Machine learning assisted Bayesian evidence computation

The learnt harmonic mean estimator

Jason McEwen www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

Inverse Problems from Theory to Application, UCL, September 2019

Outline

- Evidence estimators
- Numerical examples
- Code

Outline

- Evidence estimators
- 2 Numerical examples
- Code

Parameter estimation

Bayes' theorem

for parameters θ , model M and observed data ${m y}.$

Parameter estimation

Bayes' theorem

for parameters θ , model M and observed data y.

Shorthand notation:

$$\underbrace{\frac{\mathsf{P}(\theta \,|\, \boldsymbol{y})}{\mathsf{posterior}}}_{\mathsf{posterior}} = \underbrace{\frac{\mathcal{L}(\theta)}{\mathcal{L}(\theta)} \underbrace{\pi(\theta)}_{\mathsf{constant}}$$

Bayes' theorem

for parameters θ , model M and observed data ${m y}.$

Shorthand notation:

$$\underbrace{\frac{\mathsf{P}(\theta \,|\, \boldsymbol{y})}{\mathsf{posterior}}}_{\mathsf{posterior}} = \underbrace{\frac{\mathcal{L}(\theta)}{\mathcal{L}(\theta)} \frac{\pi(\theta)}{\pi(\theta)}}_{\mathsf{constant}},$$

For parameter estimation, typically draw samples from the posterior by $Markov\ chain\ Monte\ Carlo\ (MCMC)$ sampling.

Model selection

For model selection, consider the posterior model probabilities:

Model selection

For model selection, consider the posterior model probabilities:

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

$$z = P(\boldsymbol{y} | M) = \int d\theta \, \mathcal{L}(\theta) \pi(\theta).$$

Model selection

For model selection, consider the posterior model probabilities:

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

$$z = P(y | M) = \int d\theta \mathcal{L}(\theta)\pi(\theta) .$$

→ Challenging computational problem in high-dimensions.

Bayesian inference Model selection

For model selection, consider the posterior model probabilities:

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

$$z = \mathsf{P}(\boldsymbol{y} \mid M) = \int d\theta \, \mathcal{L}(\theta) \pi(\theta) \, .$$

→ Challenging computational problem in high-dimensions.

Variety of powerful methods exist but often place restrictions on sampling method and struggle to push to high dimensional settings.

Desirable properties for Bayesian evidence estimators

Seek estimator that is:

- Agnostic to sampling method and uses posterior samples.
- ► Scales to **high-dimensions**.

Desirable properties for Bayesian evidence estimators

Seek estimator that is:

- Agnostic to sampling method and uses posterior samples.
- Scales to high-dimensions.

Harmonic mean estimator has potential to meet these criteria but has serious shortcomings as originally posed.

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{1}{\mathcal{L}(\theta)} \right]$$

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{1}{\mathcal{L}(\theta)} \right] = \int \, \mathrm{d}\theta \frac{1}{\mathcal{L}(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y})$$

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{1}{\mathcal{L}(\theta)} \right] = \int d\theta \frac{1}{\mathcal{L}(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y})$$
$$= \int d\theta \frac{1}{\mathcal{L}(\theta)} \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{1}{\mathcal{L}(\theta)} \right] = \int d\theta \frac{1}{\mathcal{L}(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y})$$
$$= \int d\theta \frac{1}{\mathcal{L}(\theta)} \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$
$$= \frac{1}{z}$$

Harmonic mean relationship (Newton & Raftery 1994)

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{1}{\mathcal{L}(\theta)} \right] = \int d\theta \frac{1}{\mathcal{L}(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y})$$
$$= \int d\theta \frac{1}{\mathcal{L}(\theta)} \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$
$$= \frac{1}{z}$$

Original harmonic mean estimator (Newton & Raftery 1994)

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\mathcal{L}(\theta_i)} , \quad \theta_i \sim \mathsf{P}(\theta \,|\, \boldsymbol{y})$$

Harmonic mean relationship (Newton & Raftery 1994)

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{1}{\mathcal{L}(\theta)} \right] = \int d\theta \frac{1}{\mathcal{L}(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y})$$
$$= \int d\theta \frac{1}{\mathcal{L}(\theta)} \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$
$$= \frac{1}{z}$$

Original harmonic mean estimator (Newton & Raftery 1994)

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\mathcal{L}(\theta_i)}, \quad \theta_i \sim \mathsf{P}(\theta \,|\, \boldsymbol{y})$$

Very simple approach but can fail catastrophically (Neal 1994).

