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Bayesian Inference Computational Harmonic Analysis Machine Learning
Observations of galaxies tracing large-scale stru

ure (LSS)

Inverse Problems

Credit: SDSS
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems
Observations of cosmic microwave background (CMB)

Credit: WMAP
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CMB power spectrum

Theory and observational data

Multipole moment, ¢
2 10 50 500 1000 1500 2000 2500

6000
5000 | 4
4000 Pt
|
3000 | fo1
v 4
2000 $ \J
u
/' '
1000 [ J[ H it ‘-""\_"_M
*

90°  18° 1° 02° 0.1° 0.07°
Angular scale

Temperature fluctuations [ jt KQ]

Credit: Planck

Big Data in Cosmology (Extra)



Cosmic evolution of our Universe

Cosmic Microwave Background (CMB)

t ~ 400 thousand years

Epoch of Reionization (EoR)

t ~ 400 million years

Large Scale Structure (LSS)

t ~ 14 billion years
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Bayesian Inference Computational Harmonic Analysis Machine Learni Inverse Problems

Content of the Universe

4.9% Ordinary
Matter

Credit: Planck
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Unanswered fundamental questions

Big Bang

Cosmic Microwave Background (CMB)

t ~ 400 thousand years

Epoch of Reionization (EoR)

t ~ 400 million years

Large Scale Structure (LSS)

t ~ 14 billion years
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Unanswered fundamental questions

Q [ What is the origin of structure? ]

What is the nature of dark energy
and dark matter?

Cosmic Microwave Background (CMB)

t ~ 400 thousand years

Epoch of Reionization (EoR)

t ~ 400 million years

Large Scale Structure (LSS)

t ~ 14 billion years
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Unanswered fundamental questions

Q [ What is the origin of structure? ]

What is the nature of dark energy

Cosmic Microwave Background (CMB) d dark matter?
and dark matter?

t ~ 400 thousand years

Epoch of Reionization (EoR)

t ~ 400 million years

Large Scale Structure (LSS)

t ~ 14 billion years

Planck LOFAR DESI Euclid LSST
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ESA Euclid satellite

Bayesian Inference Computational Harmonic Analysis

Machine Learning

Inverse Problems

Credit: Euclid
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Euclid sky coverage
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Euclid sky coverage
2 weeks
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Euclid sky coverage
6 months
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Euclid sky coverage
1 year
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Euclid sky coverage
5 years
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Bayesian Inference Computational Harmonic Analysis
Large Synoptic Survey Telescope (LSS

Machine Learning

Inverse Problems

Credit: LSST
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__________________BayesianInference Computational Harmonic Analysis_Machine Learning _Inverse Problems
Large Synoptic Survey Telescope (LSST)

Data Releases:

Number of Data Releases = 11

Date of DR1 release = Date of Operations Starts 12
months

Estimated numbers for DR-1 release

Objects = 18 billion Alert Production:

Sources - 350 billion (single epoch) Real-time alert latency = 60 seconds

Forced Sources = 0.75 trillion Average number of alerts per night= "about 10 millien”
Estimated numbers for DR-11 Data and compute sizes:

Objects - 37 billion Final image collection {DR11) = 0.5 Exabytes

Sources = 7 trillion (single epoch} Final database size (DR11) = 15 PB

Forced Sources = 30 trillion Final disk storage = 0.4 Exabytes

Visits observed = 275 million Peak number of nodes = 1750 nodes

Images collected = 5.5 million Peak compute power in LSST data centers = 1.8 PFLOPS
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Square Kilometre Array (SKA)
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The SKA poses a considerable big-data challenge

The SKA will generate
The SKA will use enough =1 enough y‘;\\//\‘/ dgata to fil 15
optical fiber to wrap twice million 64GB iPods every day!
around the Earth! B

64GB
X 15 MILLION
The SKA will be so
sensitive that it will
be able to detect.
an airport radar on
a planet tens of
light years away.

The dishes of the = The aperture arrays
SKA will produce in the SKA could
10 times the global

(11 produce more than
internet traffic. \ & 100 times the global
internet traffic.

The SKA
central
computer
will have the
processing
x 100,000,000 power of
Personal Computers about one
hundred
million PCs.
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The SKA poses a considerable big-data challenge
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Cosmostatistics & Cosmoinformatics
Closing the loop

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Cosmology Statistics / Mathematics
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Cosmostatistics & Cosmoinformatics
Closing the loop

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Cosmology Statistics / Mathematics

Constructing appropriate analysis techniques requires a deep
understanding of cosmological problems and methodological
foundations.
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

e UCL won bid to host STFC's first CDT.

Learn more at out temporary website: https://www.hep.ucl.ac.uk/cdt-dis/

o Focused on Data Intensive Science (DIS).

& Science & Technology
@ Facilities Council
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

e UCL won bid to host STFC's first CDT.

Learn more at out temporary website: https://www.hep.ucl.ac.uk/cdt-dis/
o Focused on Data Intensive Science (DIS).
o Aims:
e Train next generation of leaders in the field of DIS (in both academic and industry).
e Promote development and application of novel DIS techniques.
o Promote knowledge transfer:
@ between academic fields;

@ between non-academic and academic organisations.

i & Science & Technology
@ Facilities Council
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

e UCL won bid to host STFC's first CDT.

Learn more at out temporary website: https://www.hep.ucl.ac.uk/cdt-dis/
o Focused on Data Intensive Science (DIS).
o Aims:
e Train next generation of leaders in the field of DIS (in both academic and industry).
e Promote development and application of novel DIS techniques.
o Promote knowledge transfer:
@ between academic fields;

@ between non-academic and academic organisations.

