Cosmological Signal & Image Processing

Jason McEwen www.jasonmcewen.org @jasonmcewen

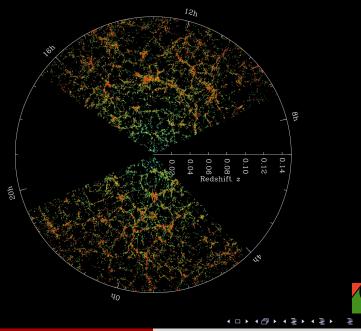
Mullard Space Science Laboratory (MSSL) University College London (UCL)

Cosmology @ MSSL

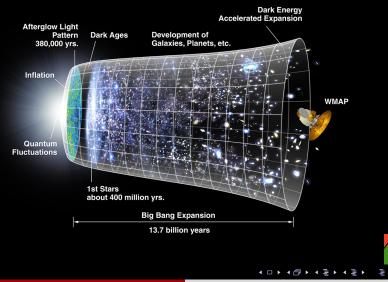
Australian National University (ANU), March 2014

・ロン ・四 と ・ 回 と ・ 回 と

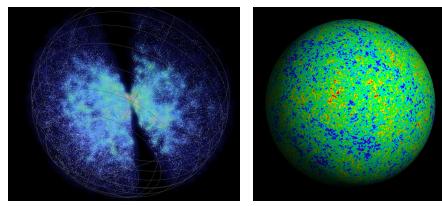
LSS fly through



We have entered an era of concordance cosmology.



Cosmological observations



(a) Large-scale structure [Credit: SDSS]

(b) Cosmic microwave background [Credit: WMAP]

・ロ・・ (日・・ (日・・ (日・)

Figure: Cosmological observations

Cosmic microwave background (CMB)

Origin of CMB

- Temperature of early Universe sufficiently hot that photons had enough energy to ionise hydrogen.
- Oniverse opaque photon-baryon fluid.
- As Universe expanded it cooled, until photons no longer had sufficient energy to ionise hydrogen.
- Photons decoupled from baryons and the Universe became transparent to radiation.

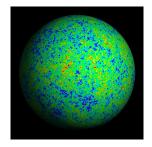


Figure: CMB

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

- *Recombination* occurred when temperature of Universe dropped to 3000K, about 400,000 years after the Big Bang.
- Photons then free to propagate largely unhindered and observed today on celestial sphere as CMB radiation.
- CMB is highly uniform over the celestial sphere, however it contains small fluctuations at a relative level of 10⁻⁵ due to acoustic oscillations in the early Universe.

Cosmic microwave background (CMB)

Origin of CMB

- Temperature of early Universe sufficiently hot that photons had enough energy to ionise hydrogen.
- 2 Universe opaque photon-baryon fluid.
- As Universe expanded it cooled, until photons no longer had sufficient energy to ionise hydrogen.
- Photons decoupled from baryons and the Universe became transparent to radiation.

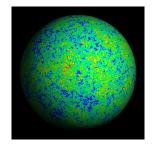


Figure: CMB

- *Recombination* occurred when temperature of Universe dropped to 3000K, about 400,000 years after the Big Bang.
- Photons then free to propagate largely unhindered and observed today on celestial sphere as CMB radiation.
- CMB is highly uniform over the celestial sphere, however it contains small fluctuations at a relative level of 10⁻⁵ due to acoustic oscillations in the early Universe.

Telescopes and satellites

(a) SDSS

Figure: LSS observations

(a) COBE

(b) WMAP

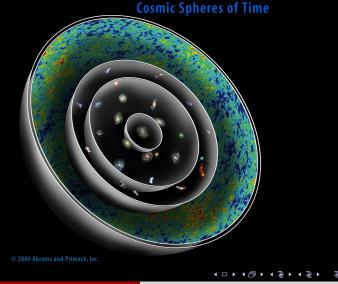
(c) Planck

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

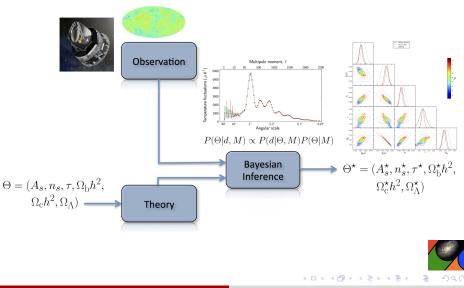
Figure: Full-sky CMB observations

Jason McEwen Cosmological Signal & Image Processing

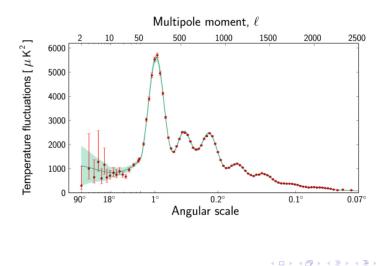
Observations made on the celestial sphere



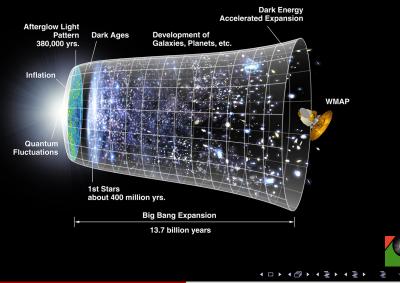
Precision cosmology Case study: CMB



Precision cosmology Case study: CMB



Outstanding questions



Outline

Cosmolog

- Cosmological concordance
- Observational probes
- Precision cosmology
- Outstanding questions

Dark energy

- ISW effect
- Continuous wavelets on the sphere
- Detecting dark energy

Cosmic strings

- String physics
- Scale-discretised wavelets on the sphere
- String estimation

Anisotropic cosmologies

- Bianchi models
- Bayesian analysis of anisotropic cosmologies
- Planck results

イロト イヨト イヨト イヨト

Dark energy

- Universe consists of ordinary baryonic matter, cold dark matter and dark energy.
- Dark energy represents energy density of empty space, which acts as a repulsive force.
- Strong evidence for dark energy exists but we know very little about its nature and origin.
- A consistent model in the framework of particle physics lacking.

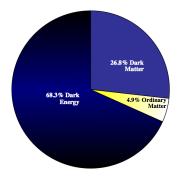


Figure: Content of the Universe [Credit: Planck]

Dark energy

- Universe consists of ordinary baryonic matter, cold dark matter and dark energy.
- Dark energy represents energy density of empty space, which acts as a repulsive force.
- Strong evidence for dark energy exists but we know very little about its nature and origin.
- A consistent model in the framework of particle physics lacking.

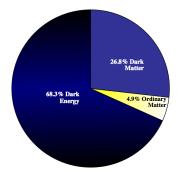


Figure: Content of the Universe [Credit: Planck]

Integrated Sachs Wolfe Effect Analogy

(no dark energy)

(with dark energy)

(a) No dark energy

(b) With dark energy

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Figure: Analogy of ISW effect

Integrated Sachs Wolfe Effect Correlation between CMB and LSS

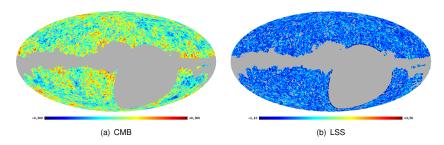


Figure: Constraining dark energy through any correlation between the CMB and LSS.

