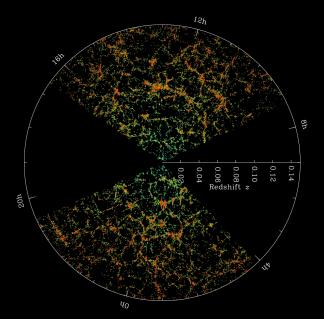
Cosmological Image Processing

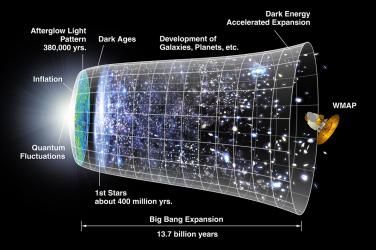
Jason McEwen www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

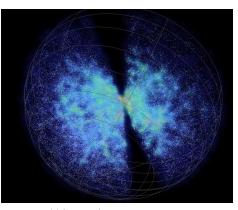
Image and Vision Computing New Zealand 2013



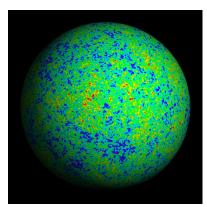
We have entered an era of concordance cosmology.



Cosmological observations



(a) Large-scale structure [Credit: SDSS]



(b) Cosmic microwave background [Credit: WMAP]

Figure: Cosmological observations

Cosmic microwave background (CMB)

Origin of CMB

- Temperature of early Universe sufficiently hot that photons had enough energy to ionise hydrogen.
- Universe opaque photon-baryon fluid.
- As Universe expanded it cooled, until photons no longer had sufficient energy to ionise hydrogen.
- Opening Photons decoupled from baryons and the Universe became transparent to radiation.

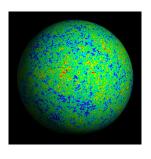


Figure: CMB

- CMB is highly uniform over the celestial sphere, however it contains small fluctuations

Origin of CMB

- Temperature of early Universe sufficiently hot that photons had enough energy to ionise hydrogen.
- Universe opaque photon-baryon fluid.
- As Universe expanded it cooled, until photons no longer had sufficient energy to ionise hydrogen.
- Opening Photons decoupled from baryons and the Universe became transparent to radiation.

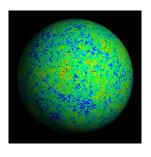


Figure: CMB

- Recombination occurred when temperature of Universe dropped to 3000K, about 400,000 years after the Big Bang.
- Photons then free to propagate largely unhindered and observed today on celestial sphere as CMB radiation.
- CMB is highly uniform over the celestial sphere, however it contains small fluctuations at a relative level of 10^{-5} due to acoustic oscillations in the early Universe.

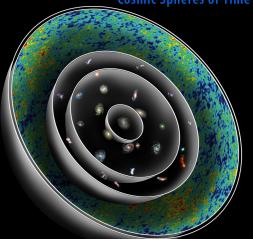
Telescopes and satellites

Figure: LSS observations

Figure: Full-sky CMB observations

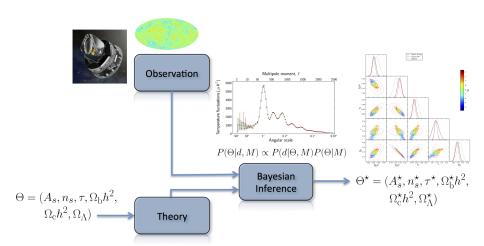
Observations made on the celestial sphere

Cosmic Spheres of Time

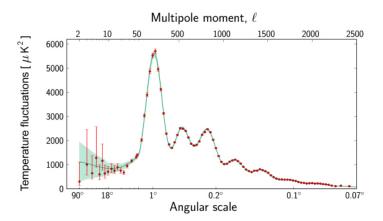


© 2006 Abrams and Primack, Inc.

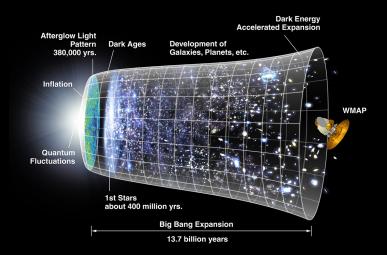
Precision cosmology Case study: CMB



Precision cosmology Case study: CMB



Outstanding questions



Outline

- Cosmology
 - Cosmological concordance
 - Observational probes
 - Precision cosmology
 - Outstanding questions
- Dark energy
 - ISW effect
 - Continuous wavelets on the sphere
 - Detecting dark energy
- Cosmic strings
 - String physics
 - Scale-discretised wavelets on the sphere
 - String estimation
- Anisotropic cosmologies
 - Bianchi models
 - Bayesian analysis of anisotropic cosmologies
 - Planck results

- Universe consists of ordinary baryonic matter, cold dark matter and dark energy.
- Dark energy represents energy density of empty space, which acts as a repulsive force.
- Strong evidence for dark energy exists but we know very little about its nature and origin.
- A consistent model in the framework of particle physics lacking.

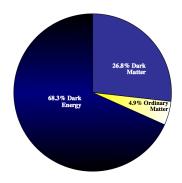


Figure: Content of the Universe [Credit: Planck]

Dark energy

- Universe consists of ordinary baryonic matter, cold dark matter and dark energy.
- Dark energy represents energy density of empty space, which acts as a repulsive force.
- Strong evidence for dark energy exists but we know very little about its nature and origin.
- A consistent model in the framework of particle physics lacking.

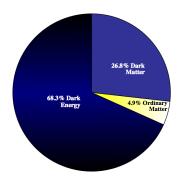


Figure: Content of the Universe [Credit: Planck]

Integrated Sachs Wolfe Effect Analogy

(no dark energy)

(with dark energy)

(a) No dark energy

(b) With dark energy

Figure: Analogy of ISW effect

Integrated Sachs Wolfe Effect Correlation between CMB and LSS

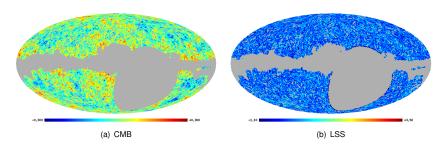
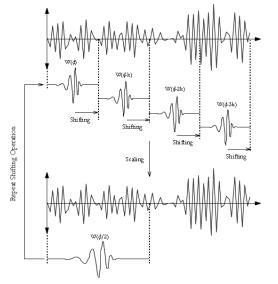


Figure: Constraining dark energy through any correlation between the CMB and LSS.

