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What’s the point?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (image from http://www.wavelet.org/tutorial/)

Jason McEwen Wavelets on the sphere

http://www.wavelet.org/tutorial/


Motivation Wavelets on the sphere Steerability ISW effect

What’s the point?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (image from http://www.wavelet.org/tutorial/)

Jason McEwen Wavelets on the sphere

http://www.wavelet.org/tutorial/


Motivation Wavelets on the sphere Steerability ISW effect

Wavelets in Euclidean space

Decompose signal into wavelet basis

W(a, b) = |a|−1/2
Z ∞

−∞
dt f (t)ψ

“ t − b
a

”
= 〈f , ψa,b〉,

where ψa,b = |a|−1/2ψ( t−b
a ).

Synthesis signal from wavelet coefficients

f = C−1
ψ

Z ∞

−∞

Z ∞

−∞

da db
a2

W(a, b)ψa,b.

Admissibility condition to ensure perfect reconstruction

0 < Cψ ≡ 2π
Z ∞

−∞

dk
|k|
|ψ̂(k)|2 <∞.

Construct on sphere in analogous manner
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History

Discrete “second generation” wavelets on the sphere constructed through the lifting scheme
(Schroder & Sweldens 1995 [17])

Avoids explicit definition of a dilation operator but may not lead to a stable basis and
loose symmetry of sphere

Extension of a dilation operator to the sphere non-trivial

Various attempts (e.g. [6,7,8,9,14,15,18])

Antoine and Vandergheynst 1998 (AV98) [2]
→ Methodology I

Sanz et al. 2006 (SHLA06) [16]; JDM, Hobson & Lasenby 2006 (MHL06) [10]
→ Methodology II
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Methodology I: Overview

Originally, construction derived entirely from group
theoretical principles (AV98). However, in a recent work by
Wiaux et al. 2005 [20] reintroduced independently of the
original group theoretic formalism, in an equivalent,
practical and self-consistent approach.

Correspondence principle between spherical and
Euclidean wavelets is developed, relating the concepts of
planar Euclidean wavelets to spherical wavelets through a
stereographic projection.

Stereographic projection is conformal, unitary and
radial.

Dilation on sphere defined through stereographic
projection operator; construct wavelet basis on sphere;
wavelet transform on sphere projection onto this basis.

Mother wavelets must satisfy the appropriate
admissibility criterion to ensure perfect reconstruction
is possible.
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Figure: Stereographic projection
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Methodology I: Stereographic projection

Stereographic projection operator is defined by Π : ω → x = Πω = (r(θ), φ) where
r = 2 tan(θ/2), ω ≡ (θ, φ) ∈ S2 and x ∈ R2 is a point in the plane, denoted here by the polar
coordinates (r, φ). The inverse operator is Π−1 : x → ω = Π−1x = (θ(r), φ), where
θ(r) = 2 tan−1(r/2).

Define the action of the stereographic projection operator on functions on the plane and
sphere. Consider the space of square integrable functions in L2(R2, d2x) on the plane and
L2(S2, dΩ(ω)) on the sphere.

The action of the stereographic projection operator
Π : s ∈ L2(S2, dΩ(ω)) → p = Πs ∈ L2(R2, d2x) on functions is defined as

p(r, φ) = (Πs)(r, φ) = (1 + r2
/4)−1s(θ(r), φ) .

The inverse stereographic projection operator
Π−1 : p ∈ L2(R2, d2x) → s = Π−1p ∈ L2(S2, dΩ(ω)) on functions is then

s(θ, φ) = (Π
−1p)(θ, φ) = [1 + tan2

(θ/2)]p(r(θ), φ) .
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Methodology I: Dilation

The spherical dilation operator D(a, b) : s(ω) → [D(a, b)s](ω) in L2(S2, dΩ(ω)) is defined
as the conjugation by Π of the Euclidean dilation d(a, b) in L2(R2, d2x) on tangent plane at
north pole:

D(a, b) ≡ Π
−1 d(a, b) Π ,

where d(a, b) is the anisotropic Euclidean dilation operator.

