Fourier-Laguerre wavelets

Illustration 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fourier-Laguerre transform, convolution and wavelets on the ball

Jason McEwen

http://www.jasonmcewen.org/

Boris Leistedt

http://www.ucl.ac.uk/star/people/bleistedt/

Department of Physics and Astronomy University College London (UCL)

10th International Conference on Sampling Theory and Applications SampTA 2013 :: Bremen, Germany :: July 2013

Cosmic history

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

Illustration 0000

© 2006 Abrams and Primack, Inc.

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

↓
 ↓
 ↓
 ↓

Illustration

From the CMB to today

Credit: WMAP

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

 </

Illustration

Large-scale structure (LSS) of the Universe

Credit: Teyssier

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

Illustration

Cosmic data-sets: Cosmic microwave background (CMB)

Credit: WMAP

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

Illustration

Cosmic data-sets: Galaxy surveys tracing the LSS

Credit: SDSS

Fourier-Laguerre convolution

Fourier-Laguerre wavelet

Illustration

Fourier-Laguerre transform

▲□▶▲圖▶▲필▶▲필▶ - 필 - 釣�?

Fourier-Laguerre wavelets

Illustration

Outline

Fourier-Laguerre transform

Fourier-Laguerre convolution

- * ロ * * 健 * * 注 * ・ 注 ・ の & (や

Fourier-Laguerre transform	Fourier-Laguerre convolution	Fourier-Laguerre wavelets	Illustration
•00000			
Fourier-Bessel tra	ansform on the ball		

- Consider functions on the ball $\mathbb{B}^3 = \mathbb{R}^+ \times \mathbb{S}^2$, *i.e.* $f \in L^2(\mathbb{B}^3)$.
- Fourier-Bessel functions are the canonical orthogonal basis on the ball since they are the eigenfunctions of the Laplacian:

$$X_{\ell m}(k, \mathbf{r}) = j_{\ell}(kr)Y_{\ell m}(\theta, \varphi).$$

with spherical coordinates $r = (r, \theta, \varphi) \in \mathbb{B}^3$, where $r \in \mathbb{R}^+$ denotes radius, $\theta \in [0, \pi]$ colatitude and $\varphi \in [0, 2\pi)$ longitude, and where $k \in \mathbb{R}^+, \ell \in \mathbb{N}, m \in \mathbb{Z}, |m| \leq \ell$.

• Fourier-Bessel transform of $f \in L^2(\mathbb{B}^3)$ reads

$$\tilde{f}_{\ell m}(k) = \sqrt{\frac{2}{\pi}} \int_{\mathbb{B}^3} \mathrm{d}^3 \boldsymbol{r} f(r) \, j_{\ell}^*(kr) \, Y_{\ell m}^*(\theta,\varphi),$$

where $d^3 r = r^2 \sin \theta \, dr \, d\theta \, d\varphi$ is the usual measure in spherical coordinates.

Inverse transform given by

$$f(\mathbf{r}) = \sqrt{\frac{2}{\pi}} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{\mathbb{R}^+} \mathrm{d}k k^2 \tilde{f}_{\ell m}(k) j_{\ell}(kr) Y_{\ell m}(\theta, \varphi).$$

• But...does not admit an applicable sampling theorem.

Fourier-Laguerre transform	Fourier-Laguerre convolution	Fourier-Laguerre wavelets	Illustration
•00000			
Fourier-Bessel trans	form on the ball		

- Consider functions on the ball $\mathbb{B}^3 = \mathbb{R}^+ \times \mathbb{S}^2$, *i.e.* $f \in L^2(\mathbb{B}^3)$.
- Fourier-Bessel functions are the canonical orthogonal basis on the ball since they are the eigenfunctions of the Laplacian:

$$X_{\ell m}(k, \mathbf{r}) = j_{\ell}(kr)Y_{\ell m}(\theta, \varphi).$$

with spherical coordinates $r = (r, \theta, \varphi) \in \mathbb{B}^3$, where $r \in \mathbb{R}^+$ denotes radius, $\theta \in [0, \pi]$ colatitude and $\varphi \in [0, 2\pi)$ longitude, and where $k \in \mathbb{R}^+, \ell \in \mathbb{N}, m \in \mathbb{Z}, |m| \leq \ell$.