Cosmology Dark Energy Cosmic Strings Anisotropy ISW Effect Continuous Wavelets Detection

Recall wavelet transform in Euclidean space



- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function f on the sphere is defined by

$$\left[[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in \mathrm{SO}(3) \right]$$
 translation

- How define dilation on the sphere?
- The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection Π:

$$\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi.$$

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function f on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in SO(3).$$

translation

- How define dilation on the sphere?
- The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection Π:

$$\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi.$$

One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function f on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in SO(3).$$

translation

- How define dilation on the sphere?
- The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection Π:

$$\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi.$$

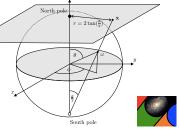
- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function f on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in SO(3).$$

translation

- How define dilation on the sphere?
- The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection Π:

$$\mathcal{D}(a) \equiv \Pi^{-1} d(a) \, \Pi \, .$$



Forward transform (i.e. analysis)

ullet Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ :

$$\{\Psi_{a,\rho} \equiv \mathcal{R}(\rho)\mathcal{D}(a)\Psi : \rho \in SO(3), a \in \mathbb{R}_*^+\}.$$

The forward wavelet transform is given by

$$\boxed{ \begin{array}{c} W_{\Psi}^f(a,\rho) = \langle f, \Psi_{a,\rho} \rangle \\ \\ \text{projection} \end{array} } \equiv \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\omega) \, f(\omega) \, \Psi_{a,\rho}^*(\omega) \; ,$$

where $d\Omega(\omega) = \sin \theta d\theta d\varphi$ is the usual invariant measure on the sphere.

• Wavelet coefficients live in $SO(3) \times \mathbb{R}_*^+$; thus, directional structure is naturally incorporated.

Forward transform (*i.e.* analysis)

ullet Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ :

$$\boxed{\{\Psi_{a,\rho} \equiv \mathcal{R}(\rho)\mathcal{D}(a)\Psi : \rho \in SO(3), a \in \mathbb{R}_*^+\}.}$$

The forward wavelet transform is given by

$$\boxed{ \begin{array}{c} \textcolor{red}{W_{\Psi}^f(a,\rho) = \langle f,\Psi_{a,\rho}\rangle} \\ \textcolor{blue}{\text{projection}} \end{array} } \equiv \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\omega) \, f(\omega) \, \Psi_{a,\rho}^*(\omega) \; ,$$

where $d\Omega(\omega) = \sin\theta d\theta d\varphi$ is the usual invariant measure on the sphere.

• Wavelet coefficients live in $SO(3) \times \mathbb{R}_+^+$; thus, directional structure is naturally incorporated.

Forward transform (i.e. analysis)

ullet Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ :

$$\boxed{\{\Psi_{a,\rho} \equiv \mathcal{R}(\rho)\mathcal{D}(a)\Psi : \rho \in SO(3), a \in \mathbb{R}_*^+\}.}$$

The forward wavelet transform is given by

$$\boxed{ \begin{array}{c} \textcolor{red}{W_{\Psi}^f(a,\rho) = \langle f,\Psi_{a,\rho}\rangle} \\ \textcolor{blue}{\text{projection}} \end{array} } \equiv \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\omega) \, f(\omega) \, \Psi_{a,\rho}^*(\omega) \; ,$$

where $d\Omega(\omega) = \sin\theta d\theta d\varphi$ is the usual invariant measure on the sphere.

Wavelet coefficients live in SO(3) × R⁺_{*}; thus, directional structure is naturally incorporated.

Continuous wavelets on the sphere Fast algorithms

- Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
 - Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001), Risbo (1996)
 - Separation of variables: Wiaux et al. (2005)

FastCSWT code

http://www.fastcswt.org



Fast directional continuous spherical wavelet transform algorithms McEwen et al. (2007)

- Fortran
- Supports directional and steerable wavelets

Mother wavelets

- Correspondence principle between spherical and Euclidean wavelets (Wiaux et al. 2005).
- Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets defined on the plane:

$$\Psi = \Pi^{-1} \Psi_{\mathbb{R}^2}$$

where $\Psi_{\mathbb{R}^2} \in L^2(\mathbb{R}^2, d^2x)$ is an admissible wavelet on the plane.

Mother wavelets

- Correspondence principle between spherical and Euclidean wavelets (Wiaux et al. 2005).
- Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets defined on the plane:

$$\Psi = \Pi^{-1} \Psi_{\mathbb{R}^2}$$

where $\Psi_{\mathbb{R}^2} \in L^2(\mathbb{R}^2, d^2x)$ is an admissible wavelet on the plane.

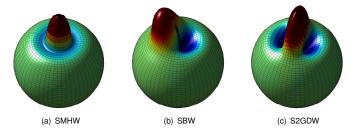


Figure: Spherical wavelets at scale a, b = 0.2.

Inverse transform (i.e. synthesis)

The inverse wavelet transform given by

where $d\rho(\rho) = \sin \beta d\alpha d\beta d\gamma$ is the invariant measure on the rotation group SO(3).

$$0 < \widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell + 1} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \frac{\mathrm{d}a}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}$$

Inverse transform (i.e. synthesis)

The inverse wavelet transform given by

$$f(\omega) = \underbrace{\int_0^\infty \frac{\mathrm{d}a}{a^3} \, \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho)}_{\text{Sum' contributions}} \underbrace{W_\Psi^f(a,\rho) \, [\mathcal{R}(\rho) \widehat{L}_\Psi \Psi_a](\omega)}_{\text{weighted basis functions}},$$

where $d\varrho(\rho) = \sin \beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

Perfect reconstruction iff wavelets satisfy admissibility property:

$$0 < \widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell + 1} \sum_{m = -\ell}^{\ell} \int_0^{\infty} \frac{\mathrm{d}a}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}$$

where $(\Psi_a)_{\ell_m}$ are the spherical harmonic coefficients of $\Psi_a(\omega)$.

BUT... exact reconstruction not feasible in practice!

Inverse transform (i.e. synthesis)

The inverse wavelet transform given by

where $d\varrho(\rho) = \sin\beta \,d\alpha \,d\beta \,d\gamma$ is the invariant measure on the rotation group SO(3).

Perfect reconstruction iff wavelets satisfy admissibility property:

$$0 < \widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell + 1} \sum_{m = -\ell}^{\ell} \int_0^{\infty} \frac{\mathrm{d}a}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}$$

where $(\Psi_a)_{\ell m}$ are the spherical harmonic coefficients of $\Psi_a(\omega)$.

BUT... exact reconstruction not feasible in practice!

Wavelet coefficient correlation

- Compute wavelet correlation of CMB and LSS data (McEwen et al. 2007, McEwen et al. 2008).
- Compare to 1000 Monte Carlo simulations.

Detecting dark energy Wavelet coefficient correlation

- Compute wavelet correlation of CMB and LSS data (McEwen et al. 2007, McEwen et al. 2008).
- Compare to 1000 Monte Carlo simulations.
- Correlation detected at 99.9% significance.
 - Independent evidence for the existence of dark energy!

