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@ Cosmological concordance model

@ Cosmological observations

@ Wavelet on the sphere
@ Euclidean wavelets
@ Continuous wavelets on the sphere
@ Scale-discretised wavelets on the sphere

e Cosmic strings
@ Observational signatures
@ Estimating the string tension
@ Recovering string maps

@ Wavelets on the ball
@ Scale-discretised wavelets on the ball

e Compressive sensing
@ An introduction to compressive sensing

e Radio interferometry
@ Interferometric imaging
@ Sparsity averaging reweighted analysis (SARA)
@ Future
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0 Cosmology
@ Cosmological concordance model

@ Cosmological observations
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Cosmology Concordance Observations

Cosmological concordance model

@ Concordance model of modern cosmology emerged recently with many cosmological
parameters constrained to high precision.

@ General description is of a Universe undergoing accelerated expansion, containing 4%
ordinary baryonic matter, 22% cold dark matter and 74% dark energy.

@ Structure and evolution of the Universe constrained through cosmological observations.
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[Credit: WMAP Science Team]
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Cosmology Observations

Observations of the cosmic microwave background (CMB)

@ Full-sky observations of the cosmic microwave background (CMB).

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

@ Each new experiment provides dramatic improvement in precision and resolution of

observations.
(cobe 2 wmap movie) (planck movie)
(d) COBE to WMAP [Credit: WMAP Science Team] (e) Planck observing strategy [Credit: Planck Collaboration]

Jason McEwen Cosmological Signal Processing



cobe2wmap.mp4
Media File (video/mp4)


664_Planck_sky-scan_HD_350x198.mov
Media File (video/quicktime)


Cosmology

Concordance Observations

Cosmic microwave background (CMB)

@ Observations of the CMB made by WMAP have played a large role in constraining the
cosmological concordance model.
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Figure: CMB observations [Credit: WMAP Science Team]

@ Although a general cosmological concordance model is now established, many details remain

unclear. Study of well-motivated extensions of the cosmological concordance model now
important.

@ CMB observed on spherical manifold, hence the geometry of the sphere must be taken into
account in any analysis.

Jason McEwen Cosmological Signal Processing



Wavelets on sphere

Outline

@ Wavelet on the sphere
@ Euclidean wavelets
@ Continuous wavelets on the sphere
@ Scale-discretised wavelets on the sphere
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Wavelets on sphere Euclidean wavelets Continuou

Why wavelets?

Fourier (1807) Haar (1909)

I ——

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (credit: http: //www.wavelet .org/tutorial/)
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Why wavelets?
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Figure: Fourier vs wavelet transform (credit: http: //www.wavelet .org/tutorial/)
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Wavelets on sphere Euclidean wavelets C

Wavelet transform in Euclidean space

W(g-3K)

Repeat Shifting Operation

Wi{d/2)

Figure: Wavelet scaling and shifting (image from nttp: //www.wavelst .org/Futorial/)
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Wavelets on sphere Euclidear s Continuous wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.
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Wavelets on sphere uc s Continuous wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(P(w) =f(p~'w), w=(0,9) €S’, p=(xB7)€SO003).
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Wavelets on sphere s Continuous wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(P(w) =f(p~'w), w=(0,9) €S’, p=(xB7)€SO003).

@ How define dilation on the sphere?
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Wavelets on sphere uc s Continuous wavelets

Continuous wavelets on the sphere

@ First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

@ Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(P(w) =f(p~'w), w=(0,9) €S’, p=(xB7)€SO003).

@ How define dilation on the sphere? i

North pole

@ The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection II:

D) =T1""d(a) 1.

South pole

Figure: Stereographic projection.
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Wavelets on sphere uc s Continuous wavelets

Continuous wavelet analysis

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet &:
{®4,, = R(p)D(a)® : p € SO(3),a € Rj}
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Wavelets on sphere uc s Continuous wavelets

Continuous wavelet analysis

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet &:
{®u,p = R(p)D(a)® : p € SO(3),a € Rj}

@ The forward wavelet transform is given by

Wia0) = (. @0) = [ 4060) £() @, (@)

where dQ(w) = sin 6 d0 de is the usual invariant measure on the sphere.

@ Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.
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Wavelets on sphere uclide s Continuous wavelets Sc

Continuous wavelet analysis

@ Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet &:
{®u,p = R(p)D(a)® : p € SO(3),a € Rj}

@ The forward wavelet transform is given by

Wia0) = (. @0) = [ 4060) £() @, (@)

where dQ(w) = sin 6 d0 de is the usual invariant measure on the sphere.

@ Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

@ Fast algorithms essential (for a review see Wiaux, JDM & Vielva 2007)
e Factoring of rotations: JDM et al. (2007), Wandelt & Gorski (2001)
@ Separation of variables: Wiaux et al. (2005)

@ FastCSWT code available to download: http://www. jasonmcewen.org/
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Wavelets on sphere Euclidear s Continuous wavelets

Mother wavelets

@ Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

@ Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:
o=11"0,,

where @, € L*(R?, d’x) is an admissible wavelet in the plane.
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Wavelets on sphere u a s Continuous wavelets

Mother wavelets

@ Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

@ Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:
o=1""o

where @, € L*(R?, d’x) is an admissible wavelet in the plane.

R2

R:

@ Directional wavelets on sphere may be naturally constructed in this setting — they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Wavelets on sphere uc Continuous wavelets Sc

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

> da

@ = [T [ oWyl p) [R(ILa®.) ()
Jo a JS0(3)

where do(p) = sin 3 da dg dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

~ 82 d "> da
14 2
0<Cq = E — | (Pg < oo, VEN
B 2+1 [/0 ) | (Pa)g, |

"

where (®,),,, are the spherical harmonic coefficients of ®,(w).
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Wavelets on sphere Euclide Continuous wavelets Sc

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

> da

@ = [T [ oWyl p) [R(ILa®.) ()
Jo a JS0(3)

where do(p) = sin 3 da dg dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

—~ 82 d o da
14 2
0<Cq = E — | (Pg < oo, VEN
B 2+1 [/0 ) | (Pa)g, |

"

where (®,),,, are the spherical harmonic coefficients of ®,(w).
@ Continuous wavelets used effectively in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; JDM et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, JDM et al. 2007, 2008)

@ BUT...
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Wavelets on sphere uc Continuous wavelets Sc

Continuous wavelet synthesis (reconstruction)

@ The inverse wavelet transform given by

> da

@ = [T [ oWyl p) [R(ILa®.) ()
Jo a JS0(3)

where do(p) = sin 3 da dg dv is the invariant measure on the rotation group SO(3).

@ Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

~ 82 d "> da
14 2
0<Cq = E — | (Pg < oo, VEN
B 2+1 [/0 ) | (Pa)g, |

"

where (®,),,, are the spherical harmonic coefficients of ®,(w).
@ Continuous wavelets used effectively in many cosmological studies, for example:
o Non-Gaussianity (e.g. Vielva et al. 2004; JDM et al. 2005, 2006, 2008)
o ISW (e.g. Vielva et al. 2005, JDM et al. 2007, 2008)

@ BUT... exact reconstruction not feasible in practice!
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Wavelets on sphere Euclide: 0 s Scale-discretised wavelets

Scale-discretised wavelets on the sphere

@ Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code
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Wavelets on sphere = >0 0 5 Scale-discretised wavelets

Scale-discretised wavelets on the sphere

@ Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code

@ Dilation performed in harmonic space.
Following JDM et al. (2006), Sanz et al. (2006).

Jason McEwen Cosmological Signal Processing



Wavelets on sphere = Co 5 Scale-discretised wavelets

Scale-discretised wavelets on the sphere

@ Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code

i
r
T
)

-
a

@ Dilation performed in harmonic space.
Following JDM et al. (2006), Sanz et al. (2006).

0.8
@ The scale-discretised wavelet W € L?(S?,dQ) is
0.6 defined in harmonic space:
= = g
0.4 Wem = Ko (£)Sy,, -
0.2

@ Construct wavelets to satisfy a resolution of the
identity for 0 < ¢ < L:

J
S Y0+ > Ky (o) = 1.
=0
Figure: Harmonic tiling on the sphere.
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Wavelets on sphere

Scale-discretised wavelets
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Figure: Spherical scale-discretised wavelets.

Scale-discretised wavelets
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Wavelets on sphere

Scale-discretised wavelets
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Figure: Spherical scale-discretised wavelets.

Continuo ets Scale-discretised wavelets

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wi(o.0) = (10, ) = [ 400 1) W] ().
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Wavelets on sphere

Scale-discretised wavelets
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Figure: Spherical scale-discretised wavelets.

Scale-discretised wavelets

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

Wi(o.0) = (10, ) = [ 400 1) W] ().