• Fourier-Bessel transform of $f \in L^2(\mathbb{B}^3)$ reads

$$\tilde{f}_{\ell m}(k) = \sqrt{\frac{2}{\pi}} \int_{\mathbb{B}^3} \mathrm{d}^3 \boldsymbol{r} f(r) \, j_{\ell}^*(kr) \, Y_{\ell m}^*(\theta,\varphi),$$

where $d^3 r = r^2 \sin \theta \, dr \, d\theta \, d\varphi$ is the usual measure in spherical coordinates.

Inverse transform given by

$$f(\mathbf{r}) = \sqrt{\frac{2}{\pi}} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{\mathbb{R}^+} \mathrm{d}k k^2 \tilde{f}_{\ell m}(k) \, j_{\ell}(kr) \, Y_{\ell m}(\theta,\varphi).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• But...does not admit an applicable sampling theorem.

Fourier-Laguerre transform	Fourier-Laguerre convolution	Fourier-Laguerre wavelets	Illustration
•00000			
Fourier-Bessel trans	form on the ball		

- Consider functions on the ball $\mathbb{B}^3 = \mathbb{R}^+ \times \mathbb{S}^2$, *i.e.* $f \in L^2(\mathbb{B}^3)$.
- Fourier-Bessel functions are the canonical orthogonal basis on the ball since they are the eigenfunctions of the Laplacian:

$$X_{\ell m}(k, \mathbf{r}) = j_{\ell}(kr)Y_{\ell m}(\theta, \varphi).$$

with spherical coordinates $r = (r, \theta, \varphi) \in \mathbb{B}^3$, where $r \in \mathbb{R}^+$ denotes radius, $\theta \in [0, \pi]$ colatitude and $\varphi \in [0, 2\pi)$ longitude, and where $k \in \mathbb{R}^+, \ell \in \mathbb{N}, m \in \mathbb{Z}, |m| \leq \ell$.

• Fourier-Bessel transform of $f \in L^2(\mathbb{B}^3)$ reads

$$\tilde{f}_{\ell m}(k) = \sqrt{\frac{2}{\pi}} \int_{\mathbb{B}^3} \mathrm{d}^3 \boldsymbol{r} f(r) \, j_{\ell}^*(kr) \, Y_{\ell m}^*(\theta,\varphi),$$

where $d^3 r = r^2 \sin \theta \, dr \, d\theta \, d\varphi$ is the usual measure in spherical coordinates.

Inverse transform given by

$$f(\mathbf{r}) = \sqrt{\frac{2}{\pi}} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{\mathbb{R}^+} \mathrm{d}k k^2 \tilde{f}_{\ell m}(k) \, j_{\ell}(kr) \, Y_{\ell m}(\theta,\varphi).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• But...does not admit an applicable sampling theorem.

Fourier-Laguerre	transform
00000	

Fourier-Laguerre wavelets

Fourier-Laguerre transform on the ball

• Define the Fourier-Laguerre basis functions by $Z_{\ell mp}(\mathbf{r}) = K_p(r)Y_{\ell m}(\theta, \varphi)$.

• Radial basis functions defined by the spherical Laguerre functions

$$K_p(r) \equiv \sqrt{rac{p!}{(p+2)!}} rac{e^{-r/2 au}}{\sqrt{ au^3}} L_p^{(2)}\left(rac{r}{ au}
ight) \; ,$$

where $L_p^{(2)}$ is the *p*-th generalised Laguerre polynomial of order two.

• A signal $f \in L^2(\mathbb{B}^3)$ can then be decomposed as

$$f(\mathbf{r}) = \sum_{p=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} f_{\ell m p} Z_{\ell m p}(\mathbf{r})$$

where the harmonic coefficients are given by the usual projection

$$f_{\ell mp} = \langle f | Z_{\ell mp} \rangle_{\mathbb{B}^3} = \int_{\mathbb{B}^3} \, \mathrm{d}^3 r f(r) \, Z^*_{\ell mp}(r).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fourier-Laguerre	transform
00000	

Fourier-Laguerre wavelets

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fourier-Laguerre transform on the ball

• Define the Fourier-Laguerre basis functions by $Z_{\ell mp}(\mathbf{r}) = K_p(r)Y_{\ell m}(\theta, \varphi)$.

