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Observations of the cosmic microwave background (CMB)

@ Full-sky observations of the CMB ongoing.

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

@ Each new experiment provides dramatic improvement in precision and resolution of
observations.

(cobe 2 wmap movie) (planck movie)

(d) COBE to WMAP [Credit: WMAP Science Team] (e) Planck observing strategy [Credit: Planck Collaboration]
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Observations of the cosmic microwave background (CMB)

Credit: Max Tegmark



Observations on the sphere

Animation courte
NASA and WMAP

Credit: Alec MacAndrew



Observations on the three-ball (solid sphere)

@ Boris Leistedt & JDM (2012), Exact wavelets on the ball, submitted to IEEE Trans. Sig. Proc.,
arXiv:1205.0792.


http://arxiv.org/abs/arXiv:1205.0792
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Spherical harmonic transform

@ The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
A Yon = =L+ 1) Y.

W Ww

) L =4,m=2 )L =4,m=3

Flgure. Spherical harmonic functions (real and imaginary parts).
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Spherical harmonic transform

@ The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
A Yo = —L(L+ 1)Yen.

W Ww

)L =4,m=2 (o) £ =4,m=3

Flgure. Spherical harmonic functions (real and imaginary parts).

@ Any square integrable scalar function on the sphere f € L?(S*) may be represented by its
spherical harmonic expansion:

oo 14
F0,0) =D > fonYeu(0, 0)

L=0m=—1¢

@ The spherical harmonic coefficients are given by the usual projection onto each basis function:

fin = . Yew) = [, 4920, 0)£0.0) Vi (6.)
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Spherical harmonic transform

@ We consider signals on the sphere band-limited at L, that is signals such that s, = 0, V¢ > L
= summations may be truncated at L — 1:

L

—1 £
FO,0) =" > fon Yeu(0,9) .
0

L=0m=—1¢



Harmonic analysis
oe

Spherical harmonic transform

@ We consider signals on the sphere band-limited at L, that is signals such that s, = 0, V¢ > L
= summations may be truncated at L — 1:

L

—1 £
FO,0) =" > fon Yeu(0,9) .
0

L=0m=—1¢

@ For a band-limited signal, can we compute f;,, exactly?
— | Sampling theorems on the sphere. ‘
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Spherical harmonic transform

@ We consider signals on the sphere band-limited at L, that is signals such that s, = 0, V¢ > L
= summations may be truncated at L — 1:

L—1 14

(0, 9) = Z Z om Yen(0, @) -
(=0 m=—¢

@ For a band-limited signal, can we compute f;,, exactly?
Sampling theorems on the sphere. ‘

@ Aside: Generalise to spin functions on the sphere.

Square integrable spin functions on the sphere  f € L2 (Sz), with integer spin s € Z, are defined by their
behaviour under local rotations. By definition, a spin function transforms as

o1(8,0) = THX £(0,9)
under a local rotation by x, where the prime denotes the rotated function.
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Sampling theorems
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Driscoll & Healy (DH) sampling theorem

@ Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994) for equiangular
grids.
@ Gives an explicit quadrature rule for the spherical harmonic transform:

2L—1 2L—1

Jem = Z Z o (0:) £ (0, 0p) Y0 (01 0p)

=0 p=0

where the sample positions are defined by 6, = 71/2L, for: = 0,...,2L — 1, and
pp =mp/Lforp=0,...,2L—1

= | Now = (2L — 1)2L 4 1 ~ 4L* samples on the sphere.
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Driscoll & Healy (DH) sampling theorem

@ Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994) for equiangular
grids.
@ Gives an explicit quadrature rule for the spherical harmonic transform:

2L—1 2L—1

Jom = Z Z aou(0:) £ (01, 0p) Y4, (01 0p)

=0 p=0

where the sample positions are defined by 6, = 71/2L, for: = 0,...,2L — 1, and
pp =mp/Lforp=0,...,2L—1

= | Now = (2L — 1)2L 4 1 ~ 4L* samples on the sphere.