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

@) = @] @)+ / o 420 W (0:0) [RG) LW ] @) -
=0 3
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Wavelets on sphere 5 Scale-discretised wavelets

Scale-discretised wavelet transfo

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Wavelets on sphere Eucl ntinuc s Scale-discretised wavelets

Codes for scale-dis sed wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere
Wiaux, JDM, Vandergheynst, Blanc (2008)

@ Fortran
@ Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, JDM, Wiaux, Vandergheynst (2012)

@ C, Matlab, IDL, Java
@ Support only axisymmetric wavelets at present
@ Future extensions:

o Directional, steerable wavelets
o Faster algorithms to perform wavelet transforms
@ Spin wavelets

All codes available from: http://www. jasonmcewen.org/
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Strings signa

al signatures  String sion estimate Re

e Cosmic strings
@ Observational signatures
@ Estimating the string tension
@ Recovering string maps
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Strings Observational signatures ~ String tension estimate Recovering string

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Strings Observational signatures  String tension estimate Recovering string maps

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

Y

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Strings Observational signatures  String tension estimate Recovering string maps

Cosmic strings

@ Symmetry breaking phase transitions in the early Universe — topological defects.

@ Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken — line-like discontinuities in the fabric of the Universe.

@ Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

@ Cosmic strings are distinct to the fundamental
superstrings of string theory.

@ However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

@ The detection of cosmic strings would open a
new window into the physics of the Universe!

Y

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Strings Observational signatures ~ String tension estimate  Re

Observational signatures of cosmic strings

Source

2

@ Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).

Light rays

@ Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins I ]

@ The amplitude of the induced contribution scales with G,
the string tension.

H
Observer

e

Figure: Spacetime around a cosmic string.
[Credit: Kaiser & Stebbins 1984, DAMTP.]
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Strings Observational signatures ~ String tension estimate  Re

Observational signatures of cosmic strings

@ Make contact between theory and data using high-resolution simulations.
@ High-resolution full-sky simulations created by Christophe Ringeval.

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Strings Observational signatures  String tension estimate Recoverin

Observational signatures of cosmic strings

@ Make contact between theory and data using high-resolution simulations.
@ High-resolution full-sky simulations created by Christophe Ringeval.

.
(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)
Figure: Cosmic string simulations.
(a) CMB (b) CMB with embedded string

Figure: CMB simulation with string contribution (G = 5 x 10~7) embedded .
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Strings Obs:! onal signatures  String tension estimate Recov

Motivation for using wavelets to detect cosmic strings

@ Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, JDM et al. 2008), where we
denote the wavelet coefficients of the data o by

d
JP

p € SO(3).

W;,) |for scale j € Z" and position "

@ Consider an even azimuthal band-limit N = 4 to
yield wavelet with odd azimuthal symmetry. Figure: Example wavelet.
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Smngs S Stnngtenslon estimate Re

@ Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, JDM et al. 2008), where we
denote the wavelet coefficients of the data o by

for scale j € Z1 and position "
p € S0(3).
@ Consider an even azimuthal band-limit N = 4 to
yield wavelet with odd azimuthal symmetry. Figure: Example wavelet.

@ Wavelet transform yields a sparse representation of the string signal — hope to effectively separate
the CMB and string signal in wavelet space.

3
5x10

VB 0.25

@ IS

Probabilty density
»

Probability density

N

-400 ~200 0 200 400 -40 20 0 20 40
Pixel values ( pK) Wavelet coefficients (k)

Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Strings s String tension estimate Rec

Learning the statistics of the CMB and string signals in wavelet space

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:

we N\ 2
L (%)) . 7
A e p——— 7)), where (097 = (W W) = 30 Col(9),,

+/27(0¢)? om
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Strings ational signatures ~ String tension estimate Recov

Learning the statistics of the CMB and string signals in wavelet spéce

@ Need to determine statistical description of the CMB and string signals in wavelet space.
@ Calculate analytically the probability distribution of the CMB in wavelet space:

(%)) . :
PW) = ————e 7)) where (o) = (Wo, We,) = 37 Cal(¥)),,
\/2m(of)? om

@ Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):
uj>

w
ip
Guvj

v _
P(W |Gu) = ———L e(
1 (Wi 1 GR) 2Guy; L (v; =)

with scale parameter »; and shape parameter v;.

Figure: Generalised Gaussian distribution (GGD).
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Strings onal signatures  String tension estimate Re: ing str

Learning the statistics of the CMB and string signals in wavelet spéce

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

@ Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).
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Strings ional signatures  String tension estimate Re: ing st

Learning the statistics of the CMB and string signals in wavelet spéce

@ Require two simulated string maps: one for training; one for testing.

4
(a) String1 (b) String2
Figure: Cosmic string simulations.
I . . M Wavel flicient distribution fc lej=0
@ Compare distribution learnt from the training 3510 e e o )

Test (string1)
Fitted (string?)

simulation (string2) with the distribution of the
testing simulation (string1).

@ Distributions in close agreement. 25

Probabilty density

0
* Figiire: Distribuifiansddrwavélet scale j = 0.
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Strings ional signatures  String tension estimate Re: ing st

Learning the statistics of the CMB and string signals in wavelet spéce

@ Require two simulated string maps: one for training; one for testing.