@ Unique opportunity to bring together DIS research from perspective of applications,
methodologies, and theoretical foundations.

i & Science & Technology
@ Facilities Council
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Invers

UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

Who we are

Particle Physics
Dpt. of Physics and
Astronomy

(20 CDT Staff Members)

Department of
Space and Climate

Science
(20 CDT Staff Members)

Department of
Computer Science
(8 CDT Staff Members)

Department of
Electrical Engineering
(3 CDT Staff Members)

Astrophysics

Dpt. of Physics and
Astronomy

(20 CDT Staff Members)

Atomic & Molecular
Physics

Dpt. of Physics and Astronomy
(2 CDT Staff Members)

Department of
Mathematics
(9 CDT Staff Members)

Department of
Statistical Science
(5 CDT Staff Members)

Aim to foster closer collaboration between these areas to aid the development of novel
DIS techniques or applications to new areas.
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

Management team

Centre Co-Directors: Profs N. Konstantinidis & O. Lahav

Directors of Research: Drs J. McEwen & T. Scanlon

Directors of Training: Prof. J. Tennyson FRS, & C. Gryce

Admissions & Graduate Tutor: Prof. S. Viti

Partner Liaison & Placements Co-Ordinator: Dr J. Yates
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

Industrial partners

J/ IT Com anies\\\ Data Intensive Public Sector Non-Academic
Companies Organisations Research
o The Economist Group
H coi B|B|C]
g STARCOUNT]
(Y}
-

o
¥ PRIVITAR TRANSPORT
.}

Blue Skies Space Ltd.

Quantemol > = Met Office

nccgroup®

Rutherford Appletor

boratory

Public-Private
Partnerships

.
“lew

CERNopeniab

@ European Bank

JIE

o Students will undertake 6 month internships with partners on a DIS project
@ Promote knowledge transfer between academic and non-academic organisations.

o We've been approached by more organisations since winning the bid
(UKAEA, Asos, GroupM, S&P, Illuminas, ASI, ...).
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Outline

© Bayesian inference
© Computational harmonic analysis
© Machine learning

© Inverse problems
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Outline

© Bayesian inference
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Bayesian Inference

Bayesian inference for parameter estimation
Case study: CMB

Observation Mtipole moment, £
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Figure: CMB Bayesian inference pipeline.
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Bayesian Inference

Bayesian inference for model selection

o Nested sampling (Skilling 2005).

o MultiNest: multi-modal ellipsoidal sampling (Feroz & Hobson 2007; Feroz, Hobson & Bridges

2008).

o PolyChord: multi-modal whitened slice sampling (Handley, Hobson & Lasenby 2015).

C

I

X,

(a) Nested sampling (b) Ellipsoidal sampling

Figure: Computing the marginalised likelihood (Bayesian evidence) [Credit: Feroz et al. 2008].
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Bayesian Inference

Bayesian hierarchical models
Weak gravitational lensing

PSF, instrumental noise ~ cosmology galaxy
characteristics

P({x}) P({g})

parameters o
characterizing

distributions

(PEmHx}) (Pelo)) (P {g}{€})
e (te)
(P@uxl{mm)))  (P(dls,2 {gh{I}) (P(zenl2)

data
products

Figure: HBM for weak gravitational lensing (Alsing et al. 2015)
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Computational Harmonic Analysis
Outline

© Computational harmonic analysis
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Observations made on the celestial sphere

Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Jason McEwen
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems
Cosmic microwave background (CMB) on the celestial sphere

Credit: WMAP

«O> «Fr o« > o« » o>
Big Data in Cosmology

Jason McEwen




Computational Harmonic Analysis

Wavelets on the sphere

@ Spin scale-discretised wavelet transform given by projection onto each wavelet
(McEwen et al. 2015; McEwen 2015; McEwen et al. 2013; Wiaux, McEwen et al. 2008):

WY (p) = (s f, Rp s W)

- /Sz dQ(0,¢) s F(0, ) (Rp sW7)*(0, ) -

projection
(@) j=3 (b) j=4 ()j=5

Figure: Wavelets on sphere
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Computational Harmonic Analysis

Wavelets on the sphere

@ Spin scale-discretised wavelet transform given by projection onto each wavelet
(McEwen et al. 2015; McEwen 2015; McEwen et al. 2013; Wiaux, McEwen et al. 2008):

WY (p) = (s f, Rp s W)

projection
(@) j=3 (b) j=4 ()j=5

Figure: Wavelets on sphere

@ Original function may be recovered exactly in practice from wavelet coefficients:

/ do(p) WY (p) (R s W) (w)
SO(3)

wavelet contribution

finite sum

Big Data in Cosmology
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Computational Harmonic Analysis

Wavelets on the sphere
Localisation of Gaussian random fields

Wavelet localisation (McEwen et al. 2016)

Directional scale-discretised wavelets ¥ € L2(S2), defined on the sphere S? and centred on
the North pole, satisfy the localisation bound:
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Computational Harmonic Analysis

Wavelets on the sphere
Localisation of Gaussian random fields

Wavelet localisation (McEwen et al. 2016)

Directional scale-discretised wavelets ¥ € L2(S2), defined on the sphere S? and centred on
the North pole, satisfy the localisation bound:

[T (8, p)| <

(there exist strictly positive constants (T'i/". (/’L)“ € RT for any £ € IT)

Wavelet asymptotic uncorrelation (McEwen et al. 2016)

For Gaussian random fields on the sphere, directional scale-discretised wavelet coefficients
are asymptotically uncorrelated. The directional wavelet correlation satisfies the bound:

o)

E(jj/)(phPQ) <
(L+ D5y

where 3 € [0, 7) is an angular separation between Euler angles p1 and pa (there exist strictly
positive constants (75“ § (,‘i/" € R} for any £ € R, £ > 2M, where M is the azimuthal band-limit

of the wavelet and ‘./ - ‘}" < 2).

J
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Galaxy distribution tracing large-scale structure (LSS) on the 3D ball

Credit: SDSS
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Computational Harmonic Analysis

Wavelets on the ball

Fourier-LAGuerre wavelets (flaglets)

o Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet
(Leistedt & McEwen 2012):

‘ Ws\pjj (T7 p) = (sfa 7—(r,p) S\Iijj/>

projection

= [, ) T 9 ().

