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Deep learning is hard!
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Inductive bias

Universal approximations theorems: Neural networks have the capacity to approximate
almost arbitrarily complex functions.

Does not mean we can find good approximators!

Deep learning has given rise to huge variety of powerful architectures, e.g. CNNs, residual
connections, UNet, Inception, depthwise separable convolutions, transformers, …

Architectures encode inductive bias.
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Geometric deep learning

Geometry is a powerful inductive bias.

Term geometric deep learning first coined by Michael Bronstein
(Bronstein et al. 2017; Bronstein et al. 2022)
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Geometric priors

1. Symmetry

2. Stability

3. Multi-scale representation
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Geometric priors

Symmetry

Equivariance
An operator A is equivariant to a transformation T if

T
(
A( f )

)
= A

(
T ( f )

)
for all possible signals f.

Transforming the signal after
application of the operator, is
equivalent to transformation of
the signal first, followed by
application of the operator.
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Geometric priors

Symmetry

Planar (Euclidean) CNNs exhibit translational equivariance

A

A

T

T

Jason McEwen 5

http://www.jasonmcewen.org


Geometric priors

Symmetry

Planar (Euclidean) CNNs exhibit translational equivariance

A

A

T T

Jason McEwen 5

http://www.jasonmcewen.org


Geometric priors

Stability

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism
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Geometric priors

Multi-scale representation
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Classes of geometric deep learning

Grids

Euclidean samples,
e.g. image

Groups

Homogenous spaces
with global symmetries,

e.g. sphere

Graphs

Nodes and
connections,

e.g. social network

Geodesics & Gauges

Manifolds,
e.g. 3D mesh

(Bronstein et al. 2022)
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Building blocks

1. Linear equivariant layers,
e.g. convolutions

2. Non-linear equivariant layers,
e.g. pointwise activations

3. Local averaging,
e.g. max pooling

4. Global averaging (invariances),
e.g. global pooling
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Geometric deep learning on the sphere
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Cosmology and virtual reality

Whenever observe over angles, recover data on 2D sphere (or 3D rotation group).

Cosmic microwave background 360◦ virtual reality
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Since we’re concerned with rotational symmetry, leverage the machinery
from the study of angular momentum in quantum mechanics.
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Generalized spherical CNNs

Consider the s-th layer of a generalized spherical CNN to
take the form of a triple (Cobb et al. 2021; arXiv:2010.11661)

A(s) = (L1,N ,L2),

such that

A(s)( f(s−1) ) = L2 (N (L1( f(s−1) ) ) ),

where
• L1,L2 : F L → F L are spherical convolution operators,
• N : F L → F L is a non-linear, spherical activation
operator.

Linear

Non-linear

Linear
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Generalised spherical CNNs

• Build on other influential equivariant
spherical CNN constructions:

• Cohen et al. (2018)
• Esteves et al. (2018)
• Kondor et al. (2018)

• Encompass other frameworks as special
cases.

• General framework supports hybrids models.

S2 Conv.

ReLU

I

Cohen et al. (2018),
Esteves et al. (2018)

I

Tensor
Products

Gen. Conv.

Kondor et al. (2018)
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Contributions to improve efficiency

1. Channel-wise structure

2. Constrained generalized convolutions

3. Optimized degree mixing sets

4. Efficient sampling theory on the sphere and rotation group
(McEwen & Wiaux 2011; McEwen et al. 2015)
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Computational cost and memory requirements

Computational cost Memory requirements
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Despite the efficient generalized approach discussed

rotationally equivariant spherical CNNs are not scalable to high-resolution data
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Solution: hybrid networks

Efficient generalized spherical CNN framework of Cobb et al. 2021 advocates hybrid
networks, with different spherical layers leveraged alongside each other.
(Building on equivariant spherical CNNs of Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018.)

Introduce new initial layer, with following properties:

1. Scalable
2. Allow subsequent layers to operate at low-resolution (i.e. mixes information to low frequencies)

3. Rotationally equivariant
4. Stable and locally invariant representation (i.e. effective representation space)

⇒ Scattering networks on the sphere (McEwen et al. 2022; arXiv:2102.02828)
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Scattering networks on the sphere

Spherical scattering network is collection of scattering transforms for a number of paths:
SPf = {S[p]f : p ∈ P}, where the general path set P denotes the infinite set of all possible
paths P = {p = (j1, j2, . . . , jd) : J0 ≤ ji ≤ J, 1 ≤ i ≤ d, d ∈ N0} .

f

U [J0]f
• • •

U [j]f
• • •

U [J ]f

S[0]f

U [J0, J0]f
• • •

U [J0, j
′]f

• • •
U [J, J0]f

S[J0]f

S[J0, J0]f S[J0, j
′]f S[J, J0]f

U [j, J0]f
• • •
U [j, j′′]f

• • •
U [j, J ]f

S[j]f

S[j, J0]f S[j, j′′]f S[j, J ]f

• • •
U [J, J0]f U [J, j′′′]f

• • •
U [J, J ]f

S[J ]f

S[J, J0]f S[J, j′′′]f S[J, J ]f
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Isometric invariance

Image Representation Scattering Representation

Isometry
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Isometric invariance

Theorem (Isometric Invariance)

Let ζ ∈ Isom(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL5/2(D+ 1)1/2 λJ0 ∥ζ∥∞∥f∥2.

Scattering network representation is invariant to isometries up to a scale .

(Proof: Follows by straightforward extension of proof of Perlmutter et al. 2020.)
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism
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Stability to diffeomorphisms

Theorem (Stability to Diffeomorphisms)

Let ζ ∈ Diff(S2). If ζ = ζ1 ◦ ζ2 for some isometry ζ1 ∈ Isom(S2) and diffeomorphism
ζ2 ∈ Diff(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL2
[
L2 ∥ζ2∥∞ + L1/2(D+ 1)1/2λJ0 ∥ζ1∥∞

]
∥f∥2.

Scattering network representation is stable to small diffeomorphisms about isometry .

(Proof: Follows by straightforward extension of proof of Perlmutter et al. 2020.)
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Scalable and rotationally equivariant spherical CNNs

Scattering
Transform

Scattering
Transform

Scattering
Transform

Spherical
Scattering
Network

ReLU

S2 Layer

S2 Conv.

I

SO(3)
Conv.

SO(3)
Layer

ReLU

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Constrained

Gen. Conv.

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products

Designed Learned
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3D shape classification: problem

Classify 3D meshes and perform shape retrieval.

[Image credit: Esteves et al. 2018]
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3D shape classification: results

SHREC’17 object retrieval competition metrics (perturbed micro-all)

P@N R@N F1@N mAP NDCG Params

Kondor et al. 2018 0.707 0.722 0.701 0.683 0.756 >1M
Cohen et al. 2018 0.701 0.711 0.699 0.676 0.756 1.4M
Esteves et al. 2018 0.717 0.737 - 0.685 - 500k

Ours 0.719 0.710 0.708 0.679 0.758 250k
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Atomization energy prediction: problem

Predict atomization energy of molecule give the atom charges and positions.
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Atomization energy prediction: results

Test root mean squared (RMS) error for QM7 regression problem

RMS Params

Montavon et al. 2012 5.96 -
Cohen et al. 2018 8.47 1.4M
Kondor et al. 2018 7.97 >1.1M

Ours (MST) 3.16 337k
Ours (RMST) 3.46 335k
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Gaussianity of the cosmic microwave background

Gaussian Non-Gaussian

At L = 1024 (∼2 million pixels), we achieve classification accuracy of:
53% without scattering network versus 95% with scattering network.
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