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Evidence Estimators

Bayesian inference
Parameter estimation

Bayes’ theorem
likelihood prior

_[P(yw,M)][P(oW)]

P(0]y, M) ;

posterior P(y | M)

constant

for parameters 6, model M and observed data y.
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Evidence Estimators

Bayesian inference
Parameter estimation

Bayes’ theorem
likelihood prior

_[P(y|e,M)][P<o|M>]

P(0]y, M) ;

posterior P(y | M)
constant
for parameters 6, model M and observed data y.
Shorthand notation: likelihood  prior

posterior
constant
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Evidence Estimators

Bayesian inference
Parameter estimation

Bayes’ theorem
likelihood prior

_[P(yw,M) |[Pe1an |

P(0]y, M) ;

posterior P(y | M)
constant
for parameters 6, model M and observed data y.
Shorthand notation: likelihood  prior

posterior

constant

For parameter estimation, typically draw samples from the posterior by Markov chain Monte
Carlo (MCMC) sampling.

Jason McEwen ML assisted Bayesian evidence computation



Evidence Estimators

Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

P(Mi|y) |_| P(M1) P(y | M)
P(M2|y) P(M2) Py | M2)
posterior odds prior odds Bayes factor
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Evidence Estimators

Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

P(Mi|y) |_| P(M1) P(y | M)
P(M2|y) P(M2) Py | M2)
posterior odds prior odds Bayes factor

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

2 =P(y| M) = / 6 £(0)7(6)
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Evidence Estimators

Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

P(Mi|y) |_| P(M1) P(y | M)
P(M2|y) P(M2) Py | M2)
posterior odds prior odds Bayes factor

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

2 =P(y| M) = / 6 £(0)7(6)

— Challenging computational problem in high-dimensions.
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Evidence Estimators

Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

P(Mi|y) |_| P(M1) P(y | M)
P(M2|y) P(M2) Py | M2)
posterior odds prior odds Bayes factor

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

2 =P(y| M) = / 6 £(0)7(6)

— Challenging computational problem in high-dimensions.

Variety of powerful methods exist but often place restrictions on sampling method and struggle
to push to high dimensional settings.
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Evidence Estimators

Desirable properties for Bayesian evidence estimators

Seek estimator that is:
» Agnostic to sampling method and uses posterior samples.

> Scales to high-dimensions.
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Evidence Estimators

Desirable properties for Bayesian evidence estimators

Seek estimator that is:
» Agnostic to sampling method and uses posterior samples.

> Scales to high-dimensions.

Harmonic mean estimator has potential to meet these criteria but has serious shortcomings as
originally posed.
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Evidence Estimators

Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

1
p=Epe@|y) L(")}
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Evidence Estimators

Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

P:EP(OIy)|: } / 95(9) @ly)
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Evidence Estimators

Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

P=EP(9|y){ } /9@”'?’)

_ _1 L@
_/dez:(e) 2
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Evidence Estimators

Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

P=EP(9|y){ } /9@”'?’)

3 1 LO)n(0)
_/ dgc(e) 2
1

z
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Evidence Estimators

Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

P=EP(9|y){ } /9@”'?’)

3 1 LO)n(0)
_/ dgc(e) 2
1

z

Original harmonic mean estimator (Newton & Raftery 1994)

z

200 0; ~P(0]y)
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Evidence Estimators

Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

P:EP(GIy)|: } / 95(9) @ly)

3 1 LO)n(0)
_/ dgc(e) 2
1

z

Original harmonic mean estimator (Newton & Raftery 1994)

N

200 0; ~P(0]y)

=1

Very simple approach but can fail catastrophically (Neal 1994).

ML assisted Bayesian evidence computation



Evidence Estimators

Original harmonic mean estimator
Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

1
TG)P(Gly)'

p=-=
z

~(0)
) P<9|y>P(9'y)/d9
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Evidence Estimators

Original harmonic mean estimator
Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

importance sampling

~(0)
X ‘/‘“’P(mwp(a'y)
p=-=

z

1
:/dewp(my).

Importance sampling interpretation:
> Importance sampling target distribution is prior 7(0).

> Importance sampling density is posterior P(0 | y).
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Original harmonic mean estimator

Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

importance sampling

()
X ‘/‘“}P(mwp(a'y) ,

Importance sampling interpretation:
> Importance sampling target distribution is prior 7(0).

> Importance sampling density is posterior P(0 | y).