• Radial basis functions defined by the spherical Laguerre functions

$$K_p(r) \equiv \sqrt{rac{p!}{(p+2)!}} rac{e^{-r/2 au}}{\sqrt{ au^3}} L_p^{(2)}\left(rac{r}{ au}
ight) \; ,$$

where $L_p^{(2)}$ is the *p*-th generalised Laguerre polynomial of order two.

• A signal $f \in L^2(\mathbb{B}^3)$ can then be decomposed as

$$f(\mathbf{r}) = \sum_{p=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} f_{\ell m p} Z_{\ell m p}(\mathbf{r}),$$

where the harmonic coefficients are given by the usual projection

$$f_{\ell mp} = \langle f | Z_{\ell mp} \rangle_{\mathbb{B}^3} = \int_{\mathbb{B}^3} \, \mathrm{d}^3 \boldsymbol{r} f(\boldsymbol{r}) \, Z^*_{\ell mp}(\boldsymbol{r}).$$

ourier-Laguerre	transform	
000000		

Fourier-Laguerre wavelets

Exact and fast Fourier-Laguerre transform

- Appeal to Gaussian quadrature to perform radial integral exactly.
- Appeal to new sampling theorem on the sphere (McEwen & Wiaux 2011) for angular part, which reduces the Nyquist rate on the sphere by a factor of two for equiangular sampling compared to the canonical approach (Driscoll & Healy 1994).
- Fast algorithms via separation of variables and factoring of rotations.
- \Rightarrow Exact and fast Fourier-Laguerre transform.
- Separate the radial and angular components.
- Retain contact with the Fourier-Bessel coefficients.

ourier-Laguerre	transform
000000	

Fourier-Laguerre wavelets

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Exact and fast Fourier-Laguerre transform

- Appeal to Gaussian quadrature to perform radial integral exactly.
- Appeal to new sampling theorem on the sphere (McEwen & Wiaux 2011) for angular part, which reduces the Nyquist rate on the sphere by a factor of two for equiangular sampling compared to the canonical approach (Driscoll & Healy 1994).
- Fast algorithms via separation of variables and factoring of rotations.
- \Rightarrow Exact and fast Fourier-Laguerre transform.
- Separate the radial and angular components.
- Retain contact with the Fourier-Bessel coefficients.

ourier-Laguerre tra	Insform
00000	

Fourier-Laguerre wavelets

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Exact and fast Fourier-Laguerre transform

- Appeal to Gaussian quadrature to perform radial integral exactly.
- Appeal to new sampling theorem on the sphere (McEwen & Wiaux 2011) for angular part, which reduces the Nyquist rate on the sphere by a factor of two for equiangular sampling compared to the canonical approach (Driscoll & Healy 1994).
- Fast algorithms via separation of variables and factoring of rotations.
- \Rightarrow Exact and fast Fourier-Laguerre transform.
- Separate the radial and angular components.
- Retain contact with the Fourier-Bessel coefficients.

Fourier-Laguerre transform	Fourier-Laguerre convolution	Fourier-Laguerre wavelets	Illustration
Accuracy of the Fo	ourier-Laguerre transfo	orm	

• For a band-limited signal, we can compute the Fourier-Laguerre transform exactly.

Figure: Numerical accuracy of Fourier-Laguerre transform

Fourier-Laguerre transform	Fourier-Laguerre convo
000000	

Fourier-Laguerre wavelets

Computation time of the Fourier-Laguerre transform

Figure: Computation time of Fourier-Laguerre transform

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

Codes to compute harmonic transforms

FLAG code: Fourier-Laguerre transforms

http://www.flaglets.org

Exact wavelets on the ball Leistedt & McEwen (2012)

SSHT code: Spin spherical harmonic transforms http://www.ssht.org.uk

A novel sampling theorem on the sphere McEwen & Wiaux (2011)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Fourier-Laguerre	transform

Fourier-Laguerre wavelets

Illustration 0000

Fourier-Laguerre transform

- ◆ ロ ▶ ◆ 昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の � @

Fourier-Laguerre	transform

Fourier-Laguerre wavelets

Translation and convolution on the radial line

- We construct translation and convolution operators on the radial line by analogy with the infinite line.
- For the standard orthogonal basis φ_ω(x) = e^{iωx} translation of the basis functions defined by the shift of coordinates:

$$(\mathcal{T}_{u}^{\mathbb{R}}\phi_{\omega})(x) \equiv \phi_{\omega}(x-u) = \phi_{\omega}^{*}(u)\phi_{\omega}(x) .$$

• Define translation of the spherical Laguerre basis functions on the radial line by analogy:

$$(\mathcal{T}_s K_p)(r) \equiv K_p(s) K_p(r)$$
.