Alternative derivation of harmonic mean relationship:

$$\rho = \frac{1}{z} = \frac{\int d\theta \frac{\pi(\theta)}{\mathsf{P}(\theta \mid \boldsymbol{y})} \mathsf{P}(\theta \mid \boldsymbol{y})}{z} = \int d\theta \frac{1}{\mathcal{L}(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y}) .$$

Alternative derivation of harmonic mean relationship:

 $\rho = \frac{1}{z} = \frac{\int \mathrm{d}\theta \frac{\pi(\theta)}{\mathsf{P}(\theta \,|\, \boldsymbol{y})} \mathsf{P}(\theta \,|\, \boldsymbol{y})}{z} = \int \mathrm{d}\theta \frac{1}{\mathcal{L}(\theta)} \mathsf{P}(\theta \,|\, \boldsymbol{y}) \;.$

Importance sampling interpretation:

- ▶ Importance sampling target distribution is prior $\pi(\theta)$.
- Importance sampling density is posterior $P(\theta \mid y)$.

Alternative derivation of harmonic mean relationship:

 $\rho = \frac{1}{z} = \frac{ \overbrace{\int \, \mathrm{d}\theta \frac{\pi(\theta)}{\mathsf{P}(\theta \,|\, \boldsymbol{y})} \mathsf{P}(\theta \,|\, \boldsymbol{y})}^{\mathrm{importance sampling}} }{z} = \int \, \mathrm{d}\theta \frac{1}{\mathcal{L}(\theta)} \mathsf{P}(\theta \,|\, \boldsymbol{y}) \;.$

Importance sampling interpretation:

- ▶ Importance sampling target distribution is prior $\pi(\theta)$.
- Importance sampling density is posterior $P(\theta \mid y)$.

For importance sampling, typically want sampling density to have fatter tails than target.

Alternative derivation of harmonic mean relationship:

 $\rho = \frac{1}{z} = \frac{\int d\theta \frac{\pi(\theta)}{P(\theta \mid \boldsymbol{y})} P(\theta \mid \boldsymbol{y})}{z} = \int d\theta \frac{1}{\mathcal{L}(\theta)} P(\theta \mid \boldsymbol{y}).$

Importance sampling interpretation:

- ▶ Importance sampling target distribution is prior $\pi(\theta)$.
- Importance sampling density is posterior $P(\theta \mid y)$.

For importance sampling, typically want sampling density to have fatter tails than target.

Not the case when importance sampling density is the posterior and the target is the prior.

Original harmonic mean estimator Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support Ω is a subset of the prior support $\Theta,$ hence do not fully capture prior (target distribution).

Original harmonic mean estimator Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support Ω is a subset of the prior support Θ , hence do not fully capture prior (target distribution).

Corrected harmonic mean estimator (Lenk 2009)

$$\hat{\rho} = \mathsf{P}(\Omega) \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\mathcal{L}(\theta_i)} \;, \quad \theta_i \sim \mathsf{P}(\theta \,|\, \boldsymbol{y}) \;,$$

where $P(\Omega)$ is the prior probability of the posterior simulation support $\Omega \subset \Theta$.

Original harmonic mean estimator Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support Ω is a subset of the prior support Θ , hence do not fully capture prior (target distribution).

Corrected harmonic mean estimator (Lenk 2009)

$$\hat{\rho} = \mathsf{P}(\Omega) \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\mathcal{L}(\theta_i)} \;, \quad \theta_i \sim \mathsf{P}(\theta \,|\, \boldsymbol{y}) \;,$$

where $P(\Omega)$ is the prior probability of the posterior simulation support $\Omega \subset \Theta$.

Mitigates simulation pseudo bias but does not eliminate.

Introduce an arbitrary importance sampling target $\varphi(\theta)$ (which must be normalised).