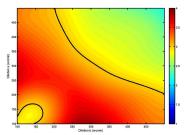


Figure: Wavelet correlation N_{σ} surface. Contours are shown at 3σ .

Constraining cosmological models

- Use positive detection of the ISW effect to constrain parameters of cosmological models:
 - Energy density Ω_{Λ} .
 - Equation of state parameter w relating pressure and density of cosmological fluid modelling dark energy, i.e. $p = w\rho$.
- Parameter estimates of $\Omega_{\Lambda} = 0.63^{+0.18}_{-0.17}$ and $w = -0.77^{+0.35}_{-0.36}$

$$\Omega_{\Lambda} = 0.63^{+0.18}_{-0.17}$$

$$w = -0.77^{+0.35}_{-0.36}$$

Detecting dark energy

Constraining cosmological models

- Use positive detection of the ISW effect to constrain parameters of cosmological models:
 - Energy density Ω_Λ.
 - Equation of state parameter w relating pressure and density of cosmological fluid modelling dark energy, i.e. $p = w\rho$.
- Parameter estimates of $\Omega_{\Lambda} = 0.63^{+0.18}_{-0.17}$ and $w = -0.77^{+0.35}_{-0.36}$ obtained.

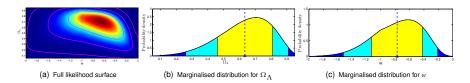


Figure: Likelihood for dark energy parameters.

Cosmology Dark Energy Cosmic Strings Anisotropy Strings Discrete Wavelets Estimation

Outline

- Cosmology
 - Cosmological concordance
 - Observational probes
 - Precision cosmology
 - Outstanding questions
- Dark energy
 - ISW effect
 - Continuous wavelets on the sphere
 - Detecting dark energy
- Cosmic strings
 - String physics
 - Scale-discretised wavelets on the sphere
 - String estimation
- Anisotropic cosmologies
 - Bianchi models
 - Bayesian analysis of anisotropic cosmologies
 - Planck results

Cosmic strings

- Symmetry breaking phase transitions in the early Universe → topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken
 → line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have observed string-like topological defects in other media

The detection of cosmic strings would open a new window into the physics of the Universe!

Cosmic strings

- Symmetry breaking phase transitions in the early Universe → topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken
 → line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have observed string-like topological defects in other media.

Figure: Optical microscope photograph of a thin film of freely suspended nematic liquid crystal after a temperature quench. [Credit: Chuang et al. (1991).]

The detection of cosmic strings would open a new window into the physics of the Universe!

Cosmic strings

- Symmetry breaking phase transitions in the early Universe → topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken
 → line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have observed string-like topological defects in other media.

Figure: Optical microscope photograph of a thin film of freely suspended nematic liquid crystal after a temperature quench. [Credit: Chuang et al. (1991).]

The detection of cosmic strings would open a new window into the physics of the Universe!

Observational signatures of cosmic strings

Conical Spacetime

- Spacetime about a cosmic string is conical, with a three-dimensional wedge removed (Vilenkin 1981).
- Strings moving transverse to the line of sight induce line-like discontinuities in the CMB (Kaiser & Stebbins 1984).
- The amplitude of the induced contribution scales with the string tension $G\mu$.

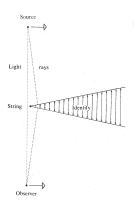


Figure: Spacetime around a cosmic string. [Credit: Kaiser & Stebbins 1984, DAMTP.]

Observational signatures of cosmic strings

CMB contribution

- Make contact between theory and data using high-resolution simulations.
- Search for a weak string signal s embedded in the CMB c, with observations d given by

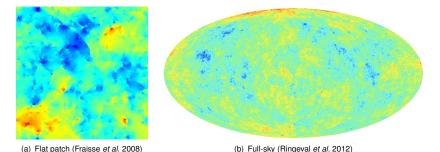
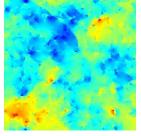


Figure: Cosmic string simulations.

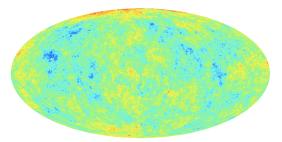
Observational signatures of cosmic strings

CMB contribution

- Make contact between theory and data using high-resolution simulations.
- Search for a weak string signal s embedded in the CMB c, with observations d given by



(a) Flat patch (Fraisse et al. 2008)



(b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.

Scale-discretised wavelets on the sphere

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- Exact reconstruction with directional wavelets on the sphere
 Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)]
 - Scale-discretised wavelet $\Psi^j \in L^2(\mathbb{S}^2, d\Omega)$ defined in harmonic space:

$$\Psi^{j}_{\ell m} \equiv \kappa^{j}(\ell) s_{\ell m} .$$

$$\frac{|\Phi_{\ell 0}|^2}{|\Phi_{\ell 0}|^2} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \frac{|\Psi^j_{\ell m}|^2}{\text{wavelet}} = 1 \;, \quad \forall \ell \;.$$

Scale-discretised wavelets on the sphere

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- Exact reconstruction with directional wavelets on the sphere
 Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].
 - Scale-discretised wavelet $\Psi^j \in L^2(\mathbb{S}^2, d\Omega)$ defined in harmonic space:

$$\mathbb{P}^{J}_{\ell m} \equiv \kappa^{j}(\ell) s_{\ell m} .$$

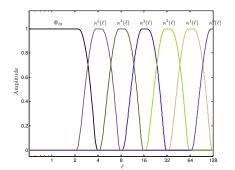
$$|\Phi_{\ell 0}|^2 + \sum_{j=0}^J \sum_{m=-\ell}^\ell \boxed{|\Psi^j_{\ell m}|^2} = 1 \,, \quad \forall \ell \,.$$
 wavelet

Scale-discretised wavelets on the sphere

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- Exact reconstruction with directional wavelets on the sphere
 Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].



• Scale-discretised wavelet $\Psi^j \in L^2(\mathbb{S}^2, d\Omega)$ defined in harmonic space:

$$\Psi^{j}_{\ell m} \equiv \kappa^{j}(\ell) s_{\ell m} .$$

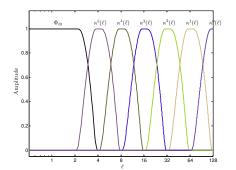
$$\frac{\left|\Phi_{\ell 0}\right|^2}{\left|\Phi_{\ell 0}\right|^2} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \frac{\left|\Psi_{\ell m}^j\right|^2}{\text{wavelet}} = 1 \;, \quad \forall \ell \;.$$

Scale-discretised wavelets on the sphere

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [cf. McEwen et al. (2006), Sanz et al. (2006)].