Convolution on the radial line defined by

$$(f \star h)(r) \equiv \langle f | \mathcal{T}_r h \rangle_{\mathbb{R}^+} = \int_{\mathbb{R}^+} \mathrm{d} s s^2 f(s) (\mathcal{T}_r h) (s),$$

• In harmonic space, radial convolution is given by the product

$$(f \star h)_p = \langle f \star h | K_p \rangle_{\mathbb{R}^+} = f_p h_p.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Fourier-Laguerre	transform

Fourier-Laguerre wavelets

Translation and convolution on the radial line

- We construct translation and convolution operators on the radial line by analogy with the infinite line.
- For the standard orthogonal basis φ_ω(x) = e^{iωx} translation of the basis functions defined by the shift of coordinates:

$$(\mathcal{T}_{u}^{\mathbb{R}}\phi_{\omega})(x) \equiv \phi_{\omega}(x-u) = \phi_{\omega}^{*}(u)\phi_{\omega}(x) .$$

• Define translation of the spherical Laguerre basis functions on the radial line by analogy:

$$(\mathcal{T}_s K_p)(r) \equiv K_p(s) K_p(r)$$
.

Convolution on the radial line defined by

$$(f \star h)(r) \equiv \langle f | \mathcal{T}_r h \rangle_{\mathbb{R}^+} = \int_{\mathbb{R}^+} \mathrm{d} s s^2 f(s) (\mathcal{T}_r h) (s),$$

In harmonic space, radial convolution is given by the product

$$(f \star h)_p = \langle f \star h | K_p \rangle_{\mathbb{R}^+} = f_p h_p.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Fourier-Laguerre	transform

Fourier-Laguerre wavelets

Illustration

Translation and convolution on the radial line

• Translation on the radial line corresponds to convolution with the Dirac delta:

$$(f \star \delta_s)(r) = \sum_{p=0}^{\infty} f_p K_p(s) K_p(r) = (\mathcal{T}_s f)(r) .$$

Figure: Band limited translated Dirac delta functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

ourier-Laguerre transform	Fourier-Laguerr
	00000

Fourier-Laguerre wavelet

Translation and convolution on the sphere

• Translation operator on the sphere is given by the standard three-dimensional rotation:

$$(\mathcal{R}_{(\alpha,\beta,\gamma)}h)(\theta,\varphi) = h(\mathcal{R}_{(\alpha,\beta,\gamma)}^{-1}(\theta,\varphi)),$$

with $(\alpha, \beta, \gamma) \in SO(3)$, where $\alpha \in [0, 2\pi)$, $\beta \in [0, \pi]$ and $\gamma \in [0, 2\pi)$.

- We make the association $\theta = \beta$ and $\varphi = \alpha$, *i.e.* $\mathcal{R}_{(\theta,\varphi)} \equiv \mathcal{R}_{(\alpha,\beta,0)}$, and restrict our attention to convolution with axisymmetric kernels that are invariant under azimuthal rotation, *i.e.* $\mathcal{R}_{(0,0,\gamma)}h = h$.
- Convolution on the sphere of $f \in L^2(\mathbb{S}^2)$ with an axisymmetric kernel $h \in L^2(\mathbb{S}^2)$ is given by

$$(f \star h)(\theta, \varphi) \equiv \langle f | \mathcal{R}_{(\theta, \varphi)} h \rangle_{\mathbb{S}^2} = \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\theta', \varphi') f(\theta', \varphi') \left(\mathcal{R}_{(\theta, \varphi)} h \right)^* (\theta', \varphi').$$

• In harmonic space, axisymmetric convolution may be written

$$(f \star h)_{\ell m} = \langle f \star h | Y_{\ell m} \rangle_{\mathbb{S}^2} = \sqrt{\frac{4\pi}{2\ell+1}} f_{\ell m} h_{\ell 0}^*,$$

with $f_{\ell m} = \langle f | Y_{\ell m} \rangle_{\mathbb{S}^2}$ and $h_{\ell 0} \delta_{m 0} = \langle h | Y_{\ell m} \rangle_{\mathbb{S}^2}$.