Recall wavelet transform in Euclidean space

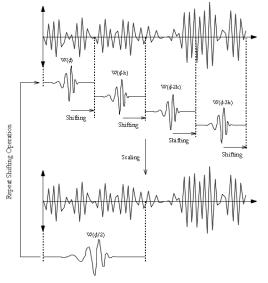


Figure: Wavelet scaling and shifting [Credit: http://www.wavelet.org/futorial/]

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function *f* on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in \mathrm{SO}(3) \; .$$

translation

• How define dilation on the sphere?

 The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection II:

$$\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi \, .$$

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function *f* on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in \mathrm{SO}(3) \; .$$

translation

• How define dilation on the sphere?

• The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection II:

$$\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi \, .$$

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function *f* on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in \mathrm{SO}(3) \; .$$

translation

• How define dilation on the sphere?

• The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection II:

$$\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi$$
 .

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function *f* on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in \mathrm{SO}(3) \; .$$

• How define dilation on the sphere? • The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection II: $\frac{\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi}{\text{dilation}}$

Continuous wavelets on the sphere Forward transform (*i.e.* analysis)

• Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ :

$$\{\Psi_{a,\rho} \equiv \mathcal{R}(\rho)\mathcal{D}(a)\Psi : \rho \in \mathrm{SO}(3), a \in \mathbb{R}^+_*\}.$$

dictionary

• The forward wavelet transform is given by

$$\frac{W^{f}_{\Psi}(a,\rho) = \langle f, \Psi_{a,\rho} \rangle}{\text{projection}} \equiv \int_{\mathbb{S}^{2}} d\Omega(\omega) f(\omega) \Psi^{*}_{a,\rho}(\omega) ,$$

where $d\Omega(\omega) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere.

• Wavelet coefficients live in $SO(3) \times \mathbb{R}^+_*$; thus, directional structure is naturally incorporated.

Continuous wavelets on the sphere Forward transform (*i.e.* analysis)

• Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ :

$$\{\Psi_{a,\rho} \equiv \mathcal{R}(\rho)\mathcal{D}(a)\Psi : \rho \in \mathrm{SO}(3), a \in \mathbb{R}^+_*\}.$$

dictionary

• The forward wavelet transform is given by

$$\frac{W^{f}_{\Psi}(a,\rho) = \langle f, \Psi_{a,\rho} \rangle}{\text{projection}} \equiv \int_{\mathbb{S}^{2}} d\Omega(\omega) f(\omega) \Psi^{*}_{a,\rho}(\omega) ,$$

where $d\Omega(\omega) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere.

• Wavelet coefficients live in $SO(3) \times \mathbb{R}^+_*$; thus, directional structure is naturally incorporated.

Continuous wavelets on the sphere Forward transform (*i.e.* analysis)

• Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ :

$$\{\Psi_{a,\rho} \equiv \mathcal{R}(\rho)\mathcal{D}(a)\Psi : \rho \in \mathrm{SO}(3), a \in \mathbb{R}^+_*\}.$$

dictionary

• The forward wavelet transform is given by

$$\frac{W^{f}_{\Psi}(a,\rho) = \langle f, \Psi_{a,\rho} \rangle}{\text{projection}} \equiv \int_{\mathbb{S}^{2}} d\Omega(\omega) f(\omega) \Psi^{*}_{a,\rho}(\omega) ,$$

where $d\Omega(\omega) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere.

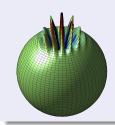
Wavelet coefficients live in SO(3) × ℝ⁺_{*}; thus, directional structure is naturally incorporated.

Continuous wavelets on the sphere Fast algorithms

- Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
 - Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001), Risbo (1996)
 - Separation of variables: Wiaux et al. (2005)

FastCSWT code

http://www.fastcswt.org



Fast directional continuous spherical wavelet transform algorithms McEwen *et al.* (2007)

- Fortran
- Supports directional and steerable wavelets

Continuous wavelets on the sphere Mother wavelets

- Correspondence principle between spherical and Euclidean wavelets (Wiaux et al. 2005).
- Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets defined on the plane:

$$\Psi = \Pi^{-1} \Psi_{\mathbb{R}^2},$$

where $\Psi_{\mathbb{R}^2} \in L^2(\mathbb{R}^2, d^2x)$ is an admissible wavelet on the plane.

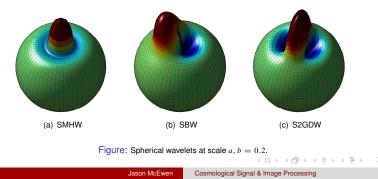
・ロト ・回ト ・ヨト ・ヨト

Continuous wavelets on the sphere Mother wavelets

- Correspondence principle between spherical and Euclidean wavelets (Wiaux et al. 2005).
- Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets defined on the plane:

$$\Psi = \Pi^{-1} \Psi_{\mathbb{R}^2},$$

where $\Psi_{\mathbb{R}^2} \in L^2(\mathbb{R}^2, d^2x)$ is an admissible wavelet on the plane.



Continuous wavelets on the sphere Inverse transform (*i.e.* synthesis)

• The inverse wavelet transform given by

$$f(\omega) = \underbrace{\int_{0}^{\infty} \frac{\mathrm{d}a}{a^{3}} \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho)}_{\text{'sum' contributions}} \underbrace{W_{\Psi}^{f}(a,\rho) \left[\mathcal{R}(\rho)\widehat{L}_{\Psi}\Psi_{a}\right](\omega)}_{\text{weighted basis functions}}$$

where $d\varrho(\rho) = \sin\beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

• Perfect reconstruction iff wavelets satisfy admissibility property:

$$0 < \widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \frac{\mathrm{d}a}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}$$

where $(\Psi_a)_{\ell m}$ are the spherical harmonic coefficients of $\Psi_a(\omega)$.

BUT... exact reconstruction not feasible in practice!

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Continuous wavelets on the sphere Inverse transform (*i.e.* synthesis)

• The inverse wavelet transform given by

$$f(\omega) = \underbrace{\int_{0}^{\infty} \frac{\mathrm{d}a}{a^{3}} \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho)}_{\text{'sum' contributions}} \underbrace{W_{\Psi}^{f}(a,\rho) \left[\mathcal{R}(\rho)\widehat{L}_{\Psi}\Psi_{a}\right](\omega)}_{\text{weighted basis functions}}$$

where $d\varrho(\rho) = \sin\beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

Perfect reconstruction iff wavelets satisfy admissibility property:

$$0 < \widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \frac{\mathrm{d}a}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}$$

where $(\Psi_a)_{\ell m}$ are the spherical harmonic coefficients of $\Psi_a(\omega)$.

BUT... exact reconstruction not feasible in practice!