For importance sampling, typically want sampling density to have fatter tails than target.
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Original harmonic mean estimator

Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

importance sampling

()
X ‘/‘“}P(mwp(a'y) ,

Importance sampling interpretation:
> Importance sampling target distribution is prior 7(0).

> Importance sampling density is posterior P(0 | y).

For importance sampling, typically want sampling density to have fatter tails than target.

Not the case when importance sampling density is the posterior and the target is the prior.
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Evidence Estimators

Original harmonic mean estimator
Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support €2 is a subset of the prior support ©,
hence do not fully capture prior (target distribution).
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Evidence Estimators

Original harmonic mean estimator
Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support €2 is a subset of the prior support ©,
hence do not fully capture prior (target distribution).

Corrected harmonic mean estimator (Lenk 2009)

P=POIL D gy PO,

where P(Q2) is the prior probability of the posterior simulation support Q C ©.
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Evidence Estimators

Original harmonic mean estimator
Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support €2 is a subset of the prior support ©,
hence do not fully capture prior (target distribution).

Corrected harmonic mean estimator (Lenk 2009)

1 1
p=P(Q)— , 0; ~P(0 ,
p=P() ;:1 209 (01y)
where P(Q2) is the prior probability of the posterior simulation support Q C ©.

Mitigates simulation pseudo bias but does not eliminate.
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Evidence Estimators

Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).
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Evidence Estimators

Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

P=Ep|y) E(@ 9)} /9“9) P(Oly)
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Evidence Estimators

Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

P=Epg|y) P(01y)

)
z(e 9)} /ez(o) (0)

_p(0)

(9)

_ / L(6)=(0)
E(O)W 0) z
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Evidence Estimators

Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

P=Epg|y) P(01y)

)
z(e 9)} /ez(o) (0)

_p(0)

(9)

_ / £(0)m(6)
E(O)W 0) z
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Evidence Estimators

Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)
0)
™(0)

)
(

o(
z(e 9)} /dez(o)
(0
)

¢
= [ d0—"F——=
/ L(0)(0) z
1

z

P =Ep@|y)

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

N
Z 0; ~PO|y)
E 71'(0

z:l
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Evidence Estimators

Re-targeted harmonic mean estimator
Importance sampling interpretation

Importance sampling derivation:

dg 2 ;PO
1_J —Feh = i /ew) P(O]y).
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Evidence Estimators

Re-targeted harmonic mean estimator
Importance sampling interpretation

Importance sampling derivation:

o5 J 055750

» Ensure importance sampling target () does not have fatter tails than posterior P(6 | y)
(importance sampling density).
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Evidence Estimators

Re-targeted harmonic mean estimator
Importance sampling interpretation

Importance sampling derivation:

dg 2 ;PO
1_J —Feh = i /ew) P(O]y).

» Ensure importance sampling target () does not have fatter tails than posterior P(6 | y)
(importance sampling density).

— How set importance sampling target distribution ¢(0)?
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Evidence Estimators

Re-targeted harmonic mean estimator
How set importance sampling target distribution (6)?
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Evidence Estimators

Re-targeted harmonic mean estimator
How set importance sampling target distribution (6)?

Optimal target:

L(0)7(6)

Spoptimal (0) —

(resulting estimator has zero variance).
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Evidence Estimators

Re-targeted harmonic mean estimator
How set importance sampling target distribution (6)?

Optimal target:

Spoptimal (0) — L(G):(O)
(resulting estimator has zero variance).
Recall:
N
N 1 ©(6:)
== . 0 ~PO]y
P=N ; L(0:)7(0;) 6l
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Evidence Estimators

Re-targeted harmonic mean estimator
How set importance sampling target distribution (6)?

Optimal target:

Spoptimal (0) — L(G):(O)
(resulting estimator has zero variance).
Recall:
N
N 1 ©(6:)
== . 0 ~PO]y
P=N ; L(0:)7(0;) 6l

But clearly not feasible since requires knowledge of the evidence z (recall the target must be
normalised) — requires problem to have been solved already!
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Evidence Estimators

Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

ML

<p(9) ~ (Poptimal(e) _ M
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Evidence Estimators

Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

ML

<p(9) ~ (Poptimal(e) _ M

» Approximation not required to be highly accurate.

> Must not have fatter tails than posterior.
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Evidence Estimators

Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

ML

<p(9) ~ (Poptimal(e) _ M

» Approximation not required to be highly accurate.

> Must not have fatter tails than posterior.