- * ロ * * @ * * ミ * ミ * シ ミ ・ シ へ @

Fourier-Laguerre transform	Fourier-Laguerre convolution
	00000

Fourier-Laguerre wavelets

Translation and convolution on the sphere

• Translation operator on the sphere is given by the standard three-dimensional rotation:

$$(\mathcal{R}_{(\alpha,\beta,\gamma)}h)(\theta,\varphi) = h(\mathcal{R}_{(\alpha,\beta,\gamma)}^{-1}(\theta,\varphi)),$$

with $(\alpha, \beta, \gamma) \in SO(3)$, where $\alpha \in [0, 2\pi)$, $\beta \in [0, \pi]$ and $\gamma \in [0, 2\pi)$.

- We make the association θ = β and φ = α, *i.e.* R_(θ,φ) ≡ R_(α,β,0), and restrict our attention to convolution with axisymmetric kernels that are invariant under azimuthal rotation, *i.e.* R_(0,0,γ)h = h.
- Convolution on the sphere of $f \in L^2(\mathbb{S}^2)$ with an axisymmetric kernel $h \in L^2(\mathbb{S}^2)$ is given by

$$(f \star h)(\theta, \varphi) \equiv \langle f | \mathcal{R}_{(\theta, \varphi)} h \rangle_{\mathbb{S}^2} = \int_{\mathbb{S}^2} \mathrm{d}\Omega(\theta', \varphi') f(\theta', \varphi') \left(\mathcal{R}_{(\theta, \varphi)} h \right)^* (\theta', \varphi').$$

In harmonic space, axisymmetric convolution may be written

$$(f \star h)_{\ell m} = \langle f \star h | Y_{\ell m} \rangle_{\mathbb{S}^2} = \sqrt{\frac{4\pi}{2\ell+1}} f_{\ell m} h_{\ell 0}^*,$$

with $f_{\ell m} = \langle f | Y_{\ell m} \rangle_{\mathbb{S}^2}$ and $h_{\ell 0} \delta_{m 0} = \langle h | Y_{\ell m} \rangle_{\mathbb{S}^2}$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

urier-Laguerre	transform	

Fourier-Laguerre wavelets

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Illustration

Fourier-Laguerre translation and convolution

 Translation operator on the ball defined by combining the angular and radial translation operators, giving

 $\mathcal{T}_{\boldsymbol{r}} \equiv \mathcal{T}_{\boldsymbol{r}} \mathcal{R}_{(\theta,\varphi)}.$

• Convolution on the ball of $f \in L^2(\mathbb{B}^3)$ with an axisymmetric kernel $h \in L^2(\mathbb{B}^3)$ is defined by

$$(f \star h)(\mathbf{r}) \equiv \langle f | \mathcal{T}\mathbf{r}h \rangle_{\mathbb{B}^3} = \int_{\mathbb{B}^3} \mathrm{d}^3 s f(s) (\mathcal{T}\mathbf{r}h)^*(s),$$

where $s \in \mathbb{B}^3$.

• In harmonic space, axisymmetric convolution on the ball may be written

$$(f \star h)_{\ell m p} = \langle f \star h | Z_{\ell m p} \rangle_{\mathbb{B}^3} = \sqrt{\frac{4\pi}{2\ell + 1}} f_{\ell m p} h^*_{\ell 0 p},$$

with $f_{\ell mp} = \langle f | Z_{\ell mp} \rangle_{\mathbb{B}^3}$ and $h_{\ell 0p} \delta_{m0} = \langle h | Z_{\ell mp} \rangle_{\mathbb{B}^3}$.

ourier-Laguerre transform	Fourier-L
	00000

Fourier-Laguerre wavelets

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fourier-Laguerre translation and convolution

 Translation operator on the ball defined by combining the angular and radial translation operators, giving

$$\mathcal{T}_{\boldsymbol{r}} \equiv \mathcal{T}_{\boldsymbol{r}} \mathcal{R}_{(\theta,\varphi)}.$$

• Convolution on the ball of $f \in L^2(\mathbb{B}^3)$ with an axisymmetric kernel $h \in L^2(\mathbb{B}^3)$ is defined by

$$(f \star h)(\mathbf{r}) \equiv \langle f | \mathcal{T}_{\mathbf{r}} h \rangle_{\mathbb{B}^3} = \int_{\mathbb{B}^3} \mathrm{d}^3 s f(s) (\mathcal{T}_{\mathbf{r}} h)^*(s),$$

where $s \in \mathbb{B}^3$.