@ Original function may be recovered exactly in practice from wavelet coefficients:

S =3 /S o 220 /R LW () (T 99 )

7’

o wavelet contribution
finite sum

o [ Opens up wavelet analyses of galaxy distribution tracing the large-scale structure (LSS).
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Computational Harmonic Analysis

Cosmic strings
Problem
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Computational Harmonic Analysis

Cosmic strings
Typical amplitude

(a) CMB (b) CMB with embedded string contribution

Figure: CMB simulation with string contribution embedded (Gp =5 x 107 7).

Big Data in Cosmology (Extra)



Computational Harmonic Analysis

Cosmic strings
Wavelet representation

w S

Probability density
N
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Computational Harmonic Analysis

Cosmic strings
Wavelet representation

Wavelet transform

w S

Probability density
N
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Computational Harmonic Analysis

Cosmic strings
Wavelet representation
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Computational Harmonic Analysis

Cosmic strings
Hierarchical Bayesian model

Generalised Gaussian Gaussian

CF (o

Figure: Hierarchical Bayesian model (McEwen et al. 2016)
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Computational Harmonic Analysis

Cosmic strings
Bayesian inference

Table: Bayes factors

Gu truth Bayes factor

4 /1077 [log.]

3 10.0 51.4

) 7.00 12.5

5.00 1.19

1 3.00 —3.87
0 2 3 4
Gu x107°

Figure: Posterior
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Computational Harmonic Analysis

Cosmic strings
Bayesian inference

Table: Bayes factors

5| Gu truth Bayes factor
) , /1077 flog..]
3 b 10.0 51.4
) 7.00 12.5
H 5.00 1.19
1 : 3.00 —3.87

(a) Ground truth (b) Recovered

Figure: String map
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Outline

© Machine learning
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Galaxy morphology classification

Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Edwin Hubble's oy
Classification e -
Scheme N - ”

" o sb
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.-

SBa

‘ SBb
> - sBg,
‘ - '

Credit: Wikipedia
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Machine Learning

Galaxy morphology classification

@ Galaxy classification with neural networks pioneered by Lahav in 1990s
(Lahav, Naim et al. 1995; Banerji, Lahav et al. 2009).
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Galaxy morphology classification

e Galaxy classification with neural networks pioneered by Lahav in 1990s
(Lahav, Naim et al. 1995; Banerji, Lahav et al. 2009).

@ Galaxy Zoo to crowdsource galaxy classification — ~50 million classifications / year.

SCIENCE DISCUSS PROFILE LANGUAGE

Few have witnessed what you're about to see

Experience a privileged glimpse of the distant universe as observed by the SDSS, CTIO and VST.

Classify Galaxies

To understand how galaxies formed we need your help to
classify them according to their shapes. If you're quick,
You may even be the frst person to see the galaxies
you're asked to classify.

Big Data in Cosmology
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Galaxy morphology classification

e Galaxy classification with neural networks pioneered by Lahav in 1990s
(Lahav, Naim et al. 1995; Banerji, Lahav et al. 2009).

@ Galaxy Zoo to crowdsource galaxy classification — ~50 million classifications / year.

o For upcoming surveys with ~1.5 billion galaxies, would take 30 years!

SCIENCE DISCUSS PROFILE LANGUAGE

Few have witnessed what you're about to see

Experience a privileged glimpse of the distant universe as observed by the SDSS, CTIO and VST.

Classify Galaxies

To understand how galaxies formed we need your help to
classify them according to their shapes. If you're quick,
You may even be the frst person to see the galaxies
you're asked to classify.
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Machine Learning

Galaxy morphology classification

o Use Galazy Zoo classification as training data (Lahav, Olhede, et al., ongoing).

Parameters b
i \
[y = B

Figure: Crowdsourcing and machine learning for galaxy classification [Credit: Lahav]
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Machine Learning

Photometric redshift estimation

o Photometric redshift estimation with neural networks pioneered by Lahav in 2000s
(Collister & Lahav 2004; Sadeh, Abdalla & Lahav 2016).

0.8
I

Flux
0.4

0.2
I

4000 6000 8000 10000 12000
A (R)

Figure: Photometric redshift estimation [Credit: Lahav]
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Artist impression of Supernova explosion
Thermonuclear explosion or core collapse
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Machine Learning

Supernova classification
Spectroscopic classification
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Figure: Spectroscopic observations
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Machine Learning

Supernova classification
Photometric classification

u-band | g-band Jif wband | -band |

100 S e B ] N
g R
~ 80
8 I 1
]
o
£ - I
RI==eeis=g
c
g - !
® o SR
I I |
0

200 300 400 500 600 700 800 900 1000 1100
Wavelength(nm)

Figure: Photometric observations.
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Supernova classification
Photometric classification

o Photometric Supernova classification by machine learning
(Lochner, McEwen, Peiris, Lahav & Winter 2016)

o Go beyond single techniques to study classes.

Machine Lear

wo . Object: DES_SN040299.DAT, :0.37, Type:

20 1
@
3
- 1 =2
@ 8
5 £l €
, 16 8=+0.3] 3
L sms
8=+0.
= 14 R 8=+12]
0 20 40 60 80 100 totitp 2  ta
doys past B maximum Time
(a) Templates (b) Generic parameterisations

Time

(c) Wavelets (non-parametric)

Figure: Feature selection classes (in order of increasing model independence)
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Supernova classification
Photometric classification

o Photometric Supernova classification by machine learning
(Lochner, McEwen, Peiris, Lahav & Winter 2016)

o Go beyond single techniques to study classes.

!
~
S

Machine Lear

wo . Object: DES_SN040299.DAT, :0.37, Type:

@
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5 £l €

, 16 8=+0.3] 3
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8=+0.
= 14 R 8=+12]
0 20 40 60 80 100 totitp 2  ta
doys past B maximum Time
(a) Templates (b) Generic parameterisations

Time

(c) Wavelets (non-parametric)

Figure: Feature selection classes (in order of increasing model independence)

o Integrate physics into machine learning (scale and dilation invariance).
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Machine Learning

Supernova classification
Representativeness of training data

band filter: sdssr

22
(]
520
=
[@)]
©
£ 18
L ]
16 —
000 025 050 075
redshift

Figure: Training (green) vs test (blue) data
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Outline

© Inverse problems
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Inverse Problems

Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

>

Big Data in Cosmology (Extra)



Inverse Problems

Radio interferometric inverse problem

o Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.
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Inverse Problems

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..