4
(a) String1 (b) String2
Figure: Cosmic string simulations.
@ Compare distribution learnt from the training 14310 Wavelet coefficent disibtion for scale) - 1 ——
simulation (string2) with the distribution of the Fited s1ig?)
testing simulation (string1). 12

@ Distributions in close agreement. 1

Probabilty density

=

0
* Figlite: Distributionsddrwavelet scale j = 1.
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Strings ional signatures  String tension estimate Re: ing st

Learning the statistics of the CMB and string signals in wavelet spéce

@ Require two simulated string maps: one for training; one for testing.

4
(a) String1 (b) String2
Figure: Cosmic string simulations.
@ Compare distribution learnt from the training 14310 Wavelet coeficent disibton for scale) = 2 ——
simulation (string2) with the distribution of the Fited s1ig?)
testing simulation (string1). 12

@ Distributions in close agreement. 1

Probabilty density

=

0
* Figlite: Distributiansddrwavelet scale j = 2.
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Strings ional signatures  String tension estimate Re: ing st

Learning the statistics of the CMB and string signals in wavelet spéce

@ Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2
Figure: Cosmic string simulations.
I . . N Wavel flicient distribution fc lej=3
@ Compare distribution learnt from the training e e o deon oy ek
I Test (string1)

simulation (string2) with the distribution of the 08 —— Fited (sting?)
testing simulation (string1).

@ Distributions in close agreement. 07

=

Probabilty density

0
* Figlite: Distributiansddrwavelet scale j = 3.
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Strings ional signatures  String tension estimate Re: ing st

Learning the statistics of the CMB and string signals in wavelet spéce

@ Require two simulated string maps: one for training; one for testing.

i
(a) String1 (b) String2
Figure: Cosmic string simulations.
@ Compare distribution learnt from the training Fal vl copfent dpition orseael - % ——
simulation (string2) with the distribution of the Fred ot
testing simulation (string1). 5

@ Distributions in close agreement.

Probabilty density
@ IS

0
* Figlite: Distrioutiansddrwavelet scale j = 4.
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Strings ional signatures  String tension estimate Re: ing st

Learning the statistics of the CMB and string signals in wavelet spéce

@ Require two simulated string maps: one for training; one for testing.

i
(a) String1 (b) String2
Figure: Cosmic string simulations.
@ Compare distribution learnt from the training Fal vl copfent dpition orseael - % ——
simulation (string2) with the distribution of the Fred ot
testing simulation (string1). 5

@ Distributions in close agreement.

IS

@ We have accurately characterised the statistics of
string signals in wavelet space.

Probabilty density

0
* Figlite: Distrioutiansddrwavelet scale j = 4.

Jason McEwen Cosmological Signal Processing



Strings Ol onal signatures  String tension estimate Re:

Spherical wavelet-Bayesian string tension estimation

@ We take a Bayesian approach to string tension estimation.

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.
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Strings Ol onal signatures  String tension estimate Re:

Spherical wavelet-Bayesian string tension estimation

@ We take a Bayesian approach to string tension estimation.

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

@ For each wavelet coefficient the likelihood is given by

1 s . LW e 5N S 1y
P(W;p\Gu):P(WW+W. | Gu) = /p dW/»pPJ(W/-p—W- )P/(W{-p‘G/L).

P P

@ The overall likelihood of the data is given by

d ~ d ~
P(W | Gu) = [ P(W,, | G) ,

I P

where we have assumed each wavelet coefficient is independent.
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Strings 1al signatures  String tension estimate  Reco\

Spherical wavelet-Bayesian string tenS|on estimation

@ We take a Bayesian approach to string tension estimation.

@ Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

@ For each wavelet coefficient the likelihood is given by

POV, [ Gia) = P(W,, +W;, [ Gin) = [ aW,, BV, = W,,) B (W, G
@ The overall likelihood of the data is given by

d ~
=TIPw, 1Gu),

JP

where we have assumed each wavelet coefficient is independent.

@ The wavelet coefficients are not independent but to incorporate the covariance of wavelet
coefficients would be computationally infeasible.

@ Instead, we compute the correlation length of wavelet coefficients, and only fold into the
likelihood calculation wavelet coefficients that are at least a correlation length apart.