• In harmonic space, axisymmetric convolution on the ball may be written

$$(f \star h)_{\ell m p} = \langle f \star h | Z_{\ell m p} \rangle_{\mathbb{B}^3} = \sqrt{\frac{4\pi}{2\ell + 1}} f_{\ell m p} h^*_{\ell 0 p},$$

with $f_{\ell mp} = \langle f | Z_{\ell mp} \rangle_{\mathbb{B}^3}$ and $h_{\ell 0p} \delta_{m0} = \langle h | Z_{\ell mp} \rangle_{\mathbb{B}^3}$.

Fourier-Laguerre	transform

Fourier-Laguerre wavelets

Illustration

ъ

Fourier-Laguerre translation and convolution

• Angular (radial) aperture of localised functions is invariant under radial (angular) translation.

Fourier-Laguerre wavelets

Illustration 0000

Outline

Fourier-Laguerre transform

Pourier-Laguerre convolution

- * ロ > * 母 > * ヨ > * ヨ > ・ ヨ ・ の < ぐ

Fourier-Laguerre wavelets

Illustration

Fourier-LAGuerre wavelets (flaglets) on the ball

Figure: Tiling of Fourier-Laguerre space.

- Exact wavelets on the ball (Leistedt & McEwen 2012).
- Extend the idea of scale-discretised wavelets on the sphere (Wiaux, McEwen, Vandergheynst, Blanc 2008) to the ball.
- Construct wavelets by tiling the ℓ -*p* harmonic plane.
- Scale-discretised wavelet $\Psi^{jj'} \in L^2(B^3)$ is defined in harmonic space:

$$\Psi_{\ell m p}^{jj'} \equiv \sqrt{rac{2\ell+1}{4\pi}} \, \kappa_\lambda(\ell\lambda^{-j}) \kappa_
u(p
u^{-j'}) \delta_{m0}.$$

• Construct wavelets to satisfy a resolution of the identity:

$$\frac{4\pi}{2\ell+1} \left(\left| \Phi_{\ell 0 p} \right|^2 + \sum_{j=J_0}^J \sum_{j'=J_0'}^{J'} \left| \Psi_{\ell 0 p}^{j'} \right|^2 \right) = 1, \, \forall \ell, p.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fourier-Laguerre wavelets

Illustration

Fourier-LAGuerre wavelets (flaglets) on the ball

Figure: Tiling of Fourier-Laguerre space.

- Exact wavelets on the ball (Leistedt & McEwen 2012).
- Extend the idea of scale-discretised wavelets on the sphere (Wiaux, McEwen, Vandergheynst, Blanc 2008) to the ball.
- Construct wavelets by tiling the ℓ -*p* harmonic plane.
- Scale-discretised wavelet $\Psi^{jj'} \in L^2(B^3)$ is defined in harmonic space:

$$\Psi_{\ell m p}^{jj'} \equiv \sqrt{rac{2\ell+1}{4\pi}} \kappa_{\lambda} (\ell \lambda^{-j}) \kappa_{
u} (p
u^{-j'}) \delta_{m 0}.$$

• Construct wavelets to satisfy a resolution of the identity:

$$\frac{4\pi}{2\ell+1} \left(\left| \Phi_{\ell 0 p} \right|^2 + \sum_{j=J_0}^J \sum_{j'=J_0'}^{J'} \left| \Psi_{\ell 0 p}^{jj'} \right|^2 \right) \; = \; 1, \; \forall \ell, p.$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

Illustration

Fourier-LAGuerre wavelets (flaglets) on the ball

Figure: Scale-discretised wavelets on the ball.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