Spherical dilation given by

[D(a, b)s](ω) = [λ(a, b, θ, φ)]
1/2 s(ω1/a,1/b) ,

where ωa,b = (θa,b, φa,b), tan(θa,b/2) = tan(θ/2)
p

a2 cos2 φ+ b2 sin2 φ and
tan(φa,b) = b

a tan(φ).
For the case where a = b the anisotropic dilation reduces to the usual isotropic case defined by
tan(θa/2) = a tan(θ/2) and φa = φ.
Cocycle of an anisotropic spherical dilation is defined by

λ(a, b, θ, φ) ≡
4a3b3`

A− cos θ + A+
´2 ,

where
A± = a2b2 ± a2 sin2

φ± b2 cos2
φ .

For the case where a = b the anisotropic cocycle reduces to the usual isotropic cocycle.

Although anisotropic dilations of practical use, not wavelets strictly speaking. In the
anisotropic setting a bounded admissibility integral cannot be determined (even in the plane),
thus the synthesis of a signal from its coefficients cannot be performed. For perfect
reconstruction require a = b.
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Methodology I: Analysis

Construct wavelet basis from affine transformation (dilation, translation) on the sphere of a
mother wavelet

The natural extension of translations to the sphere are rotations. Characterised by the
elements of the rotation group SO(3), which parameterise in terms of the three Euler angles
ρ = (α, β, γ). Rotation of a function f on the sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ρ ∈ SO(3) .

Wavelet basis on the sphere may now be constructed from rotations and isotropic dilations
(where a = b) of a mother spherical wavelet Φ ∈ L2(S2, dΩ(ω)). The corresponding wavelet
family {Φa,ρ ≡ R(ρ)D(a, a)Φ : ρ ∈ SO(3), a ∈ R+

∗ } provides an over-complete set of
functions in L2(S2, dΩ(ω)).

The CSWTI of f ∈ L2(S2, dΩ(ω)) is given by the projection on to each wavelet basis function
in the usual manner: cW f

Φ(a, ρ) ≡
Z

S2
dΩ(ω) f (ω) Φ

∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dφ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.
(However, only local directions make any sense on S2.)
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Methodology I: Synthesis

The synthesis of a signal on the sphere from its wavelet coefficients is given by

f (ω) =

Z
SO(3)

d%(ρ)
Z ∞

0

da
a3

cW f
Φ(a, ρ) [R(ρ)bLΦΦa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

The bLΦ operator in L2(S2, dΩ(ω)) is defined by the action

(bLΦg)`m ≡ g`m/bC`Φ
on the spherical harmonic coefficients of functions g ∈ L2(S2, dΩ(ω)).

In order to ensure the perfect reconstruction of a signal synthesised from its wavelet
coefficients, one requires the admissibility condition

0 < bC`Φ ≡ 8π2

2`+ 1

X̀
m=−`

Z ∞

0

da
a3
| (Φa)`m |

2
<∞

to hold for all ` ∈ N, where (Φa)`m are the spherical harmonic coefficients of Φa(ω).
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Methodology I: Mother wavelets

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere. (Proved by [20].)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Φ(ω) = [Π
−1

ΦR2 ](ω) ,

where ΦR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a = b = 0.2.
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Methodology II: Overview

Dilation operator defined through association with plane by AV98

Alternative idea for dilation operator proposed by SHLA06
Dilation defined by scaling in harmonic space
But wavelet framework not directional

Integrated directional approach from AV98 with harmonic scaling idea of SHLA06 (MHL06)
Defined directly on sphere
Directional structure naturally incorporated

Jason McEwen Wavelets on the sphere



Motivation Wavelets on the sphere Steerability ISW effect History Methodology I Methodology II Comparison Fast algorithms

Methodology II: Analysis

Dilated wavelet Ψ(ω; a) is defined in harmonic space by

Ψ`m(a) =

r
2`+ 1

8π2
Υm(`a) ,

where Ψ`m(a) are the spherical harmonic coefficients of Ψ(ω; a), Υm(q) are the family of
wavelet generating functions and a ∈ R+

∗ is the real, strictly positive isotropic dilation
parameter. The notation adopted to represent a dilation in this setting differs to that used
previously in order to reflect the different definition of the dilation operator.

