 
per second

SKA-low

Image quality of  
SKA-low (left) versus 
the best current facility 
operating in the same 
frequency range, the LOw 
Frequency ARray (LOFAR), 
in the Netherlands (right).  
SKA-low‘s resolution will 
be similar to LOFAR.

www.skatelescope.org @SKAO SKA Observatory @skaobservatorySKA ObservatorySKA Observatory
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Next-generation of radio interferometry rapidly approaching

Next-generation of radio interferometric telescopes will provide orders of magnitude
improvement in sensitivity and resolution.

Unlock broad range of science goals.

Dark energy General relativity Cosmic magnetism

Epoch of reionization Exoplanets
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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

⇒
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Interferometric imaging is an exascale computational inverse imaging problem:

Recover an image from noisy and incomplete “Fourier” measurements.
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LEXCI application domains more broadly

LEXCI project

Extended application areas

Learned Exascale Computational Imaging (LEXCI)

Radio Interferometry
e.g. MWA, SKA

Optical Interferometry
e.g. SPIDER

Medical Imaging
e.g. Diffusion MRI

Seismic Imaging
e.g. Mantle Plumes

Computer Graphics
e.g. Inverse Rendering

Astronomical Imaging Planetary & Climate Science Molecular Biology Optical Photography Geophysics

Acoustics Computer Vision Many Others. . .

Partners
• Radio interferometry: Prof. Melanie Johnston-Hollitt (Curtin), Dr Luke Pratley (Toronto)
• SPIDER: Prof. Ben Yoo (UC Davis)
• Medical Imaging: Prof. Gary Zhang (CMIC, UCL)
• Seismic Imaging: Prof. Ana Ferreira (Earth Sciences, UCL)
• Computer Graphics & Virtual Reality: Copernic AI
• (ExCALIBUR Benchmarking for AI for Science at Exascale; BASE-II)
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Cross-cutting research areas

Learned Exascale
Computational

Imaging
(LEXCI)

Statistics
Bayesian Inference

Physics
Modelling

Scientific
Computing
Exascale HPC

AI
Learning to Image

Mathematics

Variational
Regularization,

Optimization
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LEXCI team
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Classical approach to computational inverse imaging

Classically, inverse imaging problems solved by variational regularization, where an
optimization problem is posed that includes data fidelity and regularization terms:

arg min
x

∥y−Φx∥22 + λ f(x).

for observational model Φ : RN → RM, data y and underlying image x.

Regularization functional f : RN → R encodes prior knowledge.

Typically model-based regularizers are used, e.g. f(x) = ∥Ψ†x∥1 to promote sparsity in
some dictionary Ψ : RD → RN.
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LEXCI hybrid approach

Computational Imaging

Model-Based
Hybrid

(this project) Fully Learned

Guided approach to stabilize
ill-posed inverse problems

Hand crafted priors

Guided approach to stabilize
ill-posed inverse problems

Learn complex priors
from data

Ineffective due to
inherent instabilities
of ill-posed problems

Learn complex priors
from data
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Computational strategy

▷ Hybrid deep learning (data-driven) and model-based approach.

▷ Big data and big compute BUT moderate size learned models.

▷ Training with full telescope model may not always possible computationally.
▷ Multiscale telescope models
▷ Deep learning models (priors) that are agnostic to telescope model
▷ Computational challenge of training and inference sometimes inverted

(training ↓ , inference ↑)

▷ Computing paradigms:
▷ Data partitioning algorithms
▷ Distributed compute, storage & memory
▷ Stochastic distributed algorithms
▷ Parallelized & distributed uncertainty quantification
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Initial results: learned SPIDER imaging

▷ SPIDER is new interferometric optical imaging device developed by UC Davis and
Lockheed Martin.

▷ Lenslet array to measure multiple interferometric baselines and photonic integrated
circuits (PICs) for miniaturization.

▷ Reduces weight, cost and power consumption of optical telescopes.
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Initial results: learned SPIDER imaging

▷ Differentiable implementation of SPIDER measurement operator integrated in
architecture of learned model (Mars et al. 2023; arXiv:2301.10260).
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Imaging time reduced from ∼1 min → ∼10 ms

⇒ Real-time imaging
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Initial results: learned SPIDER imaging
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Initial results: learned radio interferometric imaging

▷ Telescope measurement operator changes for each observation
(since observing different point on sky, over different duration, with potentially different
telescope configuration).

▷ Integrate knowledge of measurement operator form into model architecture
(Mars et al., in prep.).
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Initial results: learned radio interferometric imaging

▷ Train on general form of operator and then (potentially) fine-tune.
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Initial results: learned radio interferometric imaging

⇒ Reconstruction quality (almost) reaches oracle
(case where train with full knowledge of operator).
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Preliminary results: scalable learned imaging with uncertainty quantification

▷ Uncertainty quantification for learned exascale imaging previously not feasible.

▷ Exploit learned convex regulariser to support data-driven prior and scalable
uncertainty quantification (Liaudat et al., in prep.).

-2.0

-1.8

-1.5

-1.2

-1.0

-0.8

-0.5

-0.2

0.0

Ground Truth

SNR = 5.01 dB

-2.0

-1.8

-1.5

-1.2

-1.0

-0.8

-0.5

-0.2

0.0

Dirty Image

SNR = 26.69 dB

-2.0

-1.8

-1.5

-1.2

-1.0

-0.8

-0.5

-0.2

0.0

Wavelet Reconstruction

SNR = 32.82 dB

-2.0

-1.8

-1.5

-1.2

-1.0

-0.8

-0.5

-0.2

0.0

Learned Reconstruction

⇒ Superior reconstruction quality.

Jason McEwen 17

http://www.jasonmcewen.org


Preliminary results: scalable learned imaging with uncertainty quantification

▷ Compute approximate local credible intervals (LCIs) to capture local measure of
uncertainty.
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⇒ Computation time reduced by factor of 103.

Jason McEwen 18

http://www.jasonmcewen.org


Preliminary results: scalable learned imaging with uncertainty quantification

▷ Perform scalable hypothesis testing to assess whether structure physical or artifact.
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Public open-source codes

PURIFY code https://github.com/astro-informatics/purify

Next-generation radio interferometric imaging
PURIFY is a highly distributed and parallelized open-source C++ code for
radio interferometric imaging, leveraging recent developments in the field
of variational regularization, convex optimisation, and learned imaging.

SOPT code https://github.com/astro-informatics/sopt

Sparse OPTimisation
SOPT is a highly distributed and parallelized open-source C++ code for
variational regularization and convex optimisation, with learned
data-driven priors.
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