Illustration 0000

Fourier-LAGuerre wavelets (flaglets) on the ball

Wavelets

Fourier-Laguerre transform	Fourier-Laguerre convolution	Fourier-Laguerre wavelets
		0000000

Fourier-LAGuerre wavelets (flaglets) on the ball

• The Fourier-Laguerre wavelet transform is given by the usual projection onto each wavelet:

$$W^{\Psi^{jj'}}(\mathbf{r}) \equiv (f \star \Psi^{jj'})(\mathbf{r}) = \langle f | \mathcal{T}_{\mathbf{r}} \Psi^{jj'} \rangle_{\mathbb{B}^3} = \int_{B^3} \mathrm{d}^3 \mathbf{r}' f(\mathbf{r}') (\mathcal{T}_{\mathbf{r}} \Psi^{jj'})(\mathbf{r}') \; .$$

Illustration

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• The original function may be synthesised exactly in practice from its wavelet (and scaling) coefficients:

$$f(\mathbf{r}) = \int_{B^3} \mathrm{d}^3 \mathbf{r}' W^{\Phi}(\mathbf{r}') (\mathcal{T}_{\mathbf{r}} \Phi)(\mathbf{r}') + \sum_{j=J_0}^J \sum_{j'=J_0'}^{J'} \int_{B^3} \mathrm{d}^3 \mathbf{r}' W^{\Psi_j^{jj'}}(\mathbf{r}') (\mathcal{T}_{\mathbf{r}} \Psi^{jj'})(\mathbf{r}') \; .$$

000000	00000	0000000	0000
Accuracy of the flag	et transform		

• For a band-limited signal, we can compute Fourier-Laguerre wavelet transforms exactly.

Figure: Numerical accuracy of the flaglet transform.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fourier-Laguerre transform	Fourier-Laguerre convolution	Fourier-Laguerre wavelets	Illustration
Computation time of t	he flaglet transform		

• Fast algorithms to compute Fourier-Laguerre wavelet transforms.

Figure: Computation time of the flaglet transform.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Codes for Fourier-LAGuerre wavelets (flaglets) on the ball

FLAGLET code

http://www.flaglets.org

Exact wavelets on the ball Leistedt & McEwen (2012)

- C, Matlab, IDL, Java
- Exact (Fourier-LAGuerre) wavelets on the ball coined flaglets!

S2LET code

http://www.s2let.org

S2LET: A code to perform fast wavelet analysis on the sphere Leistedt, McEwen, Vandergheynst, Wiaux (2012)

- C, Matlab, IDL, Java
- Support only axisymmetric wavelets at present
- Future extensions:
 - Directional, steerable wavelets
 - · Faster algorithms to perform wavelet transforms
 - Spin wavelets

Fourier-Laguerre wavelets

Outline

Fourier-Laguerre transform

Pourier-Laguerre convolution

- * ロ * * 健 * * 注 * ・ 注 ・ の & (や

Fourier-Laguerre convolution

Fourier-Laguerre wavelet

Illustration

Large-scale structure (LSS) of the Universe

• Map Horizon simulation of large-scale structure (LSS) to Fourier-Laguerre sampling.

LSS fly through

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

Illustration

Flaglet coefficients of large-scale structure (LSS) of the Universe

LSS wavelet coefficients

Fourier-Laguerre convolution

Fourier-Laguerre wavelets

<ロ> (四) (四) (三) (三) (三) (三)

Illustration

Flaglet denoising on the ball

Figure: Denoising Horizon simulation of large-scale structure (LSS) of the Universe.

Fourier-Laguerre transform	Fourier-Laguerre co

Fourier-Laguerre wavelets

Flaglet void finding

- Find voids in the large-scale structure (LSS) of the Universe.
- Perform Alcock & Paczynski (1979) test: study void shapes to constrain the nature of dark energy (e.g. Sutter et al. 2012).

LSS voids

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

- Fourier-Laguerre transform, convolution and wavelets on the ball.
- Fast and exact algorithms.
- All codes publicly available (support C and Matlab):
 - SSHT: http://www.ssht.org.uk
 - FLAG: http://www.flaglets.org
 - S2LET: http://www.s2let.org
 - FLAGLET: http://www.flaglets.org
- Application to cosmological observations of the large-scale structure (LSS) of the Universe to learn about dark energy...