Continuous wavelets on the sphere Inverse transform (*i.e.* synthesis)

• The inverse wavelet transform given by

$$f(\omega) = \underbrace{\int_{0}^{\infty} \frac{\mathrm{d}a}{a^{3}} \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho)}_{\text{'sum' contributions}} \underbrace{W_{\Psi}^{f}(a,\rho) \left[\mathcal{R}(\rho)\widehat{L}_{\Psi}\Psi_{a}\right](\omega)}_{\text{weighted basis functions}}$$

where $d\varrho(\rho) = \sin\beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

Perfect reconstruction iff wavelets satisfy admissibility property:

$$0 < \widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \frac{\mathrm{d}a}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}$$

where $(\Psi_a)_{\ell m}$ are the spherical harmonic coefficients of $\Psi_a(\omega)$.

• BUT... exact reconstruction not feasible in practice!

Detecting dark energy Wavelet coefficient correlation

- Compute wavelet correlation of CMB and LSS data (McEwen *et al.* 2007, McEwen *et al.* 2008).
- Compare to 1000 Monte Carlo simulations.
- Correlation detected at 99.9% significance.

 \Rightarrow Independent evidence for the existence of dark energy!

・ロ・・ (日・・ 日・・ 日・

Detecting dark energy Wavelet coefficient correlation

- Compute wavelet correlation of CMB and LSS data (McEwen *et al.* 2007, McEwen *et al.* 2008).
- Compare to 1000 Monte Carlo simulations.
- Correlation detected at 99.9% significance.

⇒ Independent evidence for the existence of dark energy!

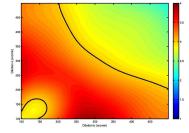


Figure: Wavelet correlation N_{σ} surface. Contours are shown at 3σ .

Detecting dark energy Constraining cosmological models

- Use positive detection of the ISW effect to constrain parameters of cosmological models:
 - Energy density Ω_{Λ} .
 - Equation of state parameter *w* relating pressure and density of cosmological fluid modelling dark energy, *i.e.* $p = w\rho$.

• Parameter estimates of
$$\Omega_{\Lambda} = 0.63^{+0.18}_{-0.17}$$
 and $w = -0.77^{+0.35}_{-0.36}$ obtained

イロト イヨト イヨト イヨト

Detecting dark energy Constraining cosmological models

- Use positive detection of the ISW effect to constrain parameters of cosmological models:
 - Energy density Ω_Λ.
 - Equation of state parameter w relating pressure and density of cosmological fluid modelling dark energy, *i.e.* $p = w\rho$.

• Parameter estimates of $\Omega_{\Lambda} = 0.63^{+0.18}_{-0.17}$ and $w = -0.77^{+0.35}_{-0.36}$ obtained. • (a) Full likelihood surface (b) Marginalised distribution for Ω_{Λ} (c) Marginalised distribution for w

Figure: Likelihood for dark energy parameters.

Outline

- Cosmolog
 - Cosmological concordance
 - Observational probes
 - Precision cosmology
 - Outstanding questions
- Dark energy
 - ISW effect
 - Continuous wavelets on the sphere
 - Detecting dark energy

Cosmic strings

- String physics
- Scale-discretised wavelets on the sphere
- String estimation

Anisotropic cosmologies

- Bianchi models
- Bayesian analysis of anisotropic cosmologies
- Planck results

イロト イヨト イヨト イヨト

Cosmic strings

- Symmetry breaking phase transitions in the early Universe → topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken
 → line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have observed string-like topological defects in other media.

The detection of cosmic strings would open a new window into the physics of the Universe!

・ロト ・回ト ・ヨト ・ヨト

Cosmic strings

- Symmetry breaking phase transitions in the early Universe → topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken
 → line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have observed string-like topological defects in other media.

Figure: Optical microscope photograph of a thin film of freely suspended nematic liquid crystal after a temperature quench. [Credit: Chuang *et al.* (1991).]

・ロト ・回ト ・ヨト ・ヨト

The detection of cosmic strings would open a new window into the physics of the Universe!

Cosmic strings

- Symmetry breaking phase transitions in the early Universe → topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken
 → line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have observed string-like topological defects in other media.

Figure: Optical microscope photograph of a thin film of freely suspended nematic liquid crystal after a temperature quench. [Credit: Chuang *et al.* (1991).]

The detection of cosmic strings would open a new window into the physics of the Universe!

Observational signatures of cosmic strings Conical Spacetime

- Spacetime about a cosmic string is conical, with a three-dimensional wedge removed (Vilenkin 1981).
- Strings moving transverse to the line of sight induce line-like discontinuities in the CMB (Kaiser & Stebbins 1984).
- The amplitude of the induced contribution scales with the string tension *G*µ.

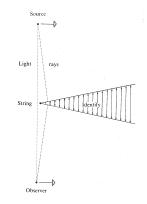
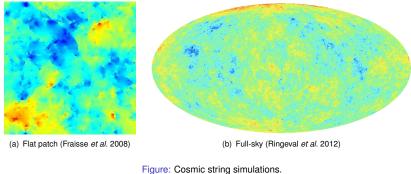


Figure: Spacetime around a cosmic string. [Credit: Kaiser & Stebbins 1984, DAMTP.]

- Make contact between theory and data using high-resolution simulations.
- Search for a weak string signal s embedded in the CMB c, with observations d given by



Observational signatures of cosmic strings CMB contribution

- Make contact between theory and data using high-resolution simulations.
- Search for a weak string signal s embedded in the CMB c, with observations d given by

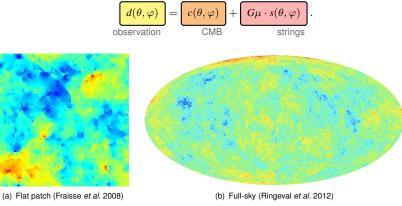


Figure: Cosmic string simulations.

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].
 - Scale-discretised wavelet Ψ^j ∈ L²(S², dΩ) defined in harmonic space:

$$\Psi^j_{\ell m} \equiv \kappa^j(\ell) s_{\ell m} \, .$$

• Admissible wavelets constructed to satisfy a resolution of the identity:

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

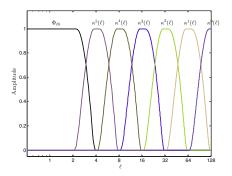
- Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].
 - Scale-discretised wavelet Ψ^j ∈ L²(S², dΩ) defined in harmonic space:

$$\Psi^j_{\ell m} \equiv \kappa^j(\ell) s_{\ell m} \, .$$

• Admissible wavelets constructed to satisfy a resolution of the identity:

Exact reconstruction not feasible in practice with continuous wavelets!

- Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].



 Scale-discretised wavelet Ψ^j ∈ L²(S², dΩ) defined in harmonic space:

$$\Psi^j_{\ell m} \equiv \kappa^j(\ell) s_{\ell m} \, .$$

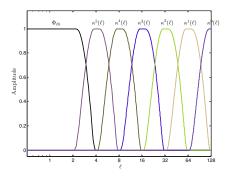
• Admissible wavelets constructed to satisfy a resolution of the identity:

$$\frac{\left|\Phi_{\ell 0}\right|^{2}}{\text{scaling function}} + \sum_{j=0}^{J} \sum_{m=-\ell}^{\ell} \underbrace{\left|\Psi_{\ell m}^{j}\right|^{2}}_{\text{wavelet}} = 1 , \quad \forall \ell .$$

Jason McEwen

Exact reconstruction not feasible in practice with continuous wavelets!

- Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].

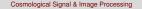


 Scale-discretised wavelet Ψ^j ∈ L²(S², dΩ) defined in harmonic space:

$$\Psi^j_{\ell m} \equiv \kappa^j(\ell) s_{\ell m} \, .$$

• Admissible wavelets constructed to satisfy a resolution of the identity:

$$\frac{|\Phi_{\ell 0}|^2}{\text{scaling function}} + \sum_{j=0}^J \sum_{m=-\ell}^{\ell} \underbrace{|\Psi_{\ell m}^j|^2}_{\text{wavelet}} = 1, \quad \forall \ell.$$



Scale-discretised wavelets on the sphere Wavelets

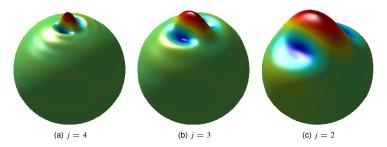


Figure: Scale-discretised wavelets on the sphere.

・ロト ・回ト ・ヨト ・ヨト

Forward and inverse transform (i.e. analysis and synthesis)

• The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$\underbrace{W^{\Psi^{j}}(\rho) = \langle f, \mathcal{R}_{\rho}\Psi^{j} \rangle}_{\text{projection}} = \int_{\mathbb{S}^{2}} d\Omega(\omega) f(\omega) (\mathcal{R}_{\rho}\Psi^{j})^{*}(\omega) .$$

• The original function may be recovered exactly in practice from the wavelet (and scaling) coefficients:

$$f(\omega) = \boxed{2\pi \int_{\mathbb{S}^2} d\Omega(\omega') W^{\Phi}(\omega')(\mathcal{R}_{\omega'}L^d\Phi)(\omega)}_{\text{scaling function contribution}} + \underbrace{\sum_{j=0}^{\prime} \int_{SO(3)} d\varrho(\rho) W^{\Psi^j}(\rho)(\mathcal{R}_{\rho}L^d\Psi^j)(\omega)}_{\text{wavelet contribution}}$$

・ロト ・回ト ・ヨト ・ヨト

Forward and inverse transform (i.e. analysis and synthesis)

• The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$\frac{W^{\Psi^{j}}(\rho) = \langle f, \mathcal{R}_{\rho}\Psi^{j} \rangle}{\text{projection}} = \int_{\mathbb{S}^{2}} d\Omega(\omega) f(\omega) (\mathcal{R}_{\rho}\Psi^{j})^{*}(\omega) .$$

• The original function may be recovered exactly in practice from the wavelet (and scaling) coefficients:

$$f(\omega) = \boxed{2\pi \int_{\mathbb{S}^2} d\Omega(\omega') W^{\Phi}(\omega')(\mathcal{R}_{\omega'} L^{d} \Phi)(\omega)}_{\text{scaling function contribution}} + \underbrace{\sum_{j=0}^{\prime} \int_{SO(3)} d\varrho(\rho) W^{\Psi^{j}}(\rho)(\mathcal{R}_{\rho} L^{d} \Psi^{j})(\omega)}_{\text{wavelet contribution}}$$

Scale-discretised wavelets on the sphere Exact and efficient computation

- - Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

$$W^{\Psi^{j}}(\rho) = \sum_{\ell=0}^{L-1} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^{2}} \left(W^{\Psi^{j}} \right)_{mn}^{\ell} D_{mn}^{\ell*}(\rho) , \quad \text{where } \left(W^{\Psi^{j}} \right)_{mn}^{\ell} = \frac{8\pi^{2}}{2\ell+1} f_{\ell m} \Psi_{\ell n}^{j*}$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski 2001, McEwen *et al.* 2007).

• Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

$$f(\omega) \sim \sum_{j=0}^{J} \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) W^{\Psi^{j}}(\rho) (\mathcal{R}_{\rho} L^{\mathrm{d}} \Psi^{j})(\omega) = \sum_{j=0}^{J} \sum_{\ell m n} \frac{2\ell+1}{8\pi^{2}} \left(W^{\Psi^{j}} \right)_{m n}^{\ell} \Psi^{j}_{\ell n} Y_{\ell m}(\omega) ,$$

where

$$\left(W^{\Psi^{j}}\right)_{mn}^{\ell} = \langle W^{\Psi^{j}}, D_{mn}^{\ell*} \rangle = \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) W^{\Psi^{j}}(\rho) D_{mn}^{\ell}(\rho) ,$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wiaux, McEwen et al. 2001) and exactly by employing the Driscoll & Healy (1994) or McEwen & Wiaux (2011) sampling theorem.

Scale-discretised wavelets on the sphere Exact and efficient computation

• Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

$$W^{\Psi^{j}}(\rho) = \sum_{\ell=0}^{L-1} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^{2}} \left(W^{\Psi^{j}} \right)_{mn}^{\ell} D_{mn}^{\ell*}(\rho) , \quad \text{where } \left(W^{\Psi^{j}} \right)_{mn}^{\ell} = \frac{8\pi^{2}}{2\ell+1} f_{\ell m} \Psi_{\ell n}^{j*}$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski 2001, McEwen *et al.* 2007).

• Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

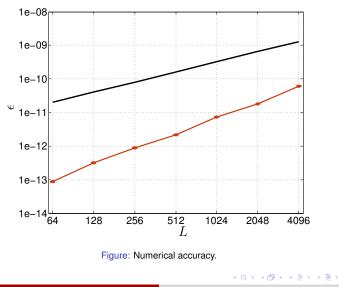
$$f(\omega) \sim \sum_{j=0}^{J} \int_{\mathrm{SO}(3)} \,\mathrm{d}\varrho(\rho) W^{\Psi^{j}}(\rho) (\mathcal{R}_{\rho} L^{\mathrm{d}} \Psi^{j})(\omega) = \sum_{j=0}^{J} \sum_{\ell m n} \frac{2\ell+1}{8\pi^{2}} \left(W^{\Psi^{j}} \right)_{m n}^{\ell} \Psi^{j}_{\ell n} Y_{\ell m}(\omega) ,$$

where

$$\left(W^{\Psi^j}\right)_{mn}^{\ell} = \langle W^{\Psi^j}, D_{mn}^{\ell*} \rangle = \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) W^{\Psi^j}(\rho) D_{mn}^{\ell}(\rho) ,$$

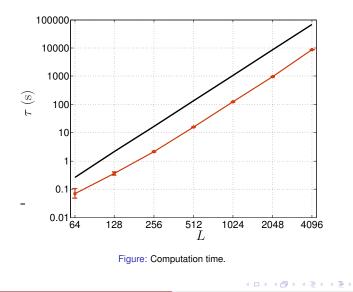
which can be computed efficiently via a factoring of rotations (Risbo 1996, Wiaux, McEwen et al. 2008) and exactly by employing the Driscoll & Healy (1994) or McEwen & Wiaux (2011) sampling theorem.