Big Data in Cosmology
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Inverse Problems

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Inverse Problems

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

msynthesis =W x argcinin[Hy - (D\Voc”; +A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .
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Inverse Problems

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”; + A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Tanatysis = arg min [y — @23 + A [|v'z], |

Analysis framework

o For orthogonal bases the two approaches are identical but otherwise very different.
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Inverse Problems

Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”; + A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Tanatysis = arg min [y — @23 + A [|v'z], |

Analysis framework
o For orthogonal bases the two approaches are identical but otherwise very different.

@ Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
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Inverse Problems

Public open-source codes

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d'Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation

Carrillo, McEwen, Wiaux, Kartik, d'Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.
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http://basp-group.github.io/purify/
http://basp-group.github.io/sopt/

Inverse Problems

Imaging observations from the VLA and ATCA with PURIFY

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of 3C129

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)

Jason McEwen Big Data in Cosmology (Extra)



Inverse Problems

Proximal MCMC sampling and uncertainty quantification

@ See poster by Xiaohao Cai
(Cai, Pereyra & McEwen, 2017a, in prep.; Cai, Pereyra & McEwen, 2017b, in prep.)

[Observed visibilities in Rl imaging: y}

EAN

Sample full posterior by
‘ MCMC methods: P( a:|y) HPD credible regions: Cq

Local credible
intervals: (£€_,&4)

( Point estimator: x* )—{ Hypothesis testing
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Inverse Problems

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

o Sample full posterior distribution P(x | y).
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Inverse Problems

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

o Sample full posterior distribution P(x | y).

@ MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
o Hamiltonian MC (HMC) sampling (exploit gradients)

e Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
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Inverse Problems

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

o Sample full posterior distribution P(x | y).

@ MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
o Hamiltonian MC (HMC) sampling (exploit gradients)

e Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparse priors, which shown to be highly effective.

Big Data in Cosmology (Extra)



Inverse Problems

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form (and more compact notation):

P(z|y) = - o< exp(—)

Posterior Smooth
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Inverse Problems

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form (and more compact notation):

P(z|y) = o exp(—)

Posterior Smooth

o If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
dynamics) MCMC methods.
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Inverse Problems

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form (and more compact notation):

P(z|y) = o< exp(—)

Posterior Smooth

o If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
dynamics) MCMC methods.

o MALA based on Langevin diffusion process L(t), with 7 as stationary distribution:
1
dL(t) = 5v1og7r(£(t))dt+dW(t), L£(0) =1l

where W is Brownian motion.
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Inverse Problems

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form (and more compact notation):

P(z|y) = o< exp(—)

Posterior Smooth

If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
dynamics) MCMC methods.

MALA based on Langevin diffusion process £(t), with 7 as stationary distribution:

dL(t):% Viegm(L(t)) |dt+dW(t), L£(0)=1lo

Gradient

where W is Brownian motion.

o Need gradients so cannot support sparse priors.
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Inverse Problems

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]

o Generalisation of projection operator:
Pc(x) = arg min [zc(u) + ||lu — a:HQ/Q] ,
u

where 1¢(u) = oo if u ¢ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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Inverse Problems

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(x | y) = 7(x) exp(—

Convex
—
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Inverse Problems

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(x | y) = 7(x) exp(—

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex
—

dL(t) = %Vlogfr(ﬁ(t))dt +dW(t), L£(0)=1o.
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Inverse Problems

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(z |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

dL(t) = %Vlogfr(ﬁ(t))dt +dW(t), L£(0)=1o.

@ Euler discretisation and apply Moreau approximation to 7:

)
((m+1) — g (m) + 5 Vlogfr(l(m>) 4 Vow'™

Vlog mx(x) = (prox, (z) — x)/X
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Inverse Problems

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(z |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

1
dL(t) = 5v1og7r(z:(t))dt +dW(t), L(0)=1Io.
@ Euler discretisation and apply Moreau approximation to 7:

8
(m+D) — g(m) 5 Vieg (1) [+ Vow ™ .

Vlog mx(x) = (prox, (z) — x)/X

@ Metropolis-Hastings accept-reject step.
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Proximal MALA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(@) = fi(@) + fo(a), where| fi(@) = ul|[W'z| |and| fa(z) = |ly — ®=|3/20°
Prior Likelihood
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Proximal MALA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(@) = fi(@) + fo(a), where| fi(@) = ul|[W'z| |and| fa(z) = |ly — ®=|3/20°
Prior Likelihood

@ Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{u” ull1 + 552 3

ueRN
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g Inverse Problems

Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (w — 5T (D — 'y)/2cr2)

f1

Single forward-backward iteration
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Inference Computational Harmonic Analy ne Learning Inverse Problems

Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (:c — 5T (D — 'y)/202)

f1

Single forward-backward iteration

@ Analytic approximation:

, where & = & — 6@T (dx — y)/202.

proxg/2(w) ~o+ W (softm;/Q(llle;) = \IIT'T;))
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Inverse Problems

MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

B

9@ = [ 1@ ] S ECIH
) [%p]

Big Data in Cosmology (Extra)



MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

5 S
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogw(ﬁ(t))dt +dw(t), £(0)=1Io .
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MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

5 S
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogw(ﬁ(t))dt +dw(t), £(0)=1Io .

@ Euler discretisation and apply Moreau-Yosida approximation to fi:

5
(mAD — g m) 3 Vieg (1™ [+ vVow ™ .