@ The quadrature weights are defined implicitly by the solution to
2L—1

27
> qou(0:) Pe(cos0,) = 0w, VE<2L,
=0 B

and are given explicitly by

2 =1 sin((2k + 1)0
gon(6,) = T siné, Z M

T
L? = 2k + 1
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McEwen & Wiaux (MW) sampling theorem

@ A new sampling theorem (with fast algorithms) has emerged very recently by performing a
factoring of rotations and then by associating the sphere with the torus through a periodic
extension.
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McEwen & Wiaux (MW) sampling theorem

@ A new sampling theorem (with fast algorithms) has emerged very recently by performing a
factoring of rotations and then by associating the sphere with the torus through a periodic
extension.

@ Similar to making a periodic extension in 0 of a function / on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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McEwen & Wiaux (MW) sampling theorem

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
inverse transform of ;f may be written:

Inverse spherical harmonic transform

L—1

Sf(ev ‘P) = Z SFm(e) eimw

m=—(L—1)

L—1

<)
sFu(0) = Z st e

m'=—(L—1)

L—1
20 1
o = (1S JET DAL AL
= 47 9

where AY = d’ (r/2) are the reduced Wigner functions evaluated at /2.

mn mn
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McEwen & Wiaux (MW) sampling theorem

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of ;f may be written:

Forward spherical harmonic transform
s [2EHT ¢ ¢
&fém = (71) 1 A Z Am'm Aml,7J sGmml

m! =—(L—1)

Gyt :/ d9sin 0 ,G(0) e ®
0

27 .
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McEwen & Wiaux (MW) sampling theorem

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of ;f may be written:

Forward spherical harmonic transform
s [2EHT ¢ ¢
&fém = (71) 1 A Z Am'm Aml,7J sGmml

m! =—(L—1)

Gyt :/ d0sin 0 ,G, (0) e~ ""°
0

27 .
Gn(0) = [ dp 56, 0) 6™
0

@ JDM (2011a), Fast, exact (but unstable) spin spherical harmonic transforms
@ Huffenberger & Wandelt (2010), Fast and exact spin-s spherical harmonic transforms

@ JDM & Wiaux (2011b), A novel sampling theorem on the sphere

= | Nuw = (L — 1)(2L — 1) + 1 ~ 2L” samples on the sphere.
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Figure: Number of samples (MW=red; DH=green; GL=blue)
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Figure: Computation time (MW-=red; DH=green; GL=blue)
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Comparison

DH DH MW
Divide-and-conquer ~ Semi-naive

Pixelisation scheme equiangular equiangular  equiangular
Asymptotic complexity O(13*log L) o(L?) o(L?)
Precomputation Y N N
Stability N Y Y
Flexibility of Wigner recursion N N Y
Spin functions N N Y

Number of samples 412 412 212
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Sparse signal reconstruction on the sphere

@ A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for sparse signal reconstruction.

@ Many natural signals are sparse in a spatially localised measure, such as in a wavelet basis,
overcomplete dictionary, or in the magnitude of their gradient, for example.

@ A more efficient sampling of a band-limited signal on the sphere improves both the
dimensionality and sparsity of the signal in the spatial domain.

@ For a given number of measurements, a more efficient sampling theorem improves the fidelity
of sparse signal reconstruction.
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Sparse signal reconstruction on the sphere

@ A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for sparse signal reconstruction.

@ Many natural signals are sparse in a spatially localised measure, such as in a wavelet basis,
overcomplete dictionary, or in the magnitude of their gradient, for example.

@ A more efficient sampling of a band-limited signal on the sphere improves both the
dimensionality and sparsity of the signal in the spatial domain.

@ For a given number of measurements, a more efficient sampling theorem improves the fidelity
of sparse signal reconstruction.

@ We develop a framework for total variation (TV) inpainting on the sphere to demonstrate this
result.
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TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:

the samples of f are denoted by the concatenated vector x € R";

N is the number of samples on the sphere of the chosen sampling theorem;

M noisy measurements y € RY are acquired;

the measurement operator & € RM %" represents a random masking of the signal;
the noise n € R is assumed to be iid Gaussian with zero mean.