Exact and efficient computation



Jason McEwen Cosmological Signal & Image Processing

Exact and efficient computation



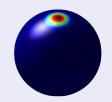
S2DW code

Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)

- Fortran
- Parallelised
- Supports directional and steerable wavelets

S2LET code

http://www.s2let.org



S2LET: A code to perform fast wavelet analysis on the sphere Leistedt, McEwen, Vandergheynst, Wiaux (2012)

- C, Matlab, IDL, Java
- Supports only axisymmetric wavelets at present
- Future extensions planned (directional and steerable wavelets, faster algos, spin wavelets)

Scale-discretised wavelets on the sphere Illustration



(a) Undecimated

(b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.

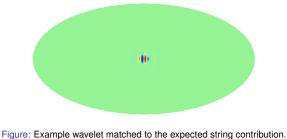
Motivation for using wavelets to detect cosmic strings

• Denote the wavelet coefficients of the data d by

$$W^d_{j
ho} = \langle d, \Psi_{j
ho}
angle$$

for scale $j \in \mathbb{Z}^+$ and position $\rho \in SO(3)$.

• Consider an even azimuthal band-limit N = 4 to yield wavelet with odd azimuthal symmetry.



gener _____generation _____generation _____generation

・ロト ・回ト ・ヨト ・ヨト

Motivation for using wavelets to detect cosmic strings

● Wavelet transform yields a sparse representation of the string signal → hope to effectively separate the CMB and string signal in wavelet space.

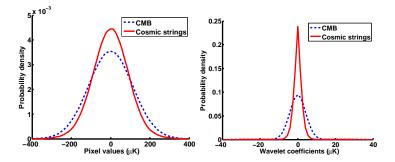


Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).

・ 同 ト ・ ヨ ト ・ ヨ ト

• Wavelet-Bayesian approach to estimate the string tension and map:

$$\underbrace{d(\theta,\varphi)}_{\text{observation}} = \underbrace{c(\theta,\varphi)}_{\text{CMB}} + \underbrace{G\mu \cdot s(\theta,\varphi)}_{\text{strings}}.$$

• Need to determine statistical description of the CMB and string signals in wavelet space.

- Calculate analytically the probability distribution of the CMB in wavelet space.
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map (cf. Wiaux et al. 2009):

$$\mathsf{P}_{j}^{\mathsf{s}}(W_{j\rho}^{\mathsf{s}} \,|\, G\mu) = \frac{\upsilon_{j}}{2G\mu\nu_{j}\Gamma(\upsilon_{j}^{-1})} \,\mathsf{e}^{\left(-\left|\frac{W_{j\rho}^{\mathsf{s}}}{G\mu\nu_{j}}\right|^{\upsilon_{j}}\right)} \,,$$

with scale parameter v_i and shape parameter v_j .

・ロト ・回ト ・ヨト ・ヨト

• Wavelet-Bayesian approach to estimate the string tension and map:

$$d(\theta,\varphi) = c(\theta,\varphi) + G\mu \cdot s(\theta,\varphi).$$
observation CMB strings

- Need to determine statistical description of the CMB and string signals in wavelet space.
- Calculate analytically the probability distribution of the CMB in wavelet space.
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map (cf. Wiaux et al. 2009):

$$\mathbb{P}_{j}^{s}(W_{j\rho}^{s} \mid G\mu) = \frac{\upsilon_{j}}{2G\mu\nu_{j}\Gamma(\upsilon_{j}^{-1})} \operatorname{e}^{\left(-\left|\frac{W_{j\rho}^{s}}{G\mu\nu_{j}}\right|^{\upsilon_{j}}\right)},$$

with scale parameter v_i and shape parameter v_j .

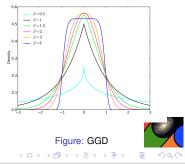
• Wavelet-Bayesian approach to estimate the string tension and map:

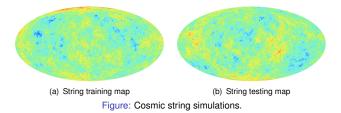
$$d(\theta,\varphi) = c(\theta,\varphi) + G\mu \cdot s(\theta,\varphi).$$
observation CMB strings

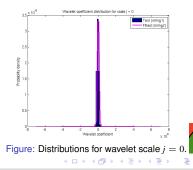
- Need to determine statistical description of the CMB and string signals in wavelet space.
- Calculate analytically the probability distribution of the CMB in wavelet space.
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map (*cf.* Wiaux *et al.* 2009):

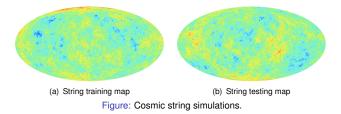
$$\mathbf{P}_{j}^{s}(W_{j\rho}^{s} \mid G\mu) = \frac{\upsilon_{j}}{2G\mu\nu_{j}\Gamma(\upsilon_{j}^{-1})} \operatorname{e}^{\left(-\left|\frac{W_{j\rho}^{s}}{G\mu\nu_{j}}\right|^{\upsilon_{j}}\right)},$$

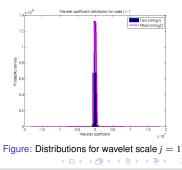
with scale parameter ν_i and shape parameter υ_i .

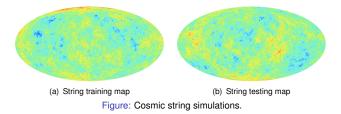


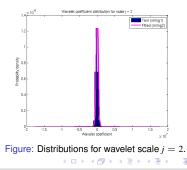


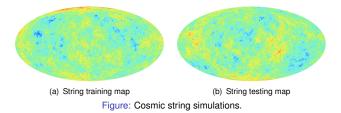


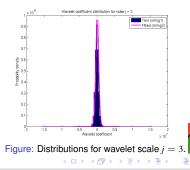


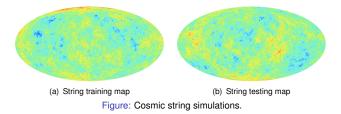




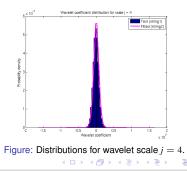








- Distributions in close agreement.
- Accurately characterised statistics of string signals in wavelet space.



- Perform Bayesian string tension estimation in wavelet space.
- For each wavelet coefficient the likelihood is given by

$$\mathbb{P}(W_{j\rho}^{d} | G\mu) = \mathbb{P}(W_{j\rho}^{s} + W_{j\rho}^{c} | G\mu) = \int_{\mathbb{R}} dW_{j\rho}^{s} \mathbb{P}_{j}^{c}(W_{j\rho}^{d} - W_{j\rho}^{s}) \mathbb{P}_{j}^{s}(W_{j\rho}^{s} | G\mu) .$$

• The overall likelihood of the data is given by

$$\mathsf{P}(W^d \mid G\mu) = \prod_{j,\rho} \mathsf{P}(W^d_{j\rho} \mid G\mu) \;,$$

where we have assumed independence for numerical tractability.