Introduce an arbitrary importance sampling target $\varphi(\theta)$ (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \right] = \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y})$$

Introduce an arbitrary importance sampling target $\varphi(\theta)$ (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \right] = \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y})$$
$$= \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$

Introduce an arbitrary importance sampling target $\varphi(\theta)$ (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

$$\rho = \mathbb{E}_{\mathsf{P}(\theta \mid \boldsymbol{y})} \left[\frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \right] = \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \mathsf{P}(\theta \mid \boldsymbol{y})$$
$$= \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$
$$= \frac{1}{z}$$

Introduce an arbitrary importance sampling target $\varphi(\theta)$ (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

$$\rho = \mathbb{E}_{P(\theta \mid \boldsymbol{y})} \left[\frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \right] = \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} P(\theta \mid \boldsymbol{y})$$
$$= \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$
$$= \frac{1}{z}$$

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

$$\hat{
ho} = rac{1}{N} \sum_{i=1}^{N} rac{arphi(heta_i)}{\mathcal{L}(heta_i)\pi(heta_i)} \,, \quad heta_i \sim \mathsf{P}(heta \,|\, oldsymbol{y})$$

Importance sampling interpretation

Importance sampling derivation:

$$\rho = \frac{1}{z} = \frac{\int d\theta \frac{\varphi(\theta)}{P(\theta \mid \boldsymbol{y})} P(\theta \mid \boldsymbol{y})}{z} = \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} P(\theta \mid \boldsymbol{y}).$$

Importance sampling interpretation

Importance sampling derivation:

$$\rho = \frac{1}{z} = \frac{\int d\theta \frac{\varphi(\theta)}{P(\theta \mid \boldsymbol{y})} P(\theta \mid \boldsymbol{y})}{z} = \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} P(\theta \mid \boldsymbol{y}).$$

Ensure importance sampling target $\varphi(\theta)$ does not have fatter tails than posterior $P(\theta \mid y)$ (importance sampling density).

Importance sampling interpretation

Importance sampling derivation:

$$\rho = \frac{1}{z} = \frac{\int d\theta \frac{\varphi(\theta)}{P(\theta \mid \boldsymbol{y})} P(\theta \mid \boldsymbol{y})}{z} = \int d\theta \frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} P(\theta \mid \boldsymbol{y}).$$

Ensure importance sampling target $\varphi(\theta)$ does not have fatter tails than posterior $\mathsf{P}(\theta\,|\, \pmb{y})$ (importance sampling density).

 \rightarrow How set importance sampling target distribution $\varphi(\theta)$?

How set importance sampling target distribution $\varphi(\theta)$?

How set importance sampling target distribution $\varphi(\theta)$?

Optimal target:

$$\varphi^{\mathsf{optimal}}(\theta) = \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$

(resulting estimator has zero variance).

How set importance sampling target distribution $\varphi(\theta)$?

Optimal target:

$$\varphi^{\mathsf{optimal}}(\theta) = \frac{\mathcal{L}(\theta)\pi(\theta)}{z}$$

(resulting estimator has zero variance).

Recall:

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \frac{\varphi(\theta_i)}{\mathcal{L}(\theta_i) \pi(\theta_i)} , \quad \theta_i \sim \mathsf{P}(\theta \,|\, \boldsymbol{y})$$

Re-targeted harmonic mean estimator

How set importance sampling target distribution $\varphi(\theta)$?

Optimal target:

$$\boxed{ \varphi^{\mathsf{optimal}}(\theta) = \frac{\mathcal{L}(\theta)\pi(\theta)}{z}}$$

(resulting estimator has zero variance).

Recall:

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \frac{\varphi(\theta_i)}{\mathcal{L}(\theta_i) \pi(\theta_i)} , \quad \theta_i \sim \mathsf{P}(\theta \,|\, \boldsymbol{y})$$

But clearly **not feasible** since requires knowledge of the evidence z (recall the target must be normalised) \rightarrow requires problem to have been solved already!

Learn an approximation of the optimal target distribution:

$$\left[\begin{array}{c} \varphi(\theta) \overset{\mathsf{ML}}{\simeq} \varphi^{\mathsf{optimal}}(\theta) = \frac{\mathcal{L}(\theta)\pi(\theta)}{z} \end{array}\right].$$

Learn an approximation of the optimal target distribution:

$$\left[egin{array}{c} arphi(heta) \stackrel{\mathsf{ML}}{\simeq} arphi^{\mathsf{optimal}}(heta) = rac{\mathcal{L}(heta)\pi(heta)}{z} \end{array}
ight].$$

- Approximation not required to be highly accurate.
- Must not have fatter tails than posterior.