The wavelet generating functions are not defined on the sphere but rather on the non-negative
real line: Υm ∈ L2(R+, dx), m ∈ Z (although we consider only |m| < ` for Ψ`m(a), one is in
general free to define Υm, ∀m ∈ Z).

An overcomplete wavelet basis on the sphere may be constructed from the following spherical
wavelet family:

{[R(ρ)Ψ](ω; a) : ρ ∈ SO(3), a ∈ R+
∗ } .

The CSWTII of f ∈ L2(S2, dΩ(ω)) is given by the projection on to each wavelet basis function
in the usual manner:

fW f
Υ(a, ρ) ≡

Z
S2

dΩ(ω) f (ω) [R(ρ)Ψ]
∗
(ω; a) .

Notice that the analysis formula for a given dilation is identical to the analysis formula (4) of
the CSWTI. The transform is again general in the sense that all orientations in the rotation
group SO(3) are considered, thus directional structure is naturally incorporated.

Jason McEwen Wavelets on the sphere



Motivation Wavelets on the sphere Steerability ISW effect History Methodology I Methodology II Comparison Fast algorithms

Methodology II: Synthesis

To classify as wavelet analysis, must be possible to reconstruct perfectly the original function
from its wavelet coefficients.

The synthesis of a signal from its wavelet coefficients is given by

f (ω) =

Z ∞

0

da
a

Z
SO(3)

d%(ρ) fW f
Υ(a, ρ) [R(ρ)eLΥΨ](ω; a) .

The eLΥ operator in L2(S2, dΩ(ω)) is defined by the action

(eLΥg)`m ≡ g`m/eC`Υ
on the spherical harmonic coefficients of functions g ∈ L2(S2, dΩ(ω)).

For perfect reconstruction require the admissibility criteria

0 < eC`Υ ≡
8π2

2`+ 1

X̀
m=−`

Z ∞

0

da
a
|Ψ`m(a)|2 <∞ , to hold ∀`.

Relate the admissibility criteria that each spherical wavelet must satisfy to an equivalent
admissibility condition for the family of wavelet generating functions:

0 < eC`Υ =
X̀

m=−`

Z ∞

0

dq
q
|Υm(q)|2 <∞ .

Since
R∞

0
dq
q |Υm(q)|2 is always non-negative it is possible to recast the admissibility

condition on the family Υm in the following form:
R∞

0
dq
q |Υm(q)|2 <∞, ∀m ∈ Z and ∃m ∈ Z

such that
R∞

0
dq
q |Υm(q)|2 6= 0 .
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Methodology II: Mother wavelets

Wavelets on the sphere may be constructed in harmonic space from the analogue of the
Fourier definition of planar Euclidean wavelets. Must then check that the candidate wavelets
are admissible.

Construct the spherical analogue of the Morlet wavelet using our spherical wavelet formalism.
Differs to the definition of the spherical Morlet wavelet constructed from the projection of the planar
Morlet wavelet on to the sphere.
The planar Morlet wavelet is defined by a Gaussian in Fourier space centred on the wave vector of the
wavelet, hence we define the analogue of the Morlet wavelet on the sphere by a Gaussian in spherical
harmonic space.
Various associations between Fourier and spherical harmonic space are possible. Here we choose to
associate ` and m in spherical harmonic space with the x and y components of a vector in Fourier
space respectively.
The wavelet generating functions are defined by

Υm(`a) = e−
(`a−L)2+(m−M)2

2 − e−
(`a)2+L2+(m−M)2

2 ,

where L ∈ N and M ∈ Z, |M| < L define the centre of the Gaussian when a = 1. The correction term
subtracted is included to ensure admissibility.
Before proceeding it is necessary to check that the candidate wavelet generating functions generate
admissible spherical wavelets. It has been shown that the admissibility integral for the wavelet
generating functions converges (see MHL06 [10]).
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Methodology II: Mother wavelets

(a) Re{Ψ(ω; a = 1)} (b) Im{Ψ(ω; a = 1)} (c) |Ψ(ω; a = 1)|

Figure: Plots of the analogue of the Morlet wavelet constructed on the sphere for a = 1.
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Methodology II: Mother wavelets