@ Empirically we have found this approach to work well.
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Strings Observational signatures ~ String tension estimate Recovering string

Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gu) P(Gp)

| ]
P(Gu | W) = o< P(W'| Gu) P(Gu) -
P(W4)
-500 1
0s 4
-1000
08 4
~1500
o7 1
-2000 - B
-2500 205 1
g
-3000 & 1
03 4
-3500 1
02 } q
-4000 1
o1 } 1
i
-4500 o L | L
o a 0.5 1 15 2

Figure: Posterior distribution of the string tension (true Giz = 9 x 107 7).
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Strings ona String tension estimate R

Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gu) P(Gp)

d
POW) x P(W* | Gu) P(Gu) .

P(Gu | W) =

-1500

Propability density

-zooo

-zs00

3000
o

Figure: Posterior distribution of the string tension (true Gi. = 8 x 107 7).
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Strings ona String tension estimate R

Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gu) P(Gp)

dy _ d
P(Gu | W) = POW) x P(W* | Gu) P(Gu) .
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Figure: Posterior distribution of the string tension (true Gp. = 7 x 107 7).

Jason McEwen Cosmological Signal Processing



Strings Observational signatures ~ String tension estimate Recovering string

Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gu) P(Gp)

dy _ d
P(Gu | W) = POW) x P(W* | Gu) P(Gu) .
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Figure: Posterior distribution of the string tension (true Gi. = 6 x 107 7).
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Strings Observational signatures ~ String tension estimate Recovering string

Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gu) P(Gp)

dy d
P(Gu | W) = POW) x P(W* | Gu) P(Gu) .
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Figure: Posterior distribution of the string tension (true Gi. = 5 x 1077).
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Strings Observational signatures ~ String tension estimate Recovering string

Spherical wavelet-Bayesian string tension estimation

@ We compute the string tension posterior P(Gy. | W) by Bayes theorem:

P(W! | Gu) P(Gp)

P(Gu | W) = POW)

o P(W | Gu) P(Gp) .

Provability density

03 4
02 -
0.1 -

0 ‘H_ , .
0 05 1 5 z
Gmu =10°

Figure: Posterior distribution of the string tension (true Gu. = 4 x 1077).
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Strings onal signatures  String tension estimate Recovering str

Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M* discussed so far to the
alternative model M¢ that the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

E =P(W M) = /P d(Gu) P(W! | Gp) P(Gp) .

@ The Bayesian evidence of the CMB model is given by

E W\M)7HP(

@ Compute the Bayes factor to determine the preferred model:
AInE =In(E'/E°) = InE’ — InE°.
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Strings onal signatures  String tension estimate Re:

Bayesian evidence for strings

@ Compute Bayesian evidences to compare the string model M* discussed so far to the
alternative model M¢ that the observed data is comprised of just a CMB contribution.

@ The Bayesian evidence of the string model is given by

E = p(W! | M) = /p d(Gp) POW? | Gu) P(Gpa) -

@ The Bayesian evidence of the CMB model is given by

E W\M)7HP(

@ Compute the Bayes factor to determine the preferred model:
AInE =In(E'/E°) = InE’ — InE°.

Table: Log-evidence differences for a particular simulation.

Gu/1077 2 3 4 5 6 7 8 9
AInE —278 —233 —164 —56 104 341 677 1132
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Recovering string maps

@ Our best inference of the wavelet coefficients of the underlying string map is encoded in the
posterior probability distribution P(W;, | w).
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Strings al signatures  String tension estimate Recovering sti

Recovering string maps

@ Our best inference of the wavelet coefficients of the underlying string map is encoded in the
posterior probability distribution P(W;, | w).

@ Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:
7 d
Wip = / dWw ip o P(W, i ALY
= [ aw,w, [ atGu) pov;, W, Gu) PG| W)
= [ 4G PG @) W, G
R
where

1
rﬂ(G/’) __/ dWw W P< ir ‘ W;ﬂ G/1’>

PE (W
J (Wio

S\ Sy
- Wm) P/'(Wm

//7 //7

ir
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Strings al signatures  String tension estimate Recovering sti

Recovering string maps

@ Our best inference of the wavelet coefficients of the underlying string map is encoded in the
posterior probability distribution P(W;, | w).

@ Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:
W, = [ aw;, w;, (v, | W)
= / o / d(Gp) P(W;, | W, Gp) P(Gu | W)
= /u d(Gp) P(Gp | d) W;/)(Gu) s
where
W, (G) = / dW/,, P, 100

P (W s Py
/(Win - Wm) P/'(Wm

//7 //7

ir

@ Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

@ Work in progress...
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Wavelets on ball

@ Wavelets on the ball
@ Scale-discretised wavelets on the ball
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Wavelets on ball Scale-discretised wavelets

Data on the ball (solid sphere)

Jason McEwen Cosmological Signal Processing



Wavelets on ball Scale-discretised wavelets

Scale-discretised wavelets on the ball

@ Leistedt & JDM (2012)
Exact wavelets on the ball
FLAGLET code
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Wavelets on ball Scale-discretised wavelets

Scale-discretised wavelets on the ball

@ Leistedt & JDM (2012)
Exact wavelets on the ball
FLAGLET code

@ Define translation and convolution operator on
the radial line.
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Scale-discretised wavelets on the ball

Wavelets on ball

—

[

Figure: Tiling of Fourier-Laguerre space.