Learn an approximation of the optimal target distribution:

$$\left[\begin{array}{c} \varphi(\theta) \overset{\mathsf{ML}}{\simeq} \varphi^{\mathsf{optimal}}(\theta) = \frac{\mathcal{L}(\theta)\pi(\theta)}{z} \end{array}\right].$$

- Approximation not required to be highly accurate.
- Must not have fatter tails than posterior.

Also develop strategy to estimate the variance of the estimator, its variance, and other sanity checks.

Learning the target distribution

Consider a variety of machine learning approaches:

- Uniform hyper-ellipsoid
- Kernel Density Estimation (KDE)
- Modified Gaussian mixture model (MGMM)

Modify learning objective function to include variance penalty and regularisation.

Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select machine learning approach and hyperparameters.

Outline

- Evidence estimators
- Numerical examples
- Code

Posterior

Rosenbrock function is the classical example of a **pronounced thin curving degeneracy**, with likelihood defined by

$$f(\theta) = \sum_{i=1}^{n-1} \left[(a - \theta_i)^2 + b(\theta_{i+1} - \theta_i^2)^2 \right], \qquad \log(\mathcal{L}(\theta)) = -f(\theta).$$

Figure: Rosenbrock posterior evaluated on grid.

MCMC sampling and learning the target distribution φ

Figure: Posterior recovered by MCMC sampling.

MCMC sampling and learning the target distribution φ

Figure: Posterior recovered by MCMC sampling.

Figure: Learnt target distribution φ (by KDE).

Accuracy of learnt harmonic mean estimator

- ► Compare to Monte Carlo simulations, repeating entire analysis.
- Also estimate the variance of the estimator and its variance.

Figure: Accuracy of learnt harmonic mean estimator for Rosenbrock example.

Accuracy of learnt harmonic mean estimator

- Compare to Monte Carlo simulations, repeating entire analysis.
- Also estimate the variance of the estimator and its variance.

Figure: Accuracy of learnt harmonic mean estimator for Rosenbrock example.

Normal-Gamma example Model

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.

Normal-Gamma example Model

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.

Data model:

Prior model:

$$y_i \sim \mathsf{N}(\mu, \tau^{-1})$$

Mean: $\mu \sim \mathsf{N}\big(\mu_0, (\tau_0 \tau)^{-1}\big)$

Precision: $\tau \sim \mathsf{Ga}(a_0,b_0)$

Figure: Graph of hierarchical Bayesian model of Normal-Gamma example.

Analytic evidence

Analytic evidence:

$$z = (2\pi)^{-n/2} \frac{\Gamma(a_n)}{\Gamma(a_0)} \frac{b_0^{a_0}}{b_n^{a_n}} \left(\frac{\tau_0}{\tau_n}\right)^{1/2}$$

where

$$\tau_n = \tau_0 + n$$
, $a_n = a_0 + n/2$, $b_n = b_0 + \frac{1}{2} \sum_{i=1}^n (y_i - \bar{y})^2 + \frac{\tau_0 n(\bar{y} - \mu_0)^2}{2(\tau_0 + n)}$.

Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes τ_0 .

Prior size $ au_0$	10^{-4}	10^{-3}	10^{-2}	10^{-1}	10^{0}
Analytic $\log(z)$ Estimated $\log(\hat{z})$ Error (learnt harmonic mean)	-160.3888 -160.3883 -0.0005	-159.2375 -159.2370 -0.0005	-158.0863 -158.0851 -0.0012	-156.9359 -156.9359 0.0000	-155.7935 -155.7921 -0.0014
Error (original harmonic mean)*	-12.2100	_	-9.7900	-8.5000	-7.1000

^{*}Friel & Wyse (2012)

Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes τ_0 .

Prior size $ au_0$	10^{-4}	10^{-3}	10^{-2}	10^{-1}	10^{0}
Analytic $\log(z)$ Estimated $\log(\hat{z})$ Error (learnt harmonic mean)	-160.3888 -160.3883 -0.0005	-159.2375 -159.2370 -0.0005	-158.0863 -158.0851 -0.0012	-156.9359 -156.9359 0.0000	-155.7935 -155.7921 -0.0014
Error (original harmonic mean)*	-12.2100	_	-9.7900	-8.5000	-7.1000

^{*}Friel & Wyse (2012)

Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes τ_0 .