- Perform Bayesian string tension estimation in wavelet space.
- For each wavelet coefficient the likelihood is given by

$$\mathbf{P}(W_{j\rho}^{d} | G\mu) = \mathbf{P}(W_{j\rho}^{s} + W_{j\rho}^{c} | G\mu) = \int_{\mathbb{R}} dW_{j\rho}^{s} \mathbf{P}_{j}^{c}(W_{j\rho}^{d} - W_{j\rho}^{s}) \mathbf{P}_{j}^{s}(W_{j\rho}^{s} | G\mu) \,.$$

• The overall likelihood of the data is given by

$$\mathbf{P}(W^d \mid G\mu) = \prod_{j,\rho} \mathbf{P}(W^d_{j\rho} \mid G\mu) \;,$$

where we have assumed independence for numerical tractability.

- Perform Bayesian string tension estimation in wavelet space.
- For each wavelet coefficient the likelihood is given by

$$\mathbf{P}(W_{j\rho}^{d} | G\mu) = \mathbf{P}(W_{j\rho}^{s} + W_{j\rho}^{c} | G\mu) = \int_{\mathbb{R}} dW_{j\rho}^{s} \mathbf{P}_{j}^{c}(W_{j\rho}^{d} - W_{j\rho}^{s}) \mathbf{P}_{j}^{s}(W_{j\rho}^{s} | G\mu) .$$

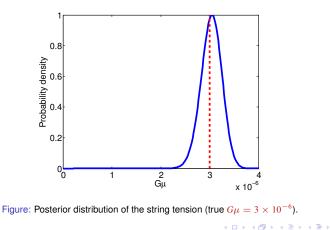
• The overall likelihood of the data is given by

$$\mathbf{P}(W^d \mid G\mu) = \prod_{j,\rho} \mathbf{P}(W^d_{j\rho} \mid G\mu) ,$$

where we have assumed independence for numerical tractability.

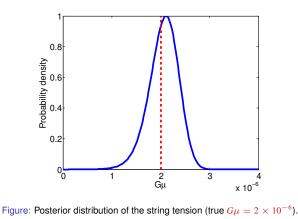
• Compute the string tension posterior $P(G\mu | W^d)$ by Bayes theorem:

$$\mathbf{P}(G\mu \mid W^d) = \frac{\mathbf{P}(W^d \mid G\mu) \, \mathbf{P}(G\mu)}{\mathbf{P}(W^d)} \propto \mathbf{P}(W^d \mid G\mu) \, \mathbf{P}(G\mu) \; .$$



• Compute the string tension posterior $P(G\mu | W^d)$ by Bayes theorem:

$$\mathbf{P}(G\mu \mid W^d) = \frac{\mathbf{P}(W^d \mid G\mu) \, \mathbf{P}(G\mu)}{\mathbf{P}(W^d)} \propto \mathbf{P}(W^d \mid G\mu) \, \mathbf{P}(G\mu) \; .$$

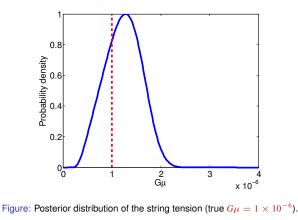


Jason McEwen Cosm

・ロト ・回ト ・ヨト ・ヨト

• Compute the string tension posterior $P(G\mu | W^d)$ by Bayes theorem:

$$\mathbf{P}(G\mu \mid W^d) = \frac{\mathbf{P}(W^d \mid G\mu) \, \mathbf{P}(G\mu)}{\mathbf{P}(W^d)} \propto \mathbf{P}(W^d \mid G\mu) \, \mathbf{P}(G\mu) \; .$$



・ロト ・回ト ・ヨト ・ヨト

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M^s to the alternative model M^c that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$E^s = \mathrm{P}(W^d \mid \mathrm{M}^s) = \int_{\mathbb{R}} \mathrm{d}(G\mu) \, \mathrm{P}(W^d \mid G\mu) \, \mathrm{P}(G\mu) \; .$$

• The Bayesian evidence of the CMB model is given by

$$E^c = \mathsf{P}(W^d \,|\, \mathsf{M}^c) = \prod_{j,\rho} \mathsf{P}^c_j(W^d_{j\rho}) \;.$$

• Compute the Bayes factor to determine the preferred model:

$$\Delta \ln E = \ln(E^s/E^c) \; .$$

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M^s to the alternative model M^c that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$E^s = \mathrm{P}(W^d \mid \mathrm{M}^s) = \int_{\mathbb{R}} \mathrm{d}(G\mu) \, \mathrm{P}(W^d \mid G\mu) \, \mathrm{P}(G\mu) \; .$$

• The Bayesian evidence of the CMB model is given by

$$E^c = \mathsf{P}(W^d \,|\, \mathsf{M}^c) = \prod_{j,\rho} \mathsf{P}^c_j(W^d_{j\rho}) \;.$$

• Compute the Bayes factor to determine the preferred model:

 $\Delta \ln E = \ln(E^s/E^c) \; .$

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M^s to the alternative model M^c that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$E^s = \mathrm{P}(W^d \mid \mathrm{M}^s) = \int_{\mathbb{R}} \mathrm{d}(G\mu) \, \mathrm{P}(W^d \mid G\mu) \, \mathrm{P}(G\mu) \; .$$

• The Bayesian evidence of the CMB model is given by

$$E^c = \mathsf{P}(W^d \mid \mathsf{M}^c) = \prod_{j,\rho} \mathsf{P}^c_j(W^d_{j\rho}) \,.$$

• Compute the Bayes factor to determine the preferred model:

 $\Delta \ln E = \ln(E^s/E^c)$.

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M^s to the alternative model M^c that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$E^s = \mathsf{P}(W^d \,|\, \mathsf{M}^s) = \int_{\mathbb{R}} \, \mathsf{d}(G\mu) \, \mathsf{P}(W^d \,|\, G\mu) \, \mathsf{P}(G\mu) \;.$$

• The Bayesian evidence of the CMB model is given by

$$E^c = \mathsf{P}(W^d \,|\, \mathsf{M}^c) = \prod_{j,\rho} \mathsf{P}^c_j(W^d_{j\rho}) \,.$$

• Compute the Bayes factor to determine the preferred model:

$$\Delta \ln E = \ln(E^s/E^c) \; .$$

Table: Tension estimates and log-evidence differences for simulations.

$G\mu/10^{-6}$	0.7	0.8	0.9	1.0	2.0	3.0
$\widehat{G\mu}/10^{-6}$	1.1	1.2	1.2	$1.3 \\ -0.7$	2.1	3.1
$\Delta \ln E$	-1.3	-1.1	-0.9		5.5	29

Recovering string maps

- Inference of the wavelet coefficients of the underlying string map encoded in posterior probability distribution $P(W^s_{j\rho} | W^d)$.
- Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

$$\overline{W}_{j\rho}^{s} = \int_{\mathbb{R}} \mathrm{d}W_{j\rho}^{s} W_{j\rho}^{s} \operatorname{P}(W_{j\rho}^{s} \mid W^{d})$$

- Recover the string map from its wavelets (possible since the scale-discretised wavelet transform on the sphere supports exact reconstruction).
- Work in progress...