Also develop strategy to estimate the variance of the estimator, its variance, and other sanity
checks.
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Evidence Estimators

Learnt harmonic mean estimator
Learning the target distribution

Consider a variety of machine learning approaches:
> Uniform hyper-ellipsoid
> Kernel Density Estimation (KDE)

» Modified Gaussian mixture model (MGMM)

Modify learning objective function to include variance penalty and regularisation.
Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select machine learning approach and hyperparameters.
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Numerical Examples

Rosenbrock example
Posterior

Rosenbrock function is the classical example of a pronounced thin curving degeneracy, with
likelihood defined by

n—1

10) =3 [(a =007 + 00551 —63)2] , 10g(£(6) = —£(0) -

i=1

10

POy

100 75 5
75 50 a5 -
00 —25 50 00

. 1
~75-10.015

3

(a) Log-Posterior (b) Posterior

Figure: Rosenbrock posterior evaluated on grid.
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Numerical Examples

Rosenbrock example
MCMC sampling and learning the target distribution ¢

10.0 1

251 / 1
0.0F =

[
z

=15 0.0 1.5 3.0 0.0 25 50 7.5 10.0
0o 01

Figure: Posterior recovered by MCMC sampling.
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Numerical Examples

Rosenbrock example

MCMC sampling and learning the target distribution ¢

10.0 1
75 1
< 50 1
251 / 1
0.0F = 1
—L5 (l:() l: 5 SIU (l:() 2:5 5.0 7:3 llJl.()
0

Figure: Posterior recovered by MCMC sampling.

e
I

50 75 100

Figure: Learnt target distribution ¢ (by KDE).
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Numerical Examples

Rosenbrock example
Accuracy of learnt harmonic mean estimator

» Compare to Monte Carlo simulations, repeating entire analysis.

> Also estimate the variance of the estimator

)
woow
NN
N S

3.20

3.18 Truth

3.16 ] J.

3.12 —
Measured Estimated

Inverse evidence (p;
—

w
-
EN

(a) Inverse evidence

Figure: Accuracy of learnt harmonic mean estimator for Rosenbrock example.

ML assisted Bayesian evidence computation



Numerical Examples

Rosenbrock example
Accuracy of learnt harmonic mean estimator

» Compare to Monte Carlo simulations, repeating entire analysis.

> Also estimate the variance of the estimator and its variance.

o le—3

3.26 6 I
324 ®
2 g5
g3.22 H
o 54
T 3.20 S
s 1 I ¢
v 3.18 Truth g3
0 e}
$3.16 | J. 32
= a

3.14 o

E 1
3.12 —
Measured Estimated ° Measured Estimated
(a) Inverse evidence (b) Variance of inverse evidence

Figure: Accuracy of learnt harmonic mean estimator for Rosenbrock example.
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Numerical Examples

Normal-Gamma example
Model

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.
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Numerical Examples

Normal-Gamma example
Model

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.
Data model: Prior model:

yi ~ N(u, 77 1) Mean: u ~ N(po, (to7)™1)
Precision: 7 ~ Ga(ag, bo)

1o 70 a bo

Norn:alv Gamma

W Normal

Figure: Graph of hierarchical Bayesian model of Normal-Gamma example.
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Numerical Examples

Normal-Gamma example
Analytic evidence

Analytic evidence:

2 = (am—n/2Llan) 50 (E) v
T'(ao) bp™ \mn

where

1 n
T =T0+mn, an=ao+n/2, bn:b()‘f‘*Z(yi_g)Q
27;=1

Ton(§ — po)?
2(ro +n)
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Numerical Examples

Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes 7.

Prior size ¢ 1074 1073 1072 1071 10°

Analytic log(z) -160.3888 -159.2375 -158.0863 -156.9359 -155.7935
Estimated log(%)
Error (learnt harmonic mean)

Error (original harmonic mean)™

*Friel & Wyse (2012)
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Numerical Examples

Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes 7.

Prior size ¢ 1074 1073 1072 1071 10°
Analytic log(z) -160.3888  -150.2375  -158.0863  -156.9350  -155.7935
Estimated log(2) -160.3883  -150.2370  -158.0851  -156.9350  -155.7921

Error (learnt harmonic mean)

Error (original harmonic mean)™*

*Friel & Wyse (2012)
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Numerical Examples

Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes 7.