Viogn(x) ~ (prox?l () — :1:)//\ — Vfa(x)
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n Inference Co . nal Harmonic Analysis Machine Learning Inverse Problems

MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—g(x)), where

P =
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

1
dL(t) = 5vmgw(ﬁ(t))dt +dw(t), £(0)=1Io .
@ Euler discretisation and apply Moreau-Yosida approximation to fi:
l(nl+1) B l(m) * é * \/gw(m) ’
2
Viogn(x) ~ (prox?l () — :1:)//\ — Vfa(x)
@ No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made

arbitrarily small. To achieve precision target e requires:
o Worst case: order N°log?(e~1)e~? iterations.

o Strong convexity worst case: order N log(N) log?(e~!)e~2 iterations.
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MYULA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(z) = fi(@) + f2(@), where | fi(x) = p|W'z||; |and [ fo(@) = |ly — &3 /257
Prior Likelihood
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MYULA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(x) = fi(x) + fa(x), where

fi(@) = pl|Wiz|; |and [ fo(@) = |ly — &3 /257
Prior Likelihood

@ Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox{/z(w) =z+W (softﬂa/Q(WTw) “’Tw)) ’
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Inverse Problems

an Inference  Computational Harmonic Analy

Numerical experiments
MYULA with analysis model

(a) Ground truth

Figure: Cygnus A
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Inverse Problems

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image

Figure: Cygnus A
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n Inference Computational Harmonic Anal rning Inverse Problems

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image

Figure: Cygnus A
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Inverse Problems

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: Cygnus A
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Inverse Problems

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: HII region of M31
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sian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: W28 Supernova remnant
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an Inference  Computational Harmonic Analy i 1 Inverse Problems

Numerical experiments
MYULA with analysis model

- { .
| nl |

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: 3C288
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Inverse Problems

Proximal MCMC sampling and uncertainty quantification

[Observed visibilities in Rl imaging: y

‘ Sample full posterior by \

MCMC methods: P(x|y) HPD credible regions: Cq

\

Local credible
intervals: (§—,&4)

( Point estimator: @* )————{  Hypothesis testing
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Inverse Problems

MAP estimation and uncertainty quantification

[Observed visibilities in Rl imaging: y

N

MAP image Approximate HPD
estimation: Tmap credible regions: Cy

\

( Approximate local credible }

intervals: (£_,€.)

Hypothesis testing
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Inverse Problems

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
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Inverse Problems

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

o Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior isosurface: Co, = {x : g(x) < Yo }.
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Inverse Problems

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

o Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior isosurface: Co, = {x : g(x) < Yo }.

@ Analytic approximation of vq:

Yo = g(&*) + N(1a + 1)

where 7o, =

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b). Follows by
recent results from information theory, related to a concentration property of log-concave
random vectors.

o Define approximate HPD regions by C, = {@ : g(x) < Fa }.
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Inverse Problems

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

o Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior isosurface: Co, = {x : g(x) < Yo }.

@ Analytic approximation of vq:

Yo = g(&*) + N(1a + 1)

where 7o, =

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b). Follows by
recent results from information theory, related to a concentration property of log-concave
random vectors.

o Define approximate HPD regions by C, = {@ : g(x) < Fa }.

o Compute x* by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.

Big Data in Cosmology (Extra)



Inverse Problems

Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen, in prep.)

Let Q define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. ¢; = 1 if 2 € Q and 0 otherwise).

Given 7, and x*, compute the credible interval by

= mgn{s | 9y(x') < Aa, V€ € [—00,+00)},

&y = max {¢ | gy (') < Fa, V€ € [—00, +00)},

where

' =x"(T-¢)+¢&C |
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sian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Numerical experiments

S
-
< 0
= .
a
<
-
o
>
[a
<

(b) local credible interval (c) local credible interval (d) local credible interval

t estimat
(a) point estimators grid size 10 x 10 pixels  grid size 20 x 20 pixels  grid size 30 x 30 pixels

Figure: Local credible interval computation for M31 for the analysis model.
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Inverse Problems

Numerical experiments

(b) local credible interval (c) local credible interval (d) local credible interval
grid size 10 x 10 pixels  grid size 20 x 20 pixels  grid size 30 x 30 pixels

P-MALA

MYULA

MAP

(a) point estimators

Figure: Local credible interval computation for Cygnus A for the analysis model.
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an Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Numerical experiments

<
4
<
=
a
<
3 | . |
=)
=
=
o
<
=

(b) local credible interval (c) local credible interval (d) local credible interval

t estimat
(a) point estimators grid size 10 x 10 pixels  grid size 20 x 20 pixels  grid size 30 x 30 pixels

Figure: Local credible interval computation for W28 for the analysis model.
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an Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Numerical experiments

<

S

él .I -I .I
[a

3 o | _ 5 _ ,
d ° | ."I .I
E |

(b) local credible interval (c) local credible interval (d) local credible interval

t estimat
(a) point estimators grid size 10 x 10 pixels  grid size 20 x 20 pixels  grid size 30 x 30 pixels

Figure: Local credible interval computation for 3C288 for the analysis model.
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Inverse Problems

Numerical experiments
Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

CPU time
Analysis Synthesis

P-MALA 2274 1762

Image  Method

Cygnus A MYULA 1056 942
MAP .07 .04

P-MALA 1307 944

M31  MYULA 618 581
MAP .03 .02

P-MALA 1122 879

w28  MYULA 646 598
MAP .06 .04

P-MALA 1144 881

3C288 MYULA 607 538
MAP .03 .02
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Summary
Closing the DIS loop

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Cosmology Statistics / Mathematics

Constructing appropriate analysis techniques requires a deep
understanding of cosmological problems and methodological
foundations.
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Distribution and parallelisation PURIFY reconstructions
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Wavelets on the sphere
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Observations made on the celestial sphere

Bayesian Inference Computational Harmonic Analysis Machine Learning

Inverse Problems

Jason McEwen

«4O> «4F> «E» « > aq>
Big Data in Cosmology



Wavelets on the sphere
How can we construct sparsifying transforms?
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Figure: Wavelet scaling and shifting [Credit: Gao & Yan (2010)]
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Wavelets on the sphere
Dilation and translation

o Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of
a mother wavelet.

@ The natural extension of translations to the sphere are rotations. Rotation of a function f
on the sphere is defined by

[R(p)flw) = f(R;'w), w=(6,0) €S*, p=(a,B,7) €S0(3).

o How define dilation on the sphere?