• Scale-discretised wavelet $\Psi^j \in L^2(\mathbb{S}^2, d\Omega)$ defined in harmonic space:

$$\Psi^{j}_{\ell m} \equiv \kappa^{j}(\ell) s_{\ell m} .$$

$$\frac{|\Phi_{\ell 0}|^2}{\text{scaling function}} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \frac{|\Psi_{\ell m}^j|^2}{\text{wavelet}} = 1 \;, \quad \forall \ell \;.$$

Scale-discretised wavelets on the sphere Wavelets

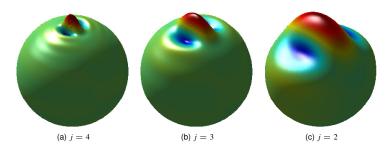


Figure: Scale-discretised wavelets on the sphere.

Scale-discretised wavelets on the sphere

Forward and inverse transform (i.e. analysis and synthesis)

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$\boxed{ \begin{array}{c} \textcolor{red}{W^{\Psi^j}(\rho) = \langle f, \, \mathcal{R}_{\rho} \Psi^j \rangle} \\ \text{projection} \end{array}} = \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\omega) f(\omega) (\mathcal{R}_{\rho} \Psi^j)^*(\omega) \; .$$

$$f(\omega) = \boxed{2\pi \int_{\mathbb{S}^2} \mathrm{d}\Omega(\omega') W^{\Phi}(\omega') (\mathcal{R}_{\omega'} L^{\mathrm{d}} \Phi)(\omega)} + \sum_{j=0}^{\prime} \boxed{\int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) W^{\Psi^j}(\rho) (\mathcal{R}_{\rho} L^{\mathrm{d}} \Psi^j)(\omega) \ .}$$

Scale-discretised wavelets on the sphere Forward and inverse transform (i.e. analysis and synthesis)

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$\frac{\mathbf{W}^{\Psi^j}(\rho) = \langle f, \, \mathcal{R}_{\rho} \Psi^j \rangle}{\text{projection}} = \int_{\mathbb{S}^2} d\Omega(\omega) f(\omega) (\mathcal{R}_{\rho} \Psi^j)^*(\omega) \ .$$

The original function may be recovered exactly in practice from the wavelet (and scaling) coefficients:

$$f(\omega) = \boxed{2\pi \int_{\mathbb{S}^2} \mathrm{d}\Omega(\omega') W^\Phi(\omega') (\mathcal{R}_{\omega'} L^\mathrm{d}\Phi)(\omega)} + \boxed{\sum_{j=0}^J \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) W^{\Psi^j}(\rho) (\mathcal{R}_\rho L^\mathrm{d}\Psi^j)(\omega) \ .}$$
 scaling function contribution

finite sum

Scale-discretised wavelets on the sphere

Exact and efficient computation

Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

$$\boxed{ W^{\Psi^j}(\rho) = \sum_{\ell=0}^{L-1} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^2} \left(W^{\Psi^j} \right)_{mn}^{\ell} D_{mn}^{\ell*}(\rho) \,, } \quad \text{where} \quad \left(W^{\Psi^j} \right)_{mn}^{\ell} = \frac{8\pi^2}{2\ell+1} f_{\ell m} \Psi_{\ell n}^{j*} \,. }$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski 2001, McEwen et al. 2007).

Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

$$f(\omega) \sim \sum_{j=0}^J \int_{\mathrm{SO}(3)} \, \mathrm{d}\varrho(\rho) W^{\Psi^j}(\rho) (\mathcal{R}_\rho L^{\mathrm{d}} \Psi^j)(\omega) = \sum_{j=0}^J \sum_{\ell mn} \frac{2\ell+1}{8\pi^2} \left(W^{\Psi^j}\right)_{mn}^\ell \Psi^j_{\ell n} Y_{\ell m}(\omega) \,,$$

where

$$\left(\boldsymbol{W}^{\Psi^{j}}\right)_{mn}^{\ell} = \langle \boldsymbol{W}^{\Psi^{j}}, \, D_{mn}^{\ell*} \rangle = \int_{\mathrm{SO}(3)} \, \mathrm{d}\varrho(\rho) \boldsymbol{W}^{\Psi^{j}}(\rho) D_{mn}^{\ell}(\rho) \,,$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wiaux, McEwen *et al.* 20 and exactly by employing the Driscoll & Healy (1994) or McEwen & Wiaux (2011) sampling theorem.

Scale-discretised wavelets on the sphere

Exact and efficient computation

Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

$$\boxed{ W^{\Psi^j}(\rho) = \sum_{\ell=0}^{L-1} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^2} \left(W^{\Psi^j} \right)_{mn}^{\ell} D_{mn}^{\ell*}(\rho) \,, } \quad \text{where} \quad \left(W^{\Psi^j} \right)_{mn}^{\ell} = \frac{8\pi^2}{2\ell+1} f_{\ell m} \Psi_{\ell n}^{j*} \,. }$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski 2001, McEwen *et al.* 2007).

Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

$$f(\omega) \sim \sum_{j=0}^{J} \int_{SO(3)} d\varrho(\rho) W^{\Psi^{j}}(\rho) (\mathcal{R}_{\rho} L^{d} \Psi^{j})(\omega) = \sum_{j=0}^{J} \sum_{\ell mn} \frac{2\ell+1}{8\pi^{2}} (W^{\Psi^{j}})_{mn}^{\ell} \Psi^{j}_{\ell n} Y_{\ell m}(\omega) ,$$

where

$$\left(W^{\Psi^j}\right)_{mn}^\ell = \langle W^{\Psi^j}, D_{mn}^{\ell*} \rangle = \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) W^{\Psi^j}(\rho) D_{mn}^\ell(\rho) ,$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wiaux, McEwen *et al.* 2708) and exactly by employing the Driscoll & Healy (1994) or McEwen & Wiaux (2011) sampling theorem.

Scale-discretised wavelets on the sphere

Exact and efficient computation

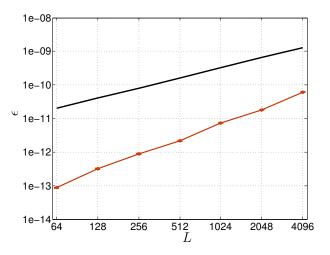


Figure: Numerical accuracy.

Scale-discretised wavelets on the sphere

Exact and efficient computation

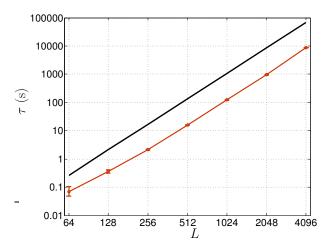


Figure: Computation time.