Prior size $ au_0$	10^{-4}	10^{-3}	10^{-2}	10-1	10^{0}
Analytic $\log(z)$ Estimated $\log(\hat{z})$ Error (learnt harmonic mean)	-160.3888 -160.3883 -0.0005	-159.2375 -159.2370 -0.0005	-158.0863 -158.0851 -0.0012	-156.9359 -156.9359 0.0000	-155.7935 -155.7921 -0.0014
Error (original harmonic mean)*	-12.2100	_	-9.7900	-8.5000	-7.1000

^{*}Friel & Wyse (2012)

Figure: Accuracy for various prior sizes τ_0 .

Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes τ_0 .

Prior size $ au_0$	10^{-4}	10^{-3}	10^{-2}	10-1	10 ⁰
Analytic $\log(z)$ Estimated $\log(\hat{z})$ Error (learnt harmonic mean)	-160.3888 -160.3883 -0.0005	-159.2375 -159.2370 -0.0005	-158.0863 -158.0851 -0.0012	-156.9359 -156.9359 0.0000	-155.7935 -155.7921 -0.0014
Error (original harmonic mean)*	-12.2100	-	-9.7900	-8.5000	-7.1000

^{*}Friel & Wyse (2012)

Figure: Accuracy for various prior sizes au_0 .

Radiata pine data-set has become classical benchmark for evaluating evidence estimators:

- ightharpoonup maximum compression strength parallel to grain y_i ,
- density x_i ,
- ightharpoonup density adjust for resin content z_i ,

for $i \in \{1, \dots, n\}$ where n = 42 specimens.

Is density or resin-adjusted density a better predictor of compression strength?

Radiata pine data-set has become classical benchmark for evaluating evidence estimators:

- ightharpoonup maximum compression strength parallel to grain y_i ,
- density x_i ,
- density adjust for resin content z_i,

for $i \in \{1, \dots, n\}$ where n = 42 specimens.

Is density or resin-adjusted density a better predictor of compression strength?

Gaussian linear models:

$$M_1:$$
 $y_i=lpha+ \overbrace{eta(x_i-ar x)}{eta}+\epsilon_i \ , \qquad \qquad \epsilon_i\sim {\sf N}(0,\tau^{-1}) \ .$ Density
$$M_2: \qquad y_i=\gamma+ \overbrace{\delta(z_i-ar z)}{eta(z_i-ar z)}+\eta_i \ , \qquad \qquad \eta_i\sim {\sf N}(0,\lambda^{-1}) \ .$$
 Resin-adjusted density

Priors for model 1 (similar for model 2):

$$\alpha \sim N(\mu_{\alpha}, (r_0 \tau)^{-1}),$$

$$\beta \sim N(\mu_{\beta}, (s_0 \tau)^{-1}),$$

$$\tau \sim Ga(a_0, b_0),$$

$$(\mu_{\alpha} = 3000, \, \mu_{\beta} = 185, \, r_0 = 0.06, \, s_0 = 6, \, a_0 = 3, \, b_0 = 2 \times 300^2).$$

Gaussian linear models:

$$\begin{array}{ll} M_1: & y_i = \alpha + \overbrace{\beta(x_i - \bar{x})}_{\text{Density}} + \epsilon_i \; , & \epsilon_i \sim \mathsf{N}(0, \tau^{-1}) \; . \\ \\ M_2: & y_i = \gamma + \overbrace{\delta(z_i - \bar{z})}_{\text{Resin-adjusted density}} + \eta_i \; , & \eta_i \sim \mathsf{N}(0, \lambda^{-1}) \; . \end{array}$$

Priors for model 1 (similar for model 2):

$$\alpha \sim N(\mu_{\alpha}, (r_0 \tau)^{-1}),$$

$$\beta \sim N(\mu_{\beta}, (s_0 \tau)^{-1}),$$

$$\tau \sim Ga(a_0, b_0),$$

 $(\mu_{\alpha} = 3000, \, \mu_{\beta} = 185, \, r_0 = 0.06, \, s_0 = 6, \, a_0 = 3, \, b_0 = 2 \times 300^2).$