North,pole-

r=2tan(.

e Stereographic projection
Antoine & Vandergheynst (1999), Wiaux et al. (2005)

e Harmonic dilation wavelets |
McEwen et al. (2006), Sanz et al. (2006)

o Isotropic undecimated wavelets
Starck et al. (2005), Starck et al. (2009) South pole
Figure: Stereographic projection

o Needlets
Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)

o Scale-discretised wavelets
Wiaux, McEwen et al. (2008), McEwen et al. (2003), McEwen et al. (2015)
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Wavelets on the sphere
Spin scale-discretised wavelet construction

@ Spin scale-discretised wavelet sWJ constructed in separable form in harmonic space:

S\I}%'m = I{j(f) Com - ’

@ Admissible wavelets constructed to satisfy a resolution of the identity:

2
s@pol® |+ E E mlc =1, Ve
N - j=0m=—¢
scaling function wavelet
P PGB (G T ) () N ) W™ )

‘ 0 o
0.8
od (a) Real(sW7) (b) Imag(s¥7) (c) Abs(sW7)

Figure: Spin scale-discretised wavelets on the sphere.

1 2 4 8 16 32 64 128
[4

Figure: Harmonic tiling on the sphere.
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Wavelets on the sphere
Fast algorithms, variations, and applications

o Fast algorithms critical to scale to large observational data-sets
(McEwen et al. 2015; McEwen et al. 2013; Leistedt, McEwen et al. 2013; McEwen et al. 2007).
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Wavelets on the sphere
Fast algorithms, variations, and applications

o Fast algorithms critical to scale to large observational data-sets
(McEwen et al. 2015; McEwen et al. 2013; Leistedt, McEwen et al. 2013; McEwen et al. 2007).

@ Variety of types:

Spin (McEwen et al. 2015)

Directional (McEwen et al. 2015; Wiaux, McEwen et al. 2008)
Curvelets (Chan, Leistedt, Kitching & McEwen 2016)
Ridgelets (McEwen 2016)

Steerable (McEwen et al. 2015; Wiaux, McEwen et al. 2008)
Morphological components (McEwen et al. 2008)

Figure: Ridgelet
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Wavelets on the sphere
Fast algorithms, variations, and applications

o Fast algorithms critical to scale to large observational data-sets
(McEwen et al. 2015; McEwen et al. 2013; Leistedt, McEwen et al. 2013; McEwen et al. 2007).

@ Variety of types:

e Spin (McEwen et al. 2015)
Directional (McEwen et al. 2015; Wiaux, McEwen et al. 2008)
Curvelets (Chan, Leistedt, Kitching & McEwen 2016)
Ridgelets (McEwen 2016)
Steerable (McEwen et al. 2015; Wiaux, McEwen et al. 2008)
Morphological components (McEwen et al. 2008)

Figure: Ridgelet

o | Wavelets ideally suited to cosmological analysis:

o Physical processes are often manifest on particular physical scales but spatially localised.
o Localised covariance structure of both theory and data.
o Observations typically cannot be made over entire celestial sphere.

o Prevalent CMB analysis technique.
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
Wavelets on the ball (flaglets)

Translation and convolution on the radial line

@ Construct translation and convolution on radial line by analogy with infinite line.

o For the standard orthogonal basis ¢, (z) = expl“® translation of the basis functions
defined by shift of coordinates:

(T dw) (@) = pu(@ — u) = ¢ (u)du () -

Define translation of the spherical Laguerre basis functions on the radial line by analogy:

(Ts Kp)(r) = Kp(s)Kp(r) .

@ Convolution on the radial line defined by

(F M) = (£ Tohgs = [ dss? 1(6) (Toh) (5,

@ In harmonic space, radial convolution is given by the product
(f*h), = (f*h, Kp)p+ = fp hp -
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Wavelets on the ball (flaglets)

Translation and convolution on the radial line

@ Translation on the radial line corresponds to convolution with the Dirac delta:

(f % 85)(r) = prK (8)Ep(r) = (T f)(r) -

1048 . T T T . T
3
ER ]
=
g
0.1 015 02 025 03 035 04 045 05

I

Figure: Band limited translated Dirac delta functions
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Wavelets on the ball (flaglets)

Fourier-Laguerre translation and convolution

@ Translation operator on the ball defined by combining the angular and radial translation operators,

giving
7—1‘ = 7;72(97(4,) o

@ Convolution on the ball of f € L2(B*) with an axisymmetric kernel h € L2(B?) is defined by

(Fxm)r) = (£ Toh)as = [ ds £(a)(Toh)" (a),

where s € B3.

@ In harmonic space, axisymmetric convolution on the ball may be written

A "
(f * 1) prnp = (f x 1| Zemp)ps = 20517 tmr Peops

with femp = (f, Zemp)gs and heopdmo = (A, Zomp)ps-
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Wavelets on the ball (flaglets)

Fourier-Laguerre translation and convolution

o Angular (radial) aperture of localised functions is invariant under radial (angular)
translation.

r 180

(a) Wavelet kernel translated by r = 0.2 (b) Wavelet kernel translated by » = 0.4

Figure: Slices of an axisymmetric flaglet wavelet kernel plotted on the ball of radius R = 0.5.
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Wavelets on the ball (flaglets)

Real part of spin s = 2 flaglets with A\=v =3, Iy =Jy=2, N =1 Imag. part

Modulus

3D with z slices

slice z =0

o

o
‘ f
‘ f

slice z = 0

half sphere r = R/2

half sphere r = R/2
=] F
Jason McEwen Big Data in Cosmology

half sphere r = R/2
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Wavelets on the ball (flaglets)
Wavelet tiling

P

1

1 0

Figure: Tiling of Fourier-Laguerre space.
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Cosmological spin signals

o Observe spin £2 cosmological signals on the celestial sphere, with n. = (0, ¢) € S2:

+2P(n) = Q +:U ] [ +27(n,7) =v1 £iv2 ]

CMB polarization Cosmic shear

(a) CMB polarization [Credit: WMAP] (b) Cosmic shear [Credit: Ellis (2010)]

Figure: Cosmological spin signals.
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E/B separation

Parity even and odd components

@ Decompose 12 P into parity even and parity odd

components:
o(n) = [ 2P(n) + 7 _2P(m)] |
B(n) = £ [3* 2P(n) =7 _2P(n)] ’E
[a]

where 3 and 3 are spin lowering and raising
(differential) operators, respectively.