Recovering string maps

- Inference of the wavelet coefficients of the underlying string map encoded in posterior probability distribution $P(W^s_{j\rho} | W^d)$.
- Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

$$\overline{W}^{s}_{j
ho} = \int_{\mathbb{R}} \mathrm{d}W^{s}_{j
ho} \ W^{s}_{j
ho} \ \mathrm{P}(W^{s}_{j
ho} \mid W^{d})$$

- Recover the string map from its wavelets (possible since the scale-discretised wavelet transform on the sphere supports exact reconstruction).
- Work in progress...

Outline

- Cosmolog
 - Cosmological concordance
 - Observational probes
 - Precision cosmology
 - Outstanding questions
- Dark energy
 - ISW effect
 - Continuous wavelets on the sphere
 - Detecting dark energy
- Cosmic strings
 - String physics
 - Scale-discretised wavelets on the sphere
 - String estimation
- Anisotropic cosmologies
 - Bianchi models
 - Bayesian analysis of anisotropic cosmologies
 - Planck results

イロト イヨト イヨト イヨト

Bianchi VII_h cosmologies

Test fundamental assumptions on which modern cosmology is based, e.g. isotropy.

- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the universe, *i.e.* rotation and shear.
- Yields more general solutions to Einstein's field equations \rightarrow Bianchi cosmologies.
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies (Collins & Hawking 1973, Barrow *et al.* 1985).

Bianchi VII_h cosmologies

Test fundamental assumptions on which modern cosmology is based, e.g. isotropy.

- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the universe, *i.e.* rotation and shear.
- Yields more general solutions to Einstein's field equations \rightarrow Bianchi cosmologies.
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies (Collins & Hawking 1973, Barrow et al. 1985).

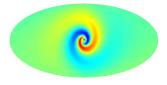


Figure: Bianchi CMB contribution.

Bianchi VII_h cosmologies Parameters

Models described by the parameter vector:

$$\Theta_{\rm B} = \left(\Omega_{\rm m}, \, \Omega_{\Lambda}, \, x, \, (\omega/H)_0, \, \alpha, \beta, \gamma\right).$$

- Free parameter, *x*, describing the comoving length-scale over which the principal axes of shear and rotation change orientation, *i.e.* 'spiralness'.
- Amplitude characterised by the dimensionless vorticity $(\omega/H)_0$, which influences the amplitude of the induced temperature contribution only and not its morphology.
- The orientation and handedness of the coordinate system is also free.

Bianchi VII_h cosmologies Simulations

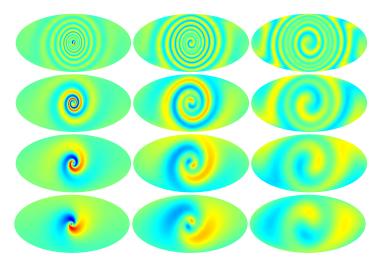


Figure: Simulated CMB contributions in Bianchi VII_h cosmologies for varying parameters.

Bayesian analysis of Bianchi VII_h cosmologies Parameter estimation

- Perform Bayesian analysis of McEwen et al. (2013).
- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \Omega_{\Lambda}, \Omega_k).$
- Recall Bianchi parameters: $\Theta_{\rm B} = (\Omega_{\rm m}, \, \Omega_{\Lambda}, \, x, \, (\omega/H)_0, \, \alpha, \beta, \gamma).$
- Likelihood given by

$$\mathbf{P}(\boldsymbol{d} \mid \Theta_{\mathrm{B}}, \Theta_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\Theta_{\mathrm{C}})|}} e^{\left[-\chi^2(\Theta_{\mathrm{C}}, \Theta_{\mathrm{B}})/2\right]},$$

where

$$\chi^{2}(\Theta_{\mathrm{C}},\Theta_{\mathrm{B}}) = \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right]^{\dagger} \mathbf{X}^{-1}(\Theta_{\mathrm{C}}) \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right].$$

Bayesian analysis of Bianchi VII_h cosmologies Parameter estimation

- Perform Bayesian analysis of McEwen et al. (2013).
- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \Omega_{\Lambda}, \Omega_k).$
- Recall Bianchi parameters: $\Theta_{\rm B} = (\Omega_{\rm m}, \, \Omega_{\Lambda}, \, x, \, (\omega/H)_0, \, \alpha, \beta, \gamma).$
- Likelihood given by

$$\mathbf{P}(\boldsymbol{d} \mid \Theta_{\mathrm{B}}, \Theta_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\Theta_{\mathrm{C}})|}} \mathrm{e}^{\left[-\chi^{2}(\Theta_{\mathrm{C}}, \Theta_{\mathrm{B}})/2\right]},$$

where

$$\chi^{2}(\Theta_{\mathrm{C}},\Theta_{\mathrm{B}}) = \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right]^{\dagger} \mathbf{X}^{-1}(\Theta_{\mathrm{C}}) \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right].$$

Bayesian analysis of Bianchi VII_h cosmologies Covariance

- Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell_m}\}$ and $b(\Theta_B) = \{b_{\ell_m}(\Theta_B)\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel *i* given by \(\sigma_m^2(\omega_i)\).
- The covariance is then given by

$$\mathbf{X}(\Theta_{\mathrm{C}}) = \mathbf{C}(\Theta_{\mathrm{C}}) + \mathbf{M}\,,$$

where

- $C(\Theta_C)$ is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_C)$;
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} \, m_{\ell' m'}^* \rangle \simeq \sum_{\omega_l} \sigma_m^2(\omega_l) \, Y_{\ell m}^*(\omega_l) \, Y_{\ell' m'}(\omega_l) \, \Omega_{\mathrm{pix}}^2 \, .$$

Bayesian analysis of Bianchi VII_h cosmologies Covariance

- Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell_m}\}$ and $b(\Theta_B) = \{b_{\ell_m}(\Theta_B)\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel *i* given by \(\sigma_m^2(\omega_i)\).
- The covariance is then given by

$$\mathbf{X}(\Theta_{\mathrm{C}}) = \mathbf{C}(\Theta_{\mathrm{C}}) + \mathbf{M}\,,$$

where

- $C(\Theta_C)$ is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_C)$;
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} \, m_{\ell' m'}^* \rangle \simeq \sum_{\omega_l} \sigma_m^2(\omega_l) \, Y_{\ell m}^*(\omega_l) \, Y_{\ell' m'}(\omega_l) \, \Omega_{\mathrm{pix}}^2 \, .$$

Bayesian analysis of Bianchi VII_h cosmologies Covariance

- Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel *i* given by σ²_m(ω_i).
- The covariance is then given by

$$X(\Theta_C) = C(\Theta_C) + M\,,$$

where

- C(Θ_C) is the diagonal CMB covariance defined by the power spectrum C_ℓ(Θ_C);
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} m_{\ell' m'}^* \rangle \simeq \sum_{\omega_i} \sigma_m^2(\omega_i) Y_{\ell m}^*(\omega_i) Y_{\ell' m'}(\omega_i) \Omega_{\text{pix}}^2 .$$