Jason McEwen

Scale-discretised wavelets

Leistedt & JDM (2012)
Exact wavelets on the ball
FLAGLET code

Define translation and convolution operator on
the radial line.

@ Dilation performed in harmonic space.

The scale-discretised wavelet ¥ € L*(B*, d°r) is
defined in harmonic space:

N T ¢ »
lIJjém/) = P (;) Ky (7) Smo-

Construct wavelets to satisfy a resolution of the

identity:

2€+1<

1,Ve,p.

D43 Z i P

=0 j! =1

Cosmological Signal Processing



Wavelets on ball Scale-discretised wavelets

Scale-discretised wavelets on the ball

180

@ G.J") = 4,9 ®) (G,") = (4,6)

0 0

180 180

© G,/") = (5,5 @ G,i') = (5,6)

Figure: Scale-discretised wavelets on the ball.
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Wavelets on ball Scale-discretised wavelets

Scale-discretised wavelets on the ball

@ The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W () = (2 W ) ) = (ITRLE)

@ The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

) = /B W) (TR D) (r )+Z Z/ WYV (TR ) () .

=l j' =1§
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Wavelets on ball Scale-discretised wavelets

Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.
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Wavelets on ball Scale-discretised wavelets

Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.
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Wavelets on ball Scale-discretised wavelets

Codes for scale-discretised wavelet on the ball

FLAG code
Exact wavelets on the ball
Leistedt & JDM (2012)

@ C, Matlab, IDL, Java
@ Exact Fourier-LAGuerre transform on the ball

FLAGLET code
Exact wavelets on the ball
Leistedt & JDM (2012)

@ C, Matlab, IDL, Java
@ Exact (Fourier-LAGuerre) wavelets on the ball — coined flaglets!

All codes available from: http://www. jasonmcewen.org/
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cs Introduction

e Compressive sensing
@ An introduction to compressive sensing

Jason McEwen Cosmological Signal Processing



cs Introduction

Compressive/compressed sensing/sampling (CS)

@ “Nothing short of revolutionary.”
— National Science Foundation
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cs Introduction

Compressive/compressed sensing/sampling (CS)

@ “Nothing short of revolutionary.”
— National Science Foundation

@ Developed by Emmanuel Candes and David Donoho (and others)

@ Awards for Emmanuel Candes:
e James H. Wilkinson Prize in 2005
@ Vasil A. Popov Prize in 2006 Alan T. Waterman Award in 2006
— National Science Foundation’s highest honour
o George Polya Prize in 2010
@ ICIAM Collatz Prize in 2011

(a) Emmanuel Candes (b) David Donoho
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Introduction

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
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cs Introduction

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.

@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

Jason McEwen Cosmological Signal Processing



Introduction

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — Compressive Sensing.

Low-cost, fast, sensitive
optical detection
PD

Xmtr

Compressed, encoded
image data sent via RF
for reconstruction

<<(

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Image encoded by DMD
and random basis

Figure: Single pixel camera
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cs Introduction

Introduction to the theory of compressive sensing

@ Linear operator (linear algebra) representation of wavelet decomposition:

| |
X(I) = ZO{;\I/[(I) - x= Z‘I/,-a[ = (‘1’0) oo+ (‘1’]) - - x=Va«
i i | |
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cs Introduction

Introduction to the theory of compressive sensing

@ Linear operator (linear algebra) representation of wavelet decomposition:
| |
X(I) = ZO{;\I/[(I) - x= Z‘I/,-a[ =Py | ap+ |V | a4+ - - x=Va«
i i | |

@ Linear operator (linear algebra) representation of measurement:
— cI)() —

=) = oy= """ |x o y=ax
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cs Introduction

Introduction to the theory of compressive sensing

@ Linear operator (linear algebra) representation of wavelet decomposition:
| |
X(I) = ZO{,'\I/[(I) - x= Z‘I/,-a[ =Py | ap+ |V | a4+ - - x=Va«
i i | |

@ Linear operator (linear algebra) representation of measurement:
— cp() —

yi=x®) — y= i Bl RN y = dx

@ Putting it together: y = &x = dV
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cs Introduction

Introduction to the theory of compressive sensing

@ lll-posed inverse problem:
y=®&x+n=>oVx +n.
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cs Introduction