E-mode B-mode
N
- - / /
/TN | /_
| RN AN
N_/ 4 I
Figure: E-mode (even parity) and

B-mode (odd parity) signals [Credit:
http://www.skyandtelescope.com/].
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E/B separation

Parity even and odd components

@ Decompose +2 P into parity even and parity odd E-mode B-mode
components: ' \
N/ — |
1= S - - 7  /
e(n) = — [62 2P(n) + 8% —2P(n)] | 7N | —
i[5 3 N R
= —|3%22P(n) — 3% 3P
B(n) = 5 [6? 2P(n) — 8% _2P(n)] ’; | VN

where 3 and 3 are spin lowering and raising \—/ / I

(differential) operators, respectively. Figure: E-mode (even parity) and
B-mode (odd parity) signals [Credit:
http://www.skyandtelescope.com/].

o | Different physical processes exhibit different symmetries.

e Can exploit this property to separate signals arising from different underlying physical

mechanisms.
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n Inference Computational Harmonic Analy. 3 earning Inverse

E/B separation

Pure mode wavelet estimator

@ On a manifold with boundary (i.e. partial sky),
E/B decomposition not unique.
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an Inference  Computational Harmonic Analysis Machine Learning Inverse Problems

E/B separation

Pure mode wavelet estimator

@ On a manifold with boundary (i.e. partial sky),
E/B decomposition not unique.

@ Pure mode wavelet estimators (Leistedt, McEwen, Biittner & Peiris 2016):

—~ o I I Y
We¥ (p) = = Re || W57 (p) | +| 2W 215 (o) + WE" () ||,
L pseudo pure correction -
N I I i
We™ (o) =% tm || W=2X (o) |+ [ 2w (o) + WL (o)
L pseudo pure correction -

o Correction terms require spin +1 wavelet transforms (McEwen et al. 2015).
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Results: pseudo harmonic approach

E mode error mean (pseudo harmonic recovery) B mode error mean (pseudo harmonic recovery)

~0.015 0.000 0015 ~0.015 0.000 0015
(K] (K]

E mode error std. dev. (pseudo harmonic recovery) B mode error std. dev. (pseudo harmonic recovery)

o

~—— s —_—

=

=0.15 0.00 0.15 =0.15 0.00 0.15
[1K] [1K]
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Results: pure wavelet approach

E mode error mean (pure wavelet recovery) B mode error mean (pure wavelet recovery)
~0.015 0.000 0.015 ~0.015 0.000 0.015
(K] [1K]
E mode error std. dev. (pure wavelet recovery) B mode error std. dev. (pure wavelet recovery)
=0.15 0.00 0.15 =0.15 0.00 0.15
[1K] (K]

Big Data in Cosmology (Extra)



__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Pure and ambiguous modes

@ Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

o E-modes: vanishing curl
o B-modes: vanishing divergence
o Pure E-modes: orthogonal to all B-modes

o Pure B-modes: orthogonal to all E-modes

AMBICODVS
Mo oes
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E/B separation

Pure and ambiguous modes

@ Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

o E-modes: vanishing curl
o B-modes: vanishing divergence
o Pure E-modes: orthogonal to all B-modes

o Pure B-modes: orthogonal to all E-modes
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Mo oes

Big Data in Cosmology (Extra)



__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Pure and ambiguous modes

@ Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

o E-modes: vanishing curl
o B-modes: vanishing divergence
o Pure E-modes: orthogonal to all B-modes

o Pure B-modes: orthogonal to all E-modes
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Pure and ambiguous modes

@ Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

o E-modes: vanishing curl
o B-modes: vanishing divergence
o Pure E-modes: orthogonal to all B-modes

o Pure B-modes: orthogonal to all E-modes

AMBICODVS
Mo oes
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Connections between spin and scalar wavelet coefficients

@ Spin wavelet transform of 1oP = Q iU (observable):

W2 (p) = (£2P, R, £219)

spin wavelet transform

- /82 AQ(w) 12 P(W) (Rp £2%9)* (w) .

o Scalar wavelet transforms of E and B (non-observable):

W (p) = (e, Rp o¥7) |,

scalar wavelet transform

W (p) = (8, R W) |,

scalar wavelet transform

where U7 = 5207 .

Spin wavelet coefficients of 4o P are connected to scalar wavelet coefficients of E/B: ]

WY (p) = —Re[W2¥ 1 (p)] and Wg“”(p)zﬂm[wiip(m}.’
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Exploiting wavelets

General approach to recover E/B signals using scale-discretised wavelets

© Compute spin wavelet transform of 1o P = Q + iU:
Spin wavelet transform

i
+2P(w) — W2 p(P)

@ Account for mask in wavelet domain (simultaneous harmonic and spatial localisation):
Mitigate mask i
207 77297
Wizp(f’) — W 2P(P)
@ Construct E/B maps:

Inverse scalar wavelet transform

w7 v

(a) WO (p) = —Re[ W20 7, (o)] — e(w)
j Wi Inverse scalar wavelet transform

(6) W§™' (0) = Fm[W2T0 ()] T —— A)
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Results: pseudo harmonic approach

E mode error mean (pseudo harmonic recovery) B mode error mean (pseudo harmonic recovery)

~0.015 0.000 0015 ~0.015 0.000 0015
(K] (K]

E mode error std. dev. (pseudo harmonic recovery) B mode error std. dev. (pseudo harmonic recovery)

o

~—— s —_—

=

=0.15 0.00 0.15 =0.15 0.00 0.15
[1K] [1K]
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Results: pure harmonic approach

E mode error mean (pure harmonic recovery) B mode error mean (pure harmonic recovery)

~0.015 0.000 0.015 ~0.015 0.000 0.015
(K] [1K]
E mode error std. dev. (pure harmonic recovery) B mode error std. dev. (pure harmonic recovery)

P i N
: ‘.