Sparse signal reconstruction
°

TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:

the samples of f are denoted by the concatenated vector x € R";

N is the number of samples on the sphere of the chosen sampling theorem;

M noisy measurements y € RY are acquired;

the measurement operator & € RM %V represents a random masking of the signal
the noise n € R is assumed to be iid Gaussian with zero mean.

@ Define TV norm on the sphere:

Ng—1 Nyp—1 Ng—1 Np—1
[ P [ » qZ( r)

5 0
RCIED YD SEL/PCED D DTG OICOEE e

=0 p=0 t=0  p=0




Sparse signal reconstruction

TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:

the samples of f are denoted by the concatenated vector x € R";
N is the number of samples on the sphere of the chosen sampling theorem;
M noisy measurements y € RY are acquired;

the measurement operator & € RM %" represents a random masking of the signal;

the noise n € R is assumed to be iid Gaussian with zero mean.

@ Define TV norm on the sphere:

/5 AVl 37 3T [Vlae) = 30 3T 4 [a2(00)(59x)7 +

Ng—1 Np—1 Ng—1 Ny —1

=0 p=0 t=0  p=0

qz(G,)
sin? 0,

(8%)* = Ilxllv -

@ TV inpainting problem solved directly on the sphere:

x* = argmin ||x||rv suchthat ||y — ®x|, < e.
x
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TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:

the samples of f are denoted by the concatenated vector x € R";

N is the number of samples on the sphere of the chosen sampling theorem;

M noisy measurements y € RY are acquired;

the measurement operator & € RM %" represents a random masking of the signal;
the noise n € R is assumed to be iid Gaussian with zero mean.

@ Define TV norm on the sphere:

Ng—1 Np—1 Ng—1 Np—1
¢ g ¢ < a*( 1)

2, PO
/5 W@V 3 30 IVlaO) = 30 30 (00 (80x)? + ot (8x)” = lixllry -

=0 p=0 t=0  p=0

@ TV inpainting problem solved directly on the sphere:

x* = argmin ||x||rv suchthat ||y — ®x|, < e.
x

@ TV inpainting problem solved in harmonic space:

ol *

#* = argmin |A’%’||7v such that |ly — ®A'# ||, < e,
i/

where A’ represents the inverse spherical harmonic transform (while also including a
conjugate symmetry extension to impose reality) and harmonic coefficients are represented
by the concatenated vector #' € C-(++1/2,




Sparse signal reconstruction

@0000

TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem (at L = 32).

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/L? = 1/2
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem (at L = 32).

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L? = 1/2
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TV inpainting: low-resolution simulations

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem (at L = 32).

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L? = 1/2
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TV inpainting: low-resolution simulations

dodr éo

(a) DH spatial for LMZ =1 ) DH harmonic for 4

|
S

2= 4 ) MW spatial for = 4 MWharmomcfcr

L2_

(e) DH spatial 1or = (f) DH harmonic for ,MZ = (g) MW spatial for IMZ = % (h) MW harmonic for [M,, = %

=
=

(i) DH spatial for LMZ =1 (j) DH harmonic for LMZ (k) MW spatial for LMZ 1 () MW harmonic for LMZ =1

lw

i M _
(m) DH spatial for 7z =

i M _ 3 i Mo i M o_
(n) DH harmonic for 2= (0) MW spatial for 2 (p) MW harmonic for 2=

(ST
(ST



Sparse signal reconstruction
0000e

TV inpainting: low-resolution simulations

40,
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Figure: Reconstruction performance for the DH and MW sampling theorems
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TV inpainting: high-resolution simulations

@ Previously limited to low-resolution simulations.

@ To solve high-resolution problem we require fast adjoint spherical harmonic transform
operators in addition to fast forward spherical harmonic transforms to solve optimisation
problems.