(a) Re{Ψ(ω; a = 0.5)} (b) Im{Ψ(ω; a = 0.5)} (c) |Ψ(ω; a = 0.5)|

Figure: Plots of the analogue of the Morlet wavelet constructed on the sphere for a = 0.5.
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Comparison

Methodology I:
Defined in real space easily but not harmonic space

Suitable for generic analyses plus problems posed naturally in real space

Methodology II:
Defined in harmonic space easily but not real space

Suitable for generic analyses plus problems posed naturally in harmonic space

All functions and operators defined directly on the sphere

Remains to be seen if leads to further practical advantages, e.g. localisation properties
(focus of further research)
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Fast algorithms

Direct analysis computationally infeasible for large data sets, such as WMAP (∼3 megapixels)
and Planck (∼50 megapixels)

Fast algorithms essential (for a review see [22])
Factoring of rotations: McEwen et al. 2007 [11]
Separation of variables: Wiaux et al. 2005 [21]

Renders analysis computationally affordable

Both methodologies have the same analysis formula for a given dilation
⇒ fast algorithms applicable to both methodologies
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Wavelet steerability

Defined on the sphere by Wiaux et al. (2005) [20]

For steerable wavelets, wavelet for any orientation γ given by weighted sum of basis wavelets:

ψγ(ω) =

MX
m=1

km(γ)ψm(ω)

Due to linearity of the wavelet transform, property extends to wavelet coefficients.

x^

z^

y^

(a) Ψ
∂2

x̂ (Gauss)
x^

z^

y^

(b) Ψ
∂2

ŷ (Gauss)
x^

z^

y^

(c) Ψ
∂̂x∂̂y(Gauss)

x^

z^

y^

(d) Ψ
∂2

x̂ (Gauss) rotated by χ = π/4

Figure: Second Gaussian derivative wavelet on the sphere for a = 0.4. Dark and light regions
respectively identify negative and positive values. The rotated wavelet illustrated in panel (d) can be
constructed from a sum of weighted versions of the basis wavelets illustrated in panels (a) through
(c). (Illustrations reproduced from [20].)
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Morphological measures

Steerability may be used to compute measures of the morphology of local features.

Orientation D(ω, a): Orientation of feature of maximum wavelet coefficient at each position on the
sphere

Signed-intensity I(ω, a): Maximum wavelet coefficient at given orientation

Elongation E(ω, a): Unity minus ratio of wavelet coefficient in orthogonal direction relative to maximum
wavelet coefficient

(a) Signed-intensity (b) Orientation (c) Elongation

Figure: Morphological measures of the WMAP ILC map for scales 50–600 arcmin.
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Morphological measures

Steerability may be used to compute measures of the morphology of local features.

Orientation D(ω, a): Orientation of feature of maximum wavelet coefficient at each position on the
sphere

Signed-intensity I(ω, a): Maximum wavelet coefficient at given orientation

Elongation E(ω, a): Unity minus ratio of wavelet coefficient in orthogonal direction relative to maximum
wavelet coefficient

ILC signed-intensity

(a) Signed-intensity

ILC orientation

(b) Orientation

ILC elongation

(c) Elongation

Figure: Morphological measures of the WMAP ILC map for scales 50–600 arcmin.
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ISW effect

Late ISW effect
CMB photons blue (red) shifted when fall into (out of) potential wells

Evolution of potential during photon propagation
→ net change in photon energy

Gravitation potentials constant w.r.t. conformal time in matter dominated universe

Deviation from matter domination due to curvature or dark energy causes potentials to evolve with time
→ secondary anisotropy induced in CMB

WMAP shown universe is (nearly) flat
detection of ISW effect → direct evidence for dark energy

Cannot isolate the ISW signal from CMB anisotropies easily

Instead, detect by cross-correlating CMB anisotropies with tracers of large scale structure
(Crittenden & Turok 1996 [5])

Previous works
Real space angular correlation function
(e.g. Boughn & Crittenden 2002, 2004 [4,3])
Harmonic space cross-angular power spectrum
(e.g. Afshordi et al. 2004 [1])
Wavelet correlation (Vielva et al. 2005 [19]; McEwen 2006 et al. [12])

Search for correlation between morphological measures of local features
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Procedures

Work done with Yves Wiaux, Pierre Vandergheynst, Mike Hobson & Anthony Lasenby [13].