Scale-discretised wavelets on the sphere Codes

S2DW code

http://www.s2dw.org

Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)

- Fortran
- Parallelised
- Supports directional and steerable wavelets

S2LET code

http://www.s2let.org

S2LET: A code to perform fast wavelet analysis on the sphere Leistedt, McEwen, Vandergheynst, Wiaux (2012)

- C. Matlab, IDL, Java
- Supports only axisymmetric wavelets at present
- Future extensions planned (directional and steerable wavelets, faster algos, spin wavelets)

Scale-discretised wavelets on the sphere

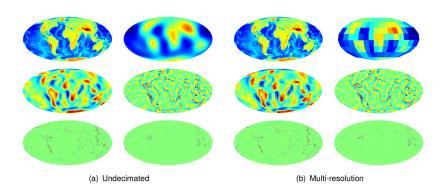


Figure: Scale-discretised wavelet transform of a topography map of the Earth.

Motivation for using wavelets to detect cosmic strings

Denote the wavelet coefficients of the data d by

$$W_{j\rho}^d = \langle d, \Psi_{j\rho} \rangle$$

for scale $j \in \mathbb{Z}^+$ and position $\rho \in SO(3)$.

ullet Consider an even azimuthal band-limit N=4 to yield wavelet with odd azimuthal symmetry.

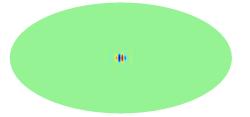


Figure: Example wavelet matched to the expected string contribution.

Motivation for using wavelets to detect cosmic strings

ullet Wavelet transform yields a sparse representation of the string signal o hope to effectively separate the CMB and string signal in wavelet space.

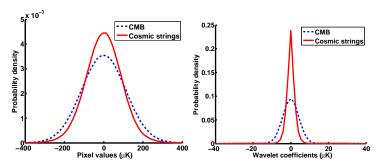


Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).

Learning the statistics of the CMB and string signals in wavelet space

Wavelet-Bayesian approach to estimate the string tension and map:

- Need to determine statistical description of the CMB and string signals in wavelet space.
- Calculate analytically the probability distribution of the CMB in wavelet space.
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map (cf. Wiaux et al. 2009):

$$P_j^s(W_{j\rho}^s \mid G\mu) = \frac{\upsilon_j}{2G\mu\nu_i\Gamma(\upsilon_i^{-1})} e^{\left(-\left|\frac{W_{j\rho}^s}{G\mu\nu_j}\right|^{\upsilon_j}\right)},$$

with scale parameter ν_i and shape parameter v_i .

Learning the statistics of the CMB and string signals in wavelet space

Wavelet-Bayesian approach to estimate the string tension and map:

- Need to determine statistical description of the CMB and string signals in wavelet space.
- Calculate analytically the probability distribution of the CMB in wavelet space.
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map (cf. Wiaux et al. 2009):

$$P_j^s(W_{j\rho}^s \mid G\mu) = \frac{\upsilon_j}{2G\mu\upsilon_j\Gamma(\upsilon_j-1)} e^{\left(-\left|\frac{W_{j\rho}^s}{G\mu\upsilon_j}\right|^{\upsilon_j}\right)},$$

with scale parameter ν_i and shape parameter v_i .

Learning the statistics of the CMB and string signals in wavelet space

Wavelet-Bayesian approach to estimate the string tension and map:

- Need to determine statistical description of the CMB and string signals in wavelet space.
- Calculate analytically the probability distribution of the CMB in wavelet space.
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map (cf. Wiaux et al. 2009):

$$P_j^s(W_{j\rho}^s \mid G\mu) = \frac{\upsilon_j}{2G\mu\nu_i\Gamma(\upsilon_i^{-1})} e^{\left(-\left|\frac{W_{j\rho}^s}{G\mu\nu_j}\right|^{\upsilon_j}\right)},$$

with scale parameter ν_i and shape parameter ν_i .

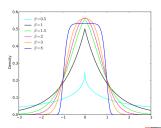
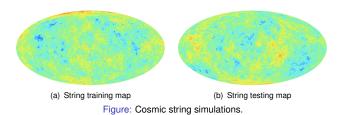
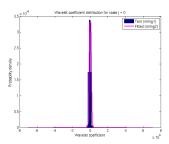


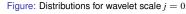
Figure: GGD

Learning the statistics of the CMB and string signals in wavelet space

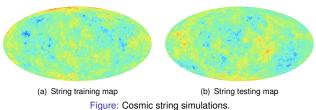


Distributions in close agreement.





Learning the statistics of the CMB and string signals in wavelet space



Ü

Distributions in close agreement.

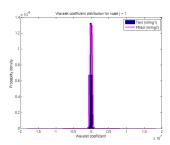
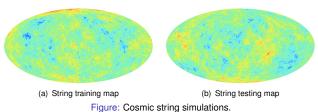


Figure: Distributions for wavelet scale j=1

Learning the statistics of the CMB and string signals in wavelet space



. .ga. a. a.a....g a.....g a....

Distributions in close agreement.

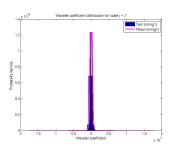


Figure: Distributions for wavelet scale j = 2.

Learning the statistics of the CMB and string signals in wavelet space

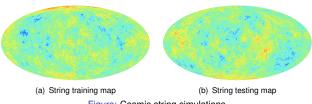


Figure: Cosmic string simulations.

Distributions in close agreement.

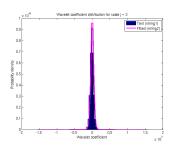
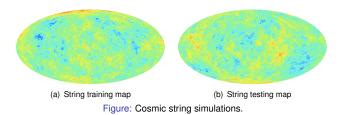
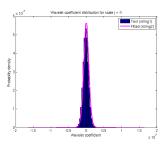


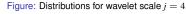
Figure: Distributions for wavelet scale j = 3.

Learning the statistics of the CMB and string signals in wavelet space



- Distributions in close agreement.
- Accurately characterised statistics of string signals in wavelet space.





- Perform Bayesian string tension estimation in wavelet space.
- For each wavelet coefficient the likelihood is given by

$$\mathbb{P}(W^d_{j\rho} \,|\: G\mu) = \mathbb{P}(W^s_{j\rho} + W^c_{j\rho} \,|\: G\mu) = \int_{\mathbb{R}} \,\mathrm{d}W^s_{j\rho} \,\, \mathbb{P}^c_j(W^d_{j\rho} - W^s_{j\rho}) \,\, \mathbb{P}^s_j(W^s_{j\rho} \,|\: G\mu) \;.$$

The overall likelihood of the data is given by

$$P(W^d \mid G\mu) = \prod_{j,\rho} P(W^d_{j\rho} \mid G\mu) ,$$

where we have assumed independence for numerical tractability.