Gaussian linear models:

$$\begin{array}{ll} M_1: & y_i = \alpha + \overbrace{\beta(x_i - \bar{x})} + \epsilon_i \; , & \epsilon_i \sim \mathsf{N}(0, \tau^{-1}) \; . \\ \\ M_2: & y_i = \gamma + \overbrace{\delta(z_i - \bar{z})} + \eta_i \; , & \eta_i \sim \mathsf{N}(0, \lambda^{-1}) \; . \end{array}$$
 Resin-adjusted density

Priors for model 1 (similar for model 2):

$$\alpha \sim \mathsf{N}(\mu_{\alpha}, (r_0 \tau)^{-1}),$$

 $\beta \sim \mathsf{N}(\mu_{\beta}, (s_0 \tau)^{-1}),$
 $\tau \sim \mathsf{Ga}(a_0, b_0),$

$$(\mu_{\alpha} = 3000, \, \mu_{\beta} = 185, \, r_0 = 0.06, \, s_0 = 6, \, a_0 = 3, \, b_0 = 2 \times 300^2).$$

Figure: Graph of hierarchical Bayesian model for Radiata pine example (for model 1; model 2 is similar).

Non-nested linear regression: Radiata pine example Analytic evidence

Analytic evidence:

$$z = \pi^{-n/2} b_0^{a_0} \frac{\Gamma(a_0 + n/2)}{\Gamma(a_0)} \frac{|Q_0|^{1/2}}{|M|^{1/2}} (\boldsymbol{y}^\mathsf{T} \boldsymbol{y} + \boldsymbol{\mu}_0^\mathsf{T} Q_0 \boldsymbol{\mu}_0 - \boldsymbol{\nu}_0^\mathsf{T} M \boldsymbol{\nu}_0 + 2b_0)^{-a_0 - n/2}$$

where
$$\mu_0 = (\mu_\alpha, \mu_\beta)^\mathsf{T}$$
, $Q_0 = \mathsf{diag}(r_0, s_0)$, and $M = X^\mathsf{T}X + Q_0$.

Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

	$\begin{array}{c}Model\ M_1\\\log(z_1)\end{array}$	$\begin{array}{c} Model\ M_2 \\ \log(z_2) \end{array}$	$\log BF_{21} = \log(z_2) - \log(z_1)$
Analytic Estimated Error (learnt harmonic mean)	-310.12833 -310.12839 0.00006	-301.70460 -301.70489 0.00029	8.42368 8.42350 0.00018
Error (original harmonic mean)*	_	-	0.17372

^{*}Friel & Wyse (2012)

Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

	$\begin{array}{c}Model\ M_1\\\log(z_1)\end{array}$	$\begin{array}{c} Model\ M_2 \\ \log(z_2) \end{array}$	$\log BF_{21} = \log(z_2) - \log(z_1)$
Analytic Estimated Error (learnt harmonic mean)	-310.12833 -310.12839 0.00006	-301.70460 -301.70489 0.00029	8.42368 8.42350 0.00018
Error (original harmonic mean)*	_	-	0.17372

^{*}Friel & Wyse (2012)

Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

	$\begin{array}{c}Model\ M_1\\\log(z_1)\end{array}$	$\begin{array}{c} Model\ M_2 \\ \log(z_2) \end{array}$	$\log BF_{21} = \log(z_2) - \log(z_1)$
Analytic Estimated Error (learnt harmonic mean)	-310.12833 -310.12839 0.00006	-301.70460 -301.70489 0.00029	8.42368 8.42350 0.00018
Error (original harmonic mean)*	-	-	0.17372

^{*}Friel & Wyse (2012)

Outline

- Evidence estimators
- Numerical examples
- Code

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.

User-facing features:

- Ease of use (modular python package).
- ▶ Follow **software engineering best-practice** (*e.g.* well documented, extensive test suite, CI)
- Cython for speed.
- Flexible choice of sampler (we use emcee).
- Bespoke integrated cross-validation to select machine learning algorithm and hyperparameters.

Under the hood

- ▶ Bespoke objective functions with variance penalty and regularisation
- ► Solve by bespoke mini-batch stochastic gradient descent

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.