Correlate morphological measures of signed-intensity, orientation and elongation through a
steerable wavelet analysis with the second Gaussian derivative wavelet (S2GDW):

XNT
Si

(a) =
1

Np

X
ω0

SN
i (ω0, a) ST

i (ω0, a) ,

where Si = {W, I, D, E}.

Two procedures proposed:
Local morphological correlation
Matched intensity correlation

In absence of ISW effect don’t expect to observe a significant correlation in any of these
measures

Compute correlation of morphological measures from WMAP and NVSS and compare to
Monte Carlo simulations to determine significance of any candidate detections.

Jason McEwen Wavelets on the sphere
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Data and simulations

WMAP three-year and NVSS radio galaxy data

Perform 1000 Monte Carlo simulations to quantify significance of any detections of correlation

Check data sensitive to morphological measures proposed

(a) WMAP

(b) NVSS

Figure: WMAP co-added three-year and NVSS maps
after application of the joint mask. The maps are
downsampled to a pixel size of ∼55′.
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(b) NVSS

Figure: Histograms of the elongation values computed
from the WMAP and NVSS data for all scales. Many
elongation values lie far from zero, thereby justifying
the morphological analyses proposed.
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Data and simulations

WMAP three-year and NVSS radio galaxy data

Perform 1000 Monte Carlo simulations to quantify significance of any detections of correlation

Check data sensitive to morphological measures proposed

(a) WMAP

(b) NVSS

Figure: WMAP co-added three-year and NVSS maps
after application of the joint mask. The maps are
downsampled to a pixel size of ∼55′.
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(b) NVSS

Figure: Histograms of the elongation values computed
from the WMAP and NVSS data for all scales. Many
elongation values lie far from zero, thereby justifying
the morphological analyses proposed.
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Detections: Local morphological correlation
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(a) Signed-intensity
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(b) Orientation
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(c) Elongation

Figure: Correlation statistics computed for each morphological measure in the local morphological
analysis, from the WMAP co-added map and the NVSS map. Significance levels obtained from the
1000 Monte Carlo simulations are shown by the shaded regions for 68% (yellow), 95% (magenta)
and 99% (red) levels.

χ2 test performed to compute significance of detections when all scales considered in
aggregate

Signed-intensity: detection at 95% significance
Orientation: detection at 93% significance
Elongation: detection at 85% significance

Foreground contamination and instrumental systematics ruled out as source of the correlation
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Detections: Matched intensity correlation
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Figure: Correlation statistics computed for signed-intensity in the matched intensity analysis, from
the WMAP co-added map and the NVSS map. Significance levels obtained from the 1000 Monte
Carlo simulations are shown by the shaded regions for 68% (yellow), 95% (magenta) and 99% (red)
levels.

χ2 test performed to compute significance of detection when all scales considered in
aggregate

Signed-intensity: detection at 99.9% significance

Foreground contamination and instrumental systematics ruled out as source of the correlation
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Correlation by eye?

(a) WMAP for independent features (b) WMAP for features matched to
NVSS orientations

(c) NVSS

Figure: Morphological signed-intensity maps corresponding to the scale (a = 400′) on which the
maximum detections of correlation are made. In panel (a) signed-intensities are shown for local
features extracted independently from the WMAP co-added data, whereas in panel (b)
signed-intensities are shown for local features in the WMAP co-added data that are matched in
orientation to local features in the NVSS data. Due to the strength of the correlation in the data, it is
possible to observe the correlation both between maps (a) and (c) and between maps (b) and (c) by
eye.
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Summary and future work

Wavelets on the sphere
Powerful signal analysis tool

New methodology
Directional and all operators and functions defined on sphere directly
Future work: examine localisation properties; discretise and implement synthesis

Steerable wavelets
Allows infinite precision in orientation
Facilitates morphological analyses

Detection of the ISW effect
Search for a morphological correlation

Detected at 99.9% significance ⇒ independent verification of dark energy

Probes morphological nature of correlations

Future work: use correlations detected to constrain dark energy parameters (not trivial!)
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