Prior size ¢ 1074 1073 1072 1071 10°
Analytic log(z) -160.3888 -159.2375 -158.0863 -156.9359 -155.7935
Estimated log(%) -160.3883 -159.2370 -158.0851 -156.9359 -155.7921
Error (learnt harmonic mean) -0.0005 -0.0005 -0.0012 0.0000 -0.0014

Error (original harmonic mean)™

*Friel & Wyse (2012)

~ 1.010
€

3§ 1.005

g

S 000 S SR I S |
g 1 t 1

e

5

2

IS

© 0.995
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=

©

g

0.990

10> 1074 107* 1072 107! 10° 10t

Prior size (To)

Figure: Accuracy for various prior sizes 7¢.
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Numerical Examples

Normal-Gamma example

Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes 7.

Prior size ¢ 1074 1073 1072 1071 10°
Analytic log(z) -160.3888 -159.2375 -158.0863 -156.9359 -155.7935
Estimated log(%) -160.3883 -159.2370 -158.0851 -156.9359 -155.7921
Error (learnt harmonic mean) -0.0005 -0.0005 -0.0012 0.0000 -0.0014
Error (original harmonic mean)™ -12.2100 - -9.7900 -8.5000 -7.1000

*Friel & Wyse (2012)

g
o
=
o

1.005

H—

1.000

——

0.995

Relative accuracy (Zestimated/Zanalytic)

——

0.990

10> 1074 107* 1072 107! 10° 10t

Prior size (To)

Figure: Accuracy for various prior sizes 7¢.
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Numerical Examples

Non-nested linear regression: Radiata pine example
Data

Radiata pine data-set has become classical benchmark for evaluating evidence estimators:
> maximum compression strength parallel to grain y;,
> density z;,
> density adjust for resin content z;,

for i € {1,...,n} where n = 42 specimens.
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Numerical Examples

Non-nested linear regression: Radiata pine example
Data

Radiata pine data-set has become classical benchmark for evaluating evidence estimators:
> maximum compression strength parallel to grain y;,
> density z;,
> density adjust for resin content z;,

for i € {1,...,n} where n = 42 specimens.

Is density or resin-adjusted density a better predictor of compression strength?

ML assisted Bayesian evidence computation



Numerical Examples

Non-nested linear regression: Radiata pine example
Models

Gaussian linear models:

M : yi=a++6i, ein(D,Tfl),

Density
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Numerical Examples

Non-nested linear regression: Radiata pine example
Models

Gaussian linear models:

M : yi=a++6i, ein(D,Tfl),

Density

M; : yi:7++77i: ni ~N(0,A71) .

Resin-adjusted density
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Numerical Examples

Non-nested linear regression: Radiata pine example
Models

Gaussian linear models:

M : yi=a+m+6i, ein(D,Tfl),

Density

M; : yi=v+| 6(zi — 2) [+, ni ~N(0,A71) .

Resin-adjusted density

Priors for model 1 (similar for model 2):
o~ N(,ua, (r()'r)fl) ,

ﬂ ~ N(,U'B7 (SOT)il) )
T ~ Ga(ao,bo) s

(pa = 3000, pug =185, rg = 0.06, so =6, ag = 3, bop = 2 X 3(]()2).
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Numerical Examples

Non-nested linear regression: Radiata pine example
Models

Normal

i€ {1,...,n}

Figure: Graph of hierarchical Bayesian model for Radiata pine example (for model 1; model 2 is similar).
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Numerical Examples

Non-nested linear regression: Radiata pine example
Analytic evidence

Analytic evidence:

—agp—n/2

—n/2ba0 (a0 +1n/2) |Q0|1/2 ( T

T'(ao) |M|1/2 Y+ IJ'—(‘!;QOIJ'O — u(;rM,,O + 2b0)

Z=T

where po = (,ua,,uB)T, Qo = diag(ro,s0), and M = XTX + Qo.
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Numerical Examples

Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M; Model Mo log BF21
log(z1) log(z2) = log(z2) — log(z1)
Analytic -310.12833 -301.70460 8.42368

Estimated
Error (learnt harmonic mean)

Error (original harmonic mean)™

*Friel & Wyse (2012)

ML assisted Bayesian evidence computation



Numerical Examples

Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M; Model Mo log BF21

log(z1) log(22) = log(z2) — log(z1)
Analytic -310.12833 -301.70460 8.42368
Estimated -310.12839 -301.70489 8.42350
Error (learnt harmonic mean) 0.00006 0.00029 0.00018

Error (original harmonic mean)™

*Friel & Wyse (2012)
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Numerical Examples

Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M; Model Mo log BF21
log(z1) log(22) = log(z2) — log(z1)
Analytic -310.12833 -301.70460 8.42368
Estimated -310.12839 -301.70489 8.42350
Error (learnt harmonic mean) 0.00006 0.00029 0.00018
Error (original harmonic mean)* - - 0.17372

*Friel & Wyse (2012)
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Code

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.
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Code

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.
User-facing features:
» Ease of use (modular python package).
> Follow software engineering best-practice (e.g. well documented, extensive test suite, ClI).
> Cython for speed.
> Flexible choice of sampler (we use emcee).