User-facing features:

- Ease of use (modular python package).
- ▶ Follow **software engineering best-practice** (*e.g.* well documented, extensive test suite, CI).
- Cython for speed.
- ► Flexible choice of sampler (we use emcee).
- Bespoke integrated cross-validation to select machine learning algorithm and hyperparameters.

Under the hood

- ▶ Bespoke objective functions with variance penalty and regularisation
- ► Solve by bespoke mini-batch stochastic gradient descent

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.

User-facing features:

- Ease of use (modular python package).
- ▶ Follow **software engineering best-practice** (*e.g.* well documented, extensive test suite, CI).
- Cython for speed.
- Flexible choice of sampler (we use emcee).
- Bespoke integrated cross-validation to select machine learning algorithm and hyperparameters.

Under the hood:

- ▶ Bespoke objective functions with variance penalty and regularisation.
- Solve by bespoke mini-batch stochastic gradient descent.

Pseudo code example

```
# Import packages
import numpy as np
import emcee
import harmonic
```

Pseudo code example

Import packages

```
# Run MCMC sampler
sampler = emcee.EnsembleSampler(nchains, ndim, ln_posterior, args=[args])
sampler.run_mcmc(pos, samples_per_chain)
samples = np.ascontiguousarray(sampler.chain[:,nburn:,:])
lnprob = np.ascontiguousarray(sampler.lnprobability[:,nburn:])
```

Pseudo code example

Import packages

```
import numpy as np
import emcee
import harmonic

# Run MCMC sampler
sampler = emcee. EnsembleSampler(nchains, ndim, ln_posterior, args=[args])
sampler.run_mcmc(pos, samples_per_chain)
samples = np.ascontiguousarray(sampler.chain[:,nburn:,:])
lnprob = np.ascontiguousarray(sampler.lnprobability[:,nburn:])

# Set up chains
chains = harmonic.Chains(ndim)
chains.add_chains_3d(samples, lnprob)
```

Pseudo code example

```
# Import packages
import numpy as np
import emcee
import harmonic
# Run MCMC sampler
sampler = emcee. EnsembleSampler(nchains, ndim, In posterior, args=[args])
sampler.run mcmc(pos, samples per chain)
samples = np.ascontiguousarray(sampler.chain[:,nburn:,:])
Inprob = np.ascontiguousarray(sampler.Inprobability[:.nburn:1)
# Set up chains
chains = harmonic. Chains (ndim)
chains add chains 3d (samples, Inprob)
# Fit model
chains train, chains test = harmonic.utils.split data(chains, train prop=0.05)
model = harmonic.model.KernelDensityEstimate(ndim, domain, hyper parameters)
model, fit (chains train, samples, chains train, In posterior)
```

Pseudo code example

```
# Import packages
import numpy as np
import emcee
import harmonic
# Run MCMC sampler
sampler = emcee. EnsembleSampler(nchains, ndim, In posterior, args=[args])
sampler.run mcmc(pos, samples per chain)
samples = np.ascontiguousarray(sampler.chain[:,nburn:,:])
Inprob = np.ascontiguousarray(sampler.Inprobability[:.nburn:1)
# Set up chains
chains = harmonic. Chains (ndim)
chains add chains 3d (samples, Inprob)
# Fit model
chains train, chains test = harmonic.utils.split data(chains, train prop=0.05)
model = harmonic.model.KernelDensityEstimate(ndim, domain, hyper parameters)
model, fit (chains train, samples, chains train, In posterior)
# Compute evidence
evidence = harmonic. Evidence (chains test.nchains, model)
evidence.add chains (chains test)
In evidence, In evidence std = evidence.compute In evidence()
```

Summary and future work

Problems of harmonic mean estimator can be fixed by re-targeting.

Apply machine learning to approximate optimal importance sampling target.

⇒ Learnt harmonic mean estimator

Ongoing and future works

- Numerical optimisations.
- Apply to more examples and push to higher dimensions.
- Make code public.
- Extend general approach to other statistical problems

Summary and future work

Problems of harmonic mean estimator can be fixed by re-targeting.

Apply machine learning to approximate optimal importance sampling target.

⇒ Learnt harmonic mean estimator

Ongoing and future work:

- Numerical optimisations.
- ▶ Apply to more examples and push to higher dimensions.
- Make code public.
- Extend general approach to other statistical problems.