Bayesian analysis of Bianchi VII_h cosmologies Model selection

• Compute the Bayesian evidence to determine preferred model:

$$E = \mathbf{P}(\boldsymbol{d} \mid \boldsymbol{M}) = \int \, \mathrm{d}\boldsymbol{\Theta} \, \mathbf{P}(\boldsymbol{d} \mid \boldsymbol{\Theta}, \boldsymbol{M}) \, \mathbf{P}(\boldsymbol{\Theta} \mid \boldsymbol{M}) \; .$$

- Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz *et al.* 2009).
- Consider two models:
 - $\bullet\,$ Flat-decoupled-Bianchi model: \ominus_C and \ominus_B fitted simultaneously but decoupled $\to\,$ phenomenological
 - \bullet Open-coupled-Bianchi model: Θ_C and Θ_B fitted simultaneously and coupled \rightarrow physical

Bayesian analysis of Bianchi VII_h cosmologies Model selection

• Compute the Bayesian evidence to determine preferred model:

$$E = \mathbf{P}(\boldsymbol{d} \mid \boldsymbol{M}) = \int \, \mathrm{d}\boldsymbol{\Theta} \, \mathbf{P}(\boldsymbol{d} \mid \boldsymbol{\Theta}, \boldsymbol{M}) \, \mathbf{P}(\boldsymbol{\Theta} \mid \boldsymbol{M}) \; .$$

- Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz *et al.* 2009).
- Consider two models:
 - Flat-decoupled-Bianchi model: \ominus_C and \ominus_B fitted simultaneously but decoupled \rightarrow phenomenological
 - \bullet Open-coupled-Bianchi model: \ominus_C and \ominus_B fitted simultaneously and coupled \rightarrow physical

Bayesian analysis of Bianchi VII_h cosmologies Validation with simulations

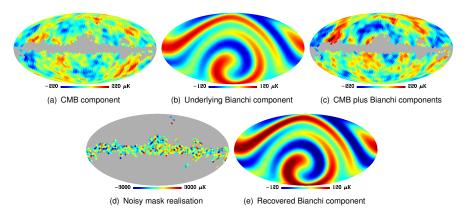
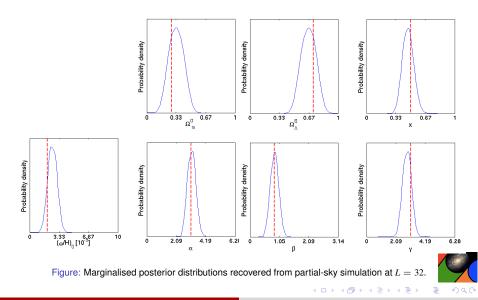
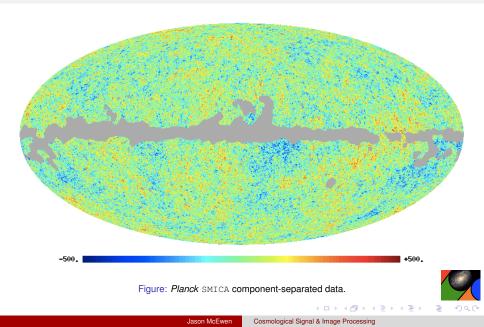


Figure: Partial-sky simulation with embedded Bianchi VII_h component at L = 32.

Bayesian analysis of Bianchi VII_h cosmologies Validation with simulations



Planck results



Planck results: flat-decoupled-Bianchi model Bayesian evidence

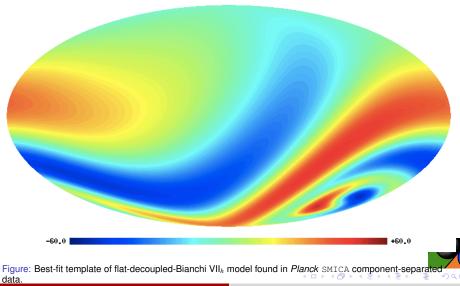
Table: Bayes factor relative to equivalent ACDM model (positive favours Bianchi model).

Model	$\Delta \ln E$		
	SMICA	SEVEM	
Flat-decoupled-Bianchi (left-handed) Flat-decoupled-Bianchi (right-handed)	$2.8 \pm 0.1 \\ 0.5 \pm 0.1$	$\frac{1.5 \pm 0.1}{0.5 \pm 0.1}$	

- On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VII_h component would be termed strong (significant) for SMICA (SEVEM) component-separated data.
- A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.

Planck data favour the inclusion of a phenomenological Bianchi VII_h component!

Planck results: flat-decoupled-Bianchi model Best-fit Bianchi component



Planck results: flat-decoupled-Bianchi model

BUT the flat-Bianchi-decoupled model is phenomenological and **not physical!**

Parameter estimates are not consistent with concordance cosmology.

Planck results: open-coupled-Bianchi model Bayesian evidence

Table: Bayes factor relative to equivalent Λ CDM model (positive favours Bianchi model).

Model	$\Delta \ln E$		
	SMICA	SEVEM	
Open-coupled-Bianchi (left-handed) Open-coupled-Bianchi (right-handed)	$\begin{array}{c} 0.0\pm0.1\\ -0.4\pm0.1\end{array}$	$0.0 \pm 0.1 \\ -0.4 \pm 0.1$	

 In the physical setting where the standard cosmological and Bianchi parameters are coupled,

Planck data do not favour the inclusion of a Bianchi VII_h component.

• Find no evidence for Bianchi VII_h cosmologies and constrain vorticity to:

Planck results: open-coupled-Bianchi model Bayesian evidence

Table: Bayes factor relative to equivalent Λ CDM model (positive favours Bianchi model).

Model	$\Delta \ln E$		
	SMICA	SEVEM	
Open-coupled-Bianchi (left-handed) Open-coupled-Bianchi (right-handed)	$\begin{array}{c} 0.0\pm0.1\\ -0.4\pm0.1\end{array}$	$0.0 \pm 0.1 \\ -0.4 \pm 0.1$	

 In the physical setting where the standard cosmological and Bianchi parameters are coupled,

Planck data do not favour the inclusion of a Bianchi VII_h component.

• Find no evidence for Bianchi VII_h cosmologies and constrain vorticity to:

$$(\omega/H)_0 < 8.1 \times 10^{-10}$$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Summary

We have entered an era of precision cosmology.

Thanks to large and precise cosmological observations and robust signal and image processing techniques.

Summary

We have entered an era of precision cosmology.

Thanks to large and precise cosmological observations and robust signal and image processing techniques.

BUT... many outstanding questions remain!

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Summary

We have entered an era of precision cosmology.

Thanks to large and precise cosmological observations and robust signal and image processing techniques.

BUT...many outstanding questions remain!

Your Universe needs YOU!

PhD and postdoc opportunities at UCL.

For more information see http://www.jasonmcewen.org/opportunities.html