Introduction to the theory of compressive sensing

@ lll-posed inverse problem:
y=®&x+n=>oVx +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e. solve
the following ¢, optimisation problem:

o = argmin||a|p suchthat [y — @V, < e,
(a3

where the signal is synthesising by x* = Va*.
@ Recall norms given by

1/2
|lee]lo = no. non-zero elements el = E Jai [|e]l2 = (E \a,\z)
i i
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cs Introduction

Introduction to the theory of compressive sensing

@ lll-posed inverse problem:
y=®&x+n=>oVx +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e. solve
the following ¢, optimisation problem:

o = argmin||a|p suchthat [y — @V, < e,
(a3

where the signal is synthesising by x* = Va*.

@ Recall norms given by

1/2
|lee]lo = no. non-zero elements el = E Jai [|e]l2 = (E \a,\z)
i i

@ Solving this problem is difficult (combinatorial).
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cs Introduction

Introduction to the theory of compressive sensing

@ lll-posed inverse problem:
y=®&x+n=>oVx +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e. solve
the following ¢, optimisation problem:
o = argmin||a|p suchthat [y — @V, < e,
(a3
where the signal is synthesising by x* = Va*.
@ Recall norms given by

5\ 1/2
lallo = no. non-zero elements  [larfls =D Jai| ]2 = (Z \a,\‘) /
@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢, optimisation problem (convex):
o’ = argmin||a|; suchthat ||y — ®Va|, < e.
(a3
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cs Introduction

Introduction to the theory of compressive sensing

@ lll-posed inverse problem:
y=®&x+n=>oVx +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in ¥, i.e. solve
the following ¢, optimisation problem:

o = argmin||a|p suchthat [y — @V, < e,
(82
where the signal is synthesising by x* = Va*.

@ Recall norms given by

1/2
|lee]lo = no. non-zero elements el = E Jai [|e]l2 = (E \a,\z)
i i

@ Solving this problem is difficult (combinatorial).
@ Instead, solve the ¢, optimisation problem (convex):
o = argmin||«||; suchthat [y — ®Vea|, <e.
(a3

@ The solutions of the ¢, and ¢;
problems are often the same. RV

®)
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Introduction to the theory of compressive sensing

@ In the absence of noise, compressed sensing is exact!
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cs Introduction

Introduction to the theory of compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > cii’KlogN
where K is the sparsity and N the dimensionality.

Jason McEwen Cosmological Signal Processing



cs Introduction

Introduction to the theory of compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > cii’KlogN
where K is the sparsity and N the dimensionality.
@ The coherence between the measurement and sparsity basis is given by

p= VN max [(¥;, )] .
i
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cs Introduction

Introduction to the theory of compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > cii’KlogN
where K is the sparsity and N the dimensionality.
@ The coherence between the measurement and sparsity basis is given by

p= VN max [(¥;, )] .
i

@ Robust to noise.

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity) and new
applications.
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Interferometric | SARA Future

e Radio interferometry
@ Interferometric imaging
@ Sparsity averaging reweighted analysis (SARA)
@ Future
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Interferometric Imaging

Next-generation of radio interferometry rapidly approachi

@ Square Kilometre Array (SKA) first observations
planned for 2019.

@ Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP, MeerKAT,
MWA.

@ New modelling and imaging techniques required
to ensure the next-generation of interferometric
telescopes reach their full potential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

I e

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) EoR (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Interferometric Imaging SARA  Future

Radio interferometry

@ The complex visibility measured by an interferometer is given by

a1
(o, w) = A(D) 1 (1) e— 2 lulw (D=1
) = [ A0 50 e 0

" Ciwua 4
f/ @) (0 €ty e

where I = (I, m), ||I||* + n*(I) = 1 and the w-component C(]|I||») is given by
cltlh) = e.zr\w(uﬂ/ufulul) '

@ Various assumptions are often made regarding the size of the field-of-view (FoV):
o Smallfield with [7]* w < 1 = C(||l]l») ~ 1
o Small-field with [|I||*w < 1 = C(|lI]2) ~ cimwlll|?
o Wide-field = (i) = 2 (1=VI=ITR)

@ Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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RI Interferometric Imaging SARA  Future

Radio interferometric inverse problem

@ Consider the resulting ill-posed inverse problem posed in the discrete setting:
y=®x+n,
with:
e incomplete Fourier measurements taken by the interferometer y;
e linear measurement operator @;
@ underlying image x;
@ noise n.