- Perform Bayesian string tension estimation in wavelet space.
- For each wavelet coefficient the likelihood is given by

$$P(W_{j\rho}^d \mid G\mu) = P(W_{j\rho}^s + W_{j\rho}^c \mid G\mu) = \int_{\mathbb{R}} dW_{j\rho}^s P_j^c(W_{j\rho}^d - W_{j\rho}^s) P_j^s(W_{j\rho}^s \mid G\mu).$$

The overall likelihood of the data is given by

$$P(W^d \mid G\mu) = \prod_{j,\rho} P(W^d_{j\rho} \mid G\mu) ,$$

where we have assumed independence for numerical tractability.

- Perform Bayesian string tension estimation in wavelet space.
- For each wavelet coefficient the likelihood is given by

$$P(W_{j\rho}^d \mid G\mu) = P(W_{j\rho}^s + W_{j\rho}^c \mid G\mu) = \int_{\mathbb{R}} dW_{j\rho}^s P_j^c(W_{j\rho}^d - W_{j\rho}^s) P_j^s(W_{j\rho}^s \mid G\mu) .$$

The overall likelihood of the data is given by

$$P(W^d \mid G\mu) = \prod_{j,\rho} P(W^d_{j\rho} \mid G\mu) ,$$

where we have assumed independence for numerical tractability.

• Compute the string tension posterior $P(G\mu \mid W^d)$ by Bayes theorem:

$$P(G\mu \mid W^d) = \frac{P(W^d \mid G\mu) P(G\mu)}{P(W^d)} \propto P(W^d \mid G\mu) P(G\mu) .$$

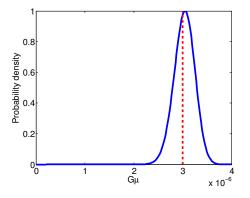


Figure: Posterior distribution of the string tension (true $G\mu = 3 \times 10^{-6}$).

• Compute the string tension posterior $P(G\mu \mid W^d)$ by Bayes theorem:

$$P(G\mu \,|\, W^d) = \frac{P(W^d \,|\, G\mu) \, P(G\mu)}{P(W^d)} \propto P(W^d \,|\, G\mu) \, P(G\mu) \; .$$

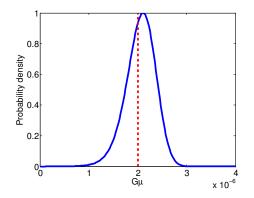


Figure: Posterior distribution of the string tension (true $G\mu = 2 \times 10^{-6}$).

• Compute the string tension posterior $P(G\mu \mid W^d)$ by Bayes theorem:

$$P(G\mu \mid W^d) = \frac{P(W^d \mid G\mu) P(G\mu)}{P(W^d)} \propto P(W^d \mid G\mu) P(G\mu) .$$

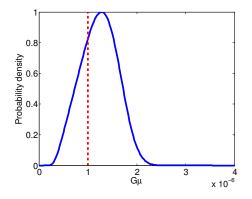


Figure: Posterior distribution of the string tension (true $G\mu = 1 \times 10^{-6}$).

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M^s to the alternative model M^c
 that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$E^s = \mathrm{P}(W^d \,|\, \mathrm{M}^s) = \int_{\mathbb{R}} \, \mathrm{d}(G\mu) \, \mathrm{P}(W^d \,|\, G\mu) \, \mathrm{P}(G\mu) \;.$$

The Bayesian evidence of the CMB model is given by

$$E^c = P(W^d \mid M^c) = \prod_{j,\rho} P_j^c(W_{j\rho}^d).$$

Compute the Bayes factor to determine the preferred model:

$$\Delta \ln E = \ln(E^s/E^c) \ .$$

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M^s to the alternative model M^c that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$E^s = \mathrm{P}(W^d \mid \mathrm{M}^s) = \int_{\mathbb{R}} \, \mathrm{d}(G\mu) \, \mathrm{P}(W^d \mid G\mu) \, \mathrm{P}(G\mu) \; .$$

The Bayesian evidence of the CMB model is given by

$$E^c = P(W^d \mid M^c) = \prod_{j,\rho} P_j^c(W_{j\rho}^d).$$

Compute the Bayes factor to determine the preferred model

$$\Delta \ln E = \ln(E^s/E^c) \ .$$

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M^s to the alternative model M^c that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$E^s = \operatorname{P}(W^d \mid \operatorname{M}^s) = \int_{\mathbb{R}} \operatorname{d}(G\mu) \operatorname{P}(W^d \mid G\mu) \operatorname{P}(G\mu) .$$

The Bayesian evidence of the CMB model is given by

$$E^c = P(W^d \mid M^c) = \prod_{j,\rho} P_j^c(W_{j\rho}^d)$$
.

Compute the Bayes factor to determine the preferred model:

$$\Delta \ln E = \ln(E^s/E^c) \ .$$

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M^s to the alternative model M^c
 that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$E^s = \mathrm{P}(W^d \mid \mathrm{M}^s) = \int_{\mathbb{R}} \, \mathrm{d}(G\mu) \, \mathrm{P}(W^d \mid G\mu) \, \mathrm{P}(G\mu) \; .$$

The Bayesian evidence of the CMB model is given by

$$E^c = P(W^d \mid M^c) = \prod_{j,\rho} P_j^c(W_{j\rho}^d) .$$

Compute the Bayes factor to determine the preferred model:

$$\Delta \ln E = \ln(E^s/E^c) \ .$$

Table: Tension estimates and log-evidence differences for simulations.

$G\mu/10^{-6}$	0.7	0.8	0.9	1.0	2.0	3.0
$\widehat{G\mu}/10^{-6}$	1.1	1.2	1.2	1.3	2.1	3.1
$\Delta {\rm ln} E$	-1.3	-1.1	-0.9	-0.7	5.5	29

Recovering string maps

- Inference of the wavelet coefficients of the underlying string map encoded in posterior probability distribution $P(W^s_{j\rho} \mid W^d)$.
- Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

$$\overline{W}_{j\rho}^{s} = \int_{\mathbb{R}} dW_{j\rho}^{s} \ W_{j\rho}^{s} \ P(W_{j\rho}^{s} \mid W^{d})$$

- Recover the string map from its wavelets (possible since the scale-discretised wavelet transform on the sphere supports exact reconstruction).
- Work in progress...

Recovering string maps

- Inference of the wavelet coefficients of the underlying string map encoded in posterior probability distribution $P(W_{io}^s \mid W^d)$.
- Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

$$\boxed{\overline{W}_{j
ho}^s = \int_{\mathbb{R}} \, \mathrm{d}W_{j
ho}^s \; W_{j
ho}^s \; \mathrm{P}(W_{j
ho}^s \, | \, W^d)}$$

- Recover the string map from its wavelets (possible since the scale-discretised wavelet transform on the sphere supports exact reconstruction).
- Work in progress...