@ Superiority of new sampling theorem clear, hence develop fast adjoints for this case only.
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TV inpainting: high-resolution simulations

@ Previously limited to low-resolution simulations.

@ To solve high-resolution problem we require fast adjoint spherical harmonic transform
operators in addition to fast forward spherical harmonic transforms to solve optimisation
problems.

@ Superiority of new sampling theorem clear, hence develop fast adjoints for this case only.

Fast adjoint inverse spherical harmonic transform

x/;T(exyﬂﬂp) — {&f(ef"PP) , t€{0,1,...,L—1}

0, te{L,...,2L -2}
2L—2 2L—2
—i(m’ 0;+m
Fo T = D0 D0 (81, ) e Ortmen)
=0 p=0

Jen' = (=1 " 224“ I Dt g Fopt "
T T

*(L D)
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TV inpainting: high-resolution simulations

Fast adjoint forward spherical harmonic transform
kY
G = (=117 Do B fem
= 47 2

L—1
Sme”Jr =2 Z XGIJ1111’T W(m, - m”)
m/=—(L—1)
- 1 L=l -
oFn 1 (8) = ST e
2L-1
m'=—(L—1)

Ful (@) = {Em @) + (" Bt (Bua), 1€{0,1,..., L2}
sUm t sFm]\(er), t=L—1

L—1

1 .
T 2 Fa(e)e"
m=—(L—1)

xfT(9t7 ep) =
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TV inpainting: high-resolution simulations

Figure: Ground truth (L = 128)
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TV inpainting: high-resolution simulations

Figure: Measurements (M /L* = 1/4; L = 128)
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TV inpainting: high-resolution simulations

Figure: Reconstruction (M/L> = 1/4; L = 128; SNR = 29dB)



Summary

Outline

e Summary



Summary
[ ]

Summary

@ New MW sampling theorem on the sphere which captures all of the information content of a
band-limited signal in only 22.> samples (compared to 4L for the DH sampling theorem).

@ A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for sparse signal reconstruction.

@ McEwen & Wiaux, A novel sampling theorem on the sphere, |IEEE Trans. Sig. Proc., 59, 12, 5876-5887,
arXiv:1110.6298, 2011.

@ McEwen, Puy, Thiran, Vandergheynst, Van De Ville & Wiaux, Sparse signal reconstruction on the sphere:
implications of a new sampling theorem, IEEE Trans. Sig. Proc., submitted, arXiv:1205.1013, 2012.

SSHT Code to compute fast and exact, forward and adjoint (spin) spherical harmonic transforms
based on the MW sampling theorem
(Fortran, C, Matlab)

Available under the GPL from http://www.ssht.org.uk/
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Summary

@ New MW sampling theorem on the sphere which captures all of the information content of a
band-limited signal in only 22.> samples (compared to 4L for the DH sampling theorem).

@ A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for sparse signal reconstruction.

@ For signals sparse in a spatially localised representation, a more efficient sampling of the
sphere improves the fidelity of sparse signal reconstruction.

@ We develop a framework for total variation (TV) inpainting on the sphere to demonstrate this
result — superiority of the MW sampling theorem for sparse signal reconstruction clear.

@ Develop fast adjoint spherical harmonic transforms for the MW sampling theorem to solve
sparse signal reconstruction problems on the sphere at high-resolution.

@ McEwen & Wiaux, A novel sampling theorem on the sphere, |IEEE Trans. Sig. Proc., 59, 12, 5876-5887,
arXiv:1110.6298, 2011.

@ McEwen, Puy, Thiran, Vandergheynst, Van De Ville & Wiaux, Sparse signal reconstruction on the sphere:
implications of a new sampling theorem, IEEE Trans. Sig. Proc., submitted, arXiv:1205.1013, 2012.

SSHT Code to compute fast and exact, forward and adjoint (spin) spherical harmonic transforms
based on the MW sampling theorem
(Fortran, C, Matlab)

Available under the GPL from http://www.ssht.org.uk/
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