@ Measurement operator ® = MF C A incorporates:
@ primary beam A of the telescope;
@ w-component modulation C (responsible for the spread spectrum phenomenon);
o Fourier transform F;
@ masking M which encodes the incomplete measurements taken by the interferometer.
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RI Interferometric Imaging SARA  Future

Interferometric imaging with compressed sensing

@ Solve by applying a prior on sparsity of the signal in a sparsifying basis ¥ or in the magnitude
of its gradient.

@ Recover image by solving:
e Basis Pursuit denoising problem
o = argmin||||; suchthat ||y — Ve, < e,
«
where the image is synthesising by x* = Ta*;
e Total Variation (TV) denoising problem

x* = argmin||x|ltv such that |ly — ®x|» < e.
X

@ /;-norm || - ||; is given by the sum of the absolute values of the signal.
@ TV norm || - |ltv is given by the ¢;-norm of the gradient of the signal.

@ Tolerance ¢ is related to an estimate of the noise variance.
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Interferometric Imaging SARA Future

SARA for Rl imaging

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging (Carrillo, JDM & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

thus W e RY*? with D = ¢N.

@ We consider the following bases:
o Dirac, i.e. pixel basis
@ Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases
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Interferometric Imaging SARA Future

SARA for Rl imaging

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging (Carrillo, JDM & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

T = —[U,,T,,..., 0,

thus & e RY*P with D = ¢N.

@ We consider the following bases:
o Dirac, i.e. pixel basis
@ Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min [Wo'%||, subjectto |ly— ®x|,<e and x>0,
XER!

where W € RP*? is a diagonal matrix with positive weights.
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Interferometric Imaging SARA Future

SARA for Rl imaging

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging (Carrillo, JDM & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

T = —[U,,T,,..., 0,

thus & e RY*P with D = ¢N.

@ We consider the following bases:
o Dirac, i.e. pixel basis
@ Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min [Wo'%||, subjectto |ly— ®x|,<e and x>0,
XER!

where W € RP*? is a diagonal matrix with positive weights.

@ Solve a sequence of reweighted ¢; problems using the solution of the previous problem as the
inverse weights — approximate the ¢, problem.
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(a) Original (b) BP (SNR=32.82 dB)

(d) IUWT (SNR=32.12 dB) (e) TV (SNR=33.89 dB) (f) SARA (SNR=38.43 dB)

Figure: Reconstruction example of M31 from 30% of visibilities.
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(d) IUWT (SNR=17.87 dB) (6) TV (SNR=26.47 d) (f) SARA (SNR=29.08 dB)

Figure: Reconstruction example of 30Dor from 30% of visibilities.
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Interferometric Imaging SARA Future

SARA for Rl imaging

Coverage percentage Coverage percentage
(a) M31 (b) 30Dor

Figure: Reconstruction fidelity vs visibility coverage.
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Interferometric Imaging SARA Future

Future work

@ Now that the effectiveness of these techniques has been demonstrated, it is of paramount
importance to adapt them to realistic interferometric configurations.
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Interferometric Imaging SARA Future

Future work

@ Now that the effectiveness of these techniques has been demonstrated, it is of paramount
importance to adapt them to realistic interferometric configurations.

@ Continuous visibility coverage — incorporate a gridding operator in the measurement
operator.

@ Visibility coverage due to real interferometric observing strategies.

@ Study the spread spectrum phenomenon due to wide fields of view in the presence of
varying w (using the w-projection algorithm).

@ Study the spread spectrum phenomenon in the presence of other direction dependent effects.

@ Develop a new code in a low-level programming language (e.g. C) to go to big data-sets of
real interferometric observations.
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0 Cosmology
@ Cosmological concordance model

@ Cosmological observations

@ Wavelet on the sphere
@ Euclidean wavelets
@ Continuous wavelets on the sphere
@ Scale-discretised wavelets on the sphere

e Cosmic strings
@ Observational signatures
@ Estimating the string tension
@ Recovering string maps

@ Wavelets on the ball
@ Scale-discretised wavelets on the ball

e Compressive sensing
@ An introduction to compressive sensing

e Radio interferometry
@ Interferometric imaging
@ Sparsity averaging reweighted analysis (SARA)
@ Future

Jason McEwen Cosmological Signal Processing



	Cosmology
	Cosmological concordance model
	Cosmological observations

	Wavelet on the sphere
	Euclidean wavelets
	Continuous wavelets on the sphere
	Scale-discretised wavelets on the sphere

	Cosmic strings
	Observational signatures
	Estimating the string tension
	Recovering string maps

	Wavelets on the ball
	Scale-discretised wavelets on the ball

	Compressive sensing
	An introduction to compressive sensing

	Radio interferometry
	Interferometric imaging
	Sparsity averaging reweighted analysis (SARA)
	Future