Outline

- Cosmology
 - Cosmological concordance
 - Observational probes
 - Precision cosmology
 - Outstanding questions
- Dark energy
 - ISW effect
 - Continuous wavelets on the sphere
 - Detecting dark energy
- Cosmic strings
 - String physics
 - Scale-discretised wavelets on the sphere
 - String estimation
- Anisotropic cosmologies
 - Bianchi models
 - Bayesian analysis of anisotropic cosmologies
 - Planck results

Bianchi VII_h cosmologies

Test fundamental assumptions on which modern cosmology is based, e.g. isotropy.

- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the universe, i.e. rotation and shear.
- ullet Yields more general solutions to Einstein's field equations o Bianchi cosmologies
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies (Collins & Hawking 1973, Barrow et al. 1985).

Bianchi VII_h cosmologies

Test fundamental assumptions on which modern cosmology is based, e.g. isotropy.

- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the universe, i.e. rotation and shear.
- Yields more general solutions to Einstein's field equations → Bianchi cosmologies.
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies (Collins & Hawking 1973, Barrow et al. 1985).

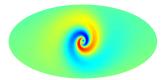


Figure: Bianchi CMB contribution.

Bianchi VII_h cosmologies

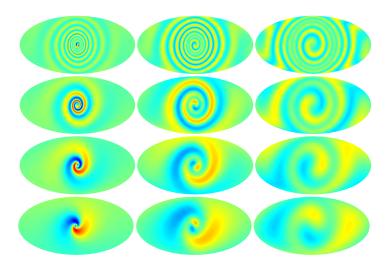
Parameters

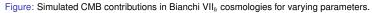
• Models described by the parameter vector:

$$\Theta_{\mathrm{B}} = (\Omega_{\mathrm{m}}, \, \Omega_{\Lambda}, \, x, \, (\omega/H)_{0}, \, \alpha, \beta, \gamma) \; .$$

- Free parameter, x, describing the comoving length-scale over which the principal axes of shear and rotation change orientation, i.e. 'spiralness'.
- Amplitude characterised by the dimensionless vorticity $(\omega/H)_0$, which influences the amplitude of the induced temperature contribution only and not its morphology.
- The orientation and handedness of the coordinate system is also free.

Bianchi VII_h cosmologies **Simulations**





イロト (部) (達) (達)

Bayesian analysis of Bianchi VII_h cosmologies

Parameter estimation

- Perform Bayesian analysis of McEwen et al. (2013).
- Consider open and flat cosmologies with cosmological parameters:

$$\Theta_{\rm C}=(A_s,\,n_s,\,\tau,\,\Omega_{\rm b}h^2,\,\Omega_{\rm c}h^2,\,\Omega_{\Lambda},\,\Omega_k).$$

Recall Bianchi parameters:

$$\Theta_{\rm B} = (\Omega_{\rm m}, \, \Omega_{\Lambda}, \, x, \, (\omega/H)_0, \, \alpha, \beta, \gamma).$$

Likelihood given by

$$| P(\mathbf{d} \mid \Theta_{\mathrm{B}}, \Theta_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\Theta_{\mathrm{C}})|}} e^{\left[-\chi^2(\Theta_{\mathrm{C}}, \Theta_{\mathrm{B}})/2\right]} ,$$

$$\chi^2(\Theta_{\rm C},\Theta_{\rm B}) = \left[\mathbf{d} - \mathbf{b}(\Theta_{\rm B}) \right]^{\dagger} \mathbf{X}^{-1}(\Theta_{\rm C}) \left[\mathbf{d} - \mathbf{b}(\Theta_{\rm B}) \right].$$

Bayesian analysis of Bianchi VII_h cosmologies

Parameter estimation

- Perform Bayesian analysis of McEwen et al. (2013).
- Consider open and flat cosmologies with cosmological parameters:

$$\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \Omega_{\Lambda}, \Omega_k).$$

Recall Bianchi parameters:

$$\Theta_{\rm B} = (\Omega_{\rm m}, \, \Omega_{\Lambda}, \, x, \, (\omega/H)_0, \, \alpha, \beta, \gamma).$$

Likelihood given by

$$P(\boldsymbol{d} \mid \Theta_{\mathrm{B}}, \Theta_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\Theta_{\mathrm{C}})|}} e^{\left[-\chi^2(\Theta_{\mathrm{C}}, \Theta_{\mathrm{B}})/2\right]},$$

$$\chi^2(\Theta_C,\Theta_B) = \left[\textbf{\textit{d}} - \textbf{\textit{b}}(\Theta_B) \right]^\dagger \textbf{\textit{X}}^{-1}(\Theta_C) \left[\textbf{\textit{d}} - \textbf{\textit{b}}(\Theta_B) \right].$$

Bayesian analysis of Bianchi VII_h cosmologies

Covariance

- Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}$ and $b(\Theta_{\rm B}) = \{b_{\ell m}(\Theta_{\rm B})\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel i given by $\sigma_m^2(\omega_i)$.
- The covariance is then given by

$$\mathbf{X}(\Theta_{\mathbf{C}}) = \mathbf{C}(\Theta_{\mathbf{C}}) + \mathbf{M}$$
,

- $C(\Theta_C)$ is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_C)$;
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell'm'} = \langle m_{\ell m} \, m_{\ell'm'}^* \rangle \simeq \sum_{\omega_i} \sigma_m^2(\omega_i) Y_{\ell m}^*(\omega_i) \, Y_{\ell'm'}(\omega_i) \, \Omega_{\text{pix}}^2 \,.$$

Bayesian analysis of Bianchi VII_h cosmologies

Covariance

- Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel i given by $\sigma_m^2(\omega_i)$.
- The covariance is then given by

$$\mathbf{X}(\Theta_{\mathbf{C}}) = \mathbf{C}(\Theta_{\mathbf{C}}) + \mathbf{M} \,,$$

- $\mathbb{C}(\Theta_{\mathbb{C}})$ is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_{\mathbb{C}})$;
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} \, m_{\ell' m'}^* \rangle \simeq \sum_{\omega_i} \sigma_m^2(\omega_i) Y_{\ell m}^*(\omega_i) \, Y_{\ell' m'}(\omega_i) \, \Omega_{\text{pix}}^2 \,.$$

Bayesian analysis of Bianchi VII_h cosmologies

Covariance

- Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel i given by $\sigma_m^2(\omega_i)$.
- The covariance is then given by

$$\mathbf{X}(\Theta_{\mathbf{C}}) = \mathbf{C}(\Theta_{\mathbf{C}}) + \mathbf{M}$$