> Bespoke integrated cross-validation to select machine learning algorithm and
hyperparameters.
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Code

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.
User-facing features:
» Ease of use (modular python package).
> Follow software engineering best-practice (e.g. well documented, extensive test suite, ClI).
> Cython for speed.
> Flexible choice of sampler (we use emcee).

> Bespoke integrated cross-validation to select machine learning algorithm and
hyperparameters.

Under the hood:
> Bespoke objective functions with variance penalty and regularisation.

> Solve by bespoke mini-batch stochastic gradient descent.
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Code

Pseudo code example

# Import packages
import numpy as np
import emcee
import harmonic

~ Jason McEwen |
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Code

Pseudo code example

# Import packages
import numpy as np
import emcee
import harmonic

# Run MCMC sampler

sampler = emcee. EnsembleSampler(nchains, ndim, In_ posterior, args=[args])
sampler.run_mcmc(pos, samples per chain) -

samples = np.ascontiguousarray (sampler.chain[:,nburn:, :])

Inprob =

np.ascontiguousarray (sampler.Inprobability [:, nburn:])
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Code

Pseudo code example

# Import packages
import numpy as np
import emcee
import harmonic

# Run MCMC sampler

sampler = emcee. EnsembleSampler(nchains,

sampler.run_mcmc(pos, samples per chain)
samples = np.ascontiguousarray(sampler.chain[:,nburn
Inprob = np.ascontiguousarray(sampler

ndim, In_posterior,

:,:])

.Inprobability [:,nburn:])

args=[args])

# Set up chains

chains = harmonic. Chains(ndim)

chains.add_chains_3d(samples, Inprob)
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Code

Pseudo code example

# Import packages
import numpy as np
import emcee
import harmonic

# Run MCMC sampler

sampler = emcee. EnsembleSampler(nchains,
sampler.run_mcmc(pos, samples per chain)
samples = np.ascontiguousarray (sampler.chain[:,nburn:,:])
Inprob = np.ascontiguousarray(sampler.Inprobability [:,nburn:])

ndim, In_ posterior, args=[args])

# Set up chains

chains = harmonic. Chains(ndim)

chains.add_chains_3d(samples, Inprob)

# Fit model

chains_train, chains_ test = harmonic. utils.split_data(chains, train_prop=0.05)
model = harmonic.model. KernelDensityEstimate (ndim, domain, hyper parameters)
model. fit (chains_train.samples, chains_train.In_posterior)
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Code

Pseudo code example

# Import packages
import numpy as np
import emcee
import harmonic

# Run MCMC sampler

sampler = emcee. EnsembleSampler(nchains,
sampler.run_mcmc(pos, samples per chain)
samples = np.ascontiguousarray (sampler.chain[:,nburn:,:])
Inprob = np.ascontiguousarray(sampler.Inprobability [:,nburn:])

ndim, In_ posterior, args=[args])

# Set up chains
chains = harmonic. Chains(ndim)

chains.add_chains_3d(samples, Inprob)

# Fit model
chains_train ) chains_test = harmonic. utils . split_data(chains,
model = harmonic.model. KernelDensityEstimate (ndim, domain,

train_prop=0.05)
model. fit (chains_train.samples,

hyper_ parameters)
chains_train.In_posterior)

# Compute evidence

evidence = harmonic. Evidence(chains test.nchains,

model)
evidence.add chains(chains_test)

In_evidence, In_evidence std = evidence.compute In_evidence()
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Summary and future work

Problems of harmonic mean estimator can be fixed by re-targeting.

Apply machine learning to approximate optimal importance sampling target.

= Learnt harmonic mean estimator
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Summary and future work

Problems of harmonic mean estimator can be fixed by re-targeting.

Apply machine learning to approximate optimal importance sampling target.

= Learnt harmonic mean estimator

Ongoing and future work:
> Numerical optimisations.
> Apply to more examples and push to higher dimensions.
» Make code public.

» Extend general approach to other statistical problems.
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