- $\mathbb{C}(\Theta_{\mathbb{C}})$ is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_{\mathbb{C}})$;
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} m_{\ell' m'}^* \rangle \simeq \sum_{\omega_i} \sigma_m^2(\omega_i) Y_{\ell m}^*(\omega_i) Y_{\ell' m'}(\omega_i) \Omega_{\mathrm{pix}}^2.$$

Bayesian analysis of Bianchi VII_h cosmologies

Model selection

Compute the Bayesian evidence to determine preferred model:

$$E = P(\mathbf{d} \mid M) = \int d\Theta P(\mathbf{d} \mid \Theta, M) P(\Theta \mid M).$$

- Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz et al. 2009).
- Consider two models
 - Flat-decoupled-Bianchi model: Θ_C and Θ_B fitted simultaneously but decoupled \to phenomenological
 - Open-coupled-Bianchi model: Θ_C and Θ_B fitted simultaneously and coupled \to physical

Bayesian analysis of Bianchi VII_h cosmologies

Model selection

Compute the Bayesian evidence to determine preferred model:

$$E = P(\mathbf{d} \mid M) = \int d\Theta P(\mathbf{d} \mid \Theta, M) P(\Theta \mid M).$$

- Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz et al. 2009).
- Consider two models:
 - Flat-decoupled-Bianchi model: ⊖_C and ⊖_B fitted simultaneously but decoupled
 → phenomenological
 - Open-coupled-Bianchi model: Θ_C and Θ_B fitted simultaneously and coupled \to physical

Bayesian analysis of Bianchi VII_h cosmologies

Validation with simulations

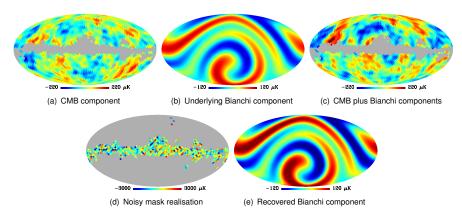


Figure: Partial-sky simulation with embedded Bianchi VII_h component at L=32.

Bayesian analysis of Bianchi VII_h cosmologies

Validation with simulations

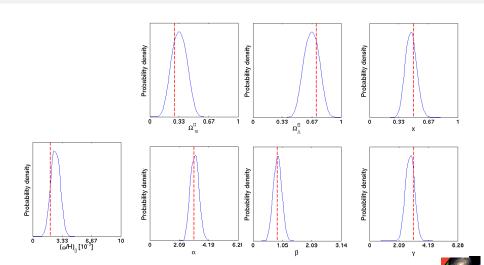
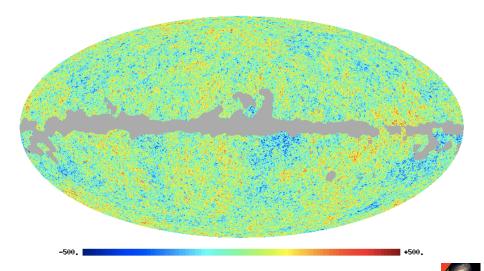


Figure: Marginalised posterior distributions recovered from partial-sky simulation at L=32.

Planck results



Planck results: flat-decoupled-Bianchi model

Bayesian evidence

Table: Bayes factor relative to equivalent ΛCDM model (positive favours Bianchi model).

Model	$\Delta { m ln} E$		
	SMICA	SEVEM	
Flat-decoupled-Bianchi (left-handed) Flat-decoupled-Bianchi (right-handed)	2.8 ± 0.1 0.5 ± 0.1	1.5 ± 0.1 0.5 ± 0.1	
1 (0 /			

- On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VII_h component would be termed strong (significant) for SMICA (SEVEM) component-separated data.
- A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.

Planck data favour the inclusion of a phenomenological Bianchi VII_h component!

Planck results: flat-decoupled-Bianchi model

Best-fit Bianchi component

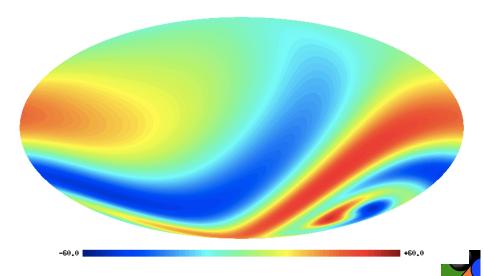


Figure: Best-fit template of flat-decoupled-Bianchi VII_n model found in Planck SMICA component-separated data.

BUT the flat-Bianchi-decoupled model is phenomenological and **not physical!**

Parameter estimates are not consistent with concordance cosmology.

Planck results: open-coupled-Bianchi model

Bayesian evidence

Table: Bayes factor relative to equivalent Λ CDM model (positive favours Bianchi model).

Model	$\Delta { m ln} E$		
	SMICA	SEVEM	
Open-coupled-Bianchi (left-handed) Open-coupled-Bianchi (right-handed)	$0.0 \pm 0.1 \\ -0.4 \pm 0.1$	0.0 ± 0.1 -0.4 ± 0.1	

 In the physical setting where the standard cosmological and Bianchi parameters are coupled,

Planck data do not favour the inclusion of a Bianchi VII_h component.

• Find no evidence for Bianchi VII_h cosmologies and constrain vorticity to:

Planck results: open-coupled-Bianchi model

Bayesian evidence

Table: Bayes factor relative to equivalent Λ CDM model (positive favours Bianchi model).

Model	$\Delta { m ln} E$		
	SMICA	SEVEM	
Open-coupled-Bianchi (left-handed) Open-coupled-Bianchi (right-handed)	$0.0 \pm 0.1 \\ -0.4 \pm 0.1$	$0.0 \pm 0.1 \\ -0.4 \pm 0.1$	

 In the physical setting where the standard cosmological and Bianchi parameters are coupled,

Planck data do not favour the inclusion of a Bianchi VII_h component.

• Find no evidence for Bianchi VII_h cosmologies and constrain vorticity to:

$$(\omega/H)_0 < 8.1 \times 10^{-10}$$

95% confidence level

Summary

We have entered an era of precision cosmology.

Thanks to large and precise cosmological observations and robust signal and image processing techniques.

Summary

We have entered an era of precision cosmology.

Thanks to large and precise cosmological observations and robust signal and image processing techniques.

BUT...many outstanding questions remain!

Summary

We have entered an era of precision cosmology.

Thanks to large and precise cosmological observations and robust signal and image processing techniques.

BUT...many outstanding questions remain!

Your Universe needs YOU!

PhD and postdoc opportunities at UCL.

For more information see http://www.jasonmcewen.org/opportunities.html