.
N )
ST o 3

—0.15 0.00 0.15 —0.15 0.00 0.15
[1K] [uK]
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Results: pseudo wavelet approach

E mode error mean (pseudo wavelet recovery) B mode error mean (pseudo wavelet recovery)

~0.015 0.000 0015 ~0.015 0.000 0015
(K] (K]

E mode error std. dev. (pseudo wavelet recovery) B mode error std. dev. (pseudo wavelet recovery)

—0.15 0.00 0.15 —0.15 0.00 0.15
[1K] [uK]
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
E/B separation

Results: pure wavelet approach

E mode error mean (pure wavelet recovery) B mode error mean (pure wavelet recovery)
~0.015 0.000 0.015 ~0.015 0.000 0.015
(K] [1K]
E mode error std. dev. (pure wavelet recovery) B mode error std. dev. (pure wavelet recovery)
=0.15 0.00 0.15 =0.15 0.00 0.15
[1K] (K]
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Cosmic strings
Wavelet space distributions

@ Calculate analytically the probability distribution of the CMB in wavelet space:

(Y

1 2 2 2
, wh N = (WS WE ™) = E Co (¥ o
,/271'(0;.)2 eXp( 2\ 0§ ) > where (UJ) ¢ Jpae ! e e 1075) e

Pi(W;,) =

ip

@ Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map:

vi
)

v W
PS_ W-S G — J _ Jp
i (Wi 1 G 2Gpv;T(v; —1) exp< Guv;

with scale parameter v; and shape parameter v;.

Figure: Generalised Gaussian distribution (GGD).
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Cosmic strings
Cosmic string distributions in wavelet space

10 1o 10 107
1.9 9]
8l 1.4]
4
2 1
02)
= 0.5 0 05 ] = -0.5 0 05 = 0.5 0 05 ] . 0
W, [K/Gul x10 Wi, [K/Gy x10’ Wy, [K/Gp x10 Wi, [KK/Gr x10
(@) j=0 (b)ji=1 (e)ji=2 d)j=3
10° 10° 10°
6
E 4
E
2 1)
1)
= -05 0.5 K = -05 0.5 = -05 [ 05
W3, [K/Gyi x10 W, [K/Gpl 10 W3, [K/Gpl x10° W, [K/G x10°
(e)ji=4 (fli=5 (g)j=6 (h)i=7

Figure: Distribution of the cosmic string maps in wavelet space for each wavelet scale j.
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Cosmic strings
Cosmic string distributions in wavelet space

-20
0 -15 -10 -5 [] 5 10 15 -20 -10 0 10 20 50 0 5
Wi [k Wi, [uK] W (K] Wi [uK]
(@ i=0 (b)yj=1 (i=2 (d)j=3
60 80)
3 40} 60f

o
Wi, (K Wi, (K] Wi, (K] Wi, [uK]

() j=4 (fi=5 () j=6 (h)yj=7

Figure: Bayesian thresholding functions for each wavelet scale j.
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__________________BayesianInference Computational Harmonic Analysis_Machine Learning _Inverse Problems
SARA algorithm

@ Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

o Overcomplete dictionary composed of a concatenation of orthonormal bases:

W= [V, W, W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.

o Promote average sparsity by solving the constrained reweighted ¢; analysis problem:

min |[WW'z[|; subjectto [y—®z[2<e and x>0
zeRN

SARA
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

Different to synthesising signals from atoms.

@ Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x* = arg min ||Qax||1 subject to ||y — ®z|2 < €.
xT

analysis

e Contrast with synthesis-based approach:

x* =¥ - arg min ||a||1 subject to ||y — PVa2 <e.
«@

synthesis

For orthogonal bases Q = W' and the two approaches are identical.
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Analysis vs synthesis
Comparison

Coefficient Domain

Signal Domain

Compressed Sensing Domain

Measurement System

VS.

Synthesis
Dictionary
x=Dz

Sparsé coefficient

Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Analysis vs synthesis
Comparison

o Synthesis-based approach is more general, while analysis-based approach more restrictive.
@ More restrictive analysis-based approach may make it more robust to noise.

@ The greater descriptive power of the synthesis-based approach may provide better signal
representations (too descriptive?).
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

e Consider the inverse problem:
y=0oWa+n.

o Assume Gaussian noise, yielding the likelihood:

P(y|a) o exp(lly — oWal3/(20%)) .

Consider the Laplacian prior:

Pla) exp(—,6’||a||1> .

The maximum a-posteriori (MAP) estimate (with A = 2802) is

TMAP-synthesis = ¥ * arg max P(er[y) =¥ - arg min [|y — Va3 + Ml -

synthesis

@ One possible Bayesian interpretation!

o Signal may be {y-sparse, then solving ¢1 problem finds the correct £y-sparse solution!
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

o Other Bayesian interpretations are also possible (Gribonval 2011).

@ Minimum mean square error (MMSE) estimators

C synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

C MAP estimators

MAP

Penalised LS
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

@ Analysis-based MAP estimate is

:L.K/IAP—analysis =qf. arg min ”y - QQT'Y”% + >‘||’7||1 o

~y Ecolumn space Q

analysis
o Different to synthesis-based approach if analysis operator Q is not an orthogonal basis.
@ Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework
for wavelet MEM (maximum entropy method).
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Distributed and parallelised convex optimisation

@ Solve resulting convex optimisation problems by proximal splitting.

@ Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, et al. 2016)

Y1 (03] G:1M;
Y= : s o = . = X Fz
Yng @y Gnd My,
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Distributed and parallelised convex optimisation

- 8
=Fz
-
(1) p(t) (t)
B0 Bl bl
a S Data ng

" I Gy o)
B = RO)
1 Yng Sng

sequential steps
proximal step
Pi,

(t)

1

gradient um

HOMCIRR

sequential steps
proximal step

Ps,

(?)

gradient ,m

o= oD o

S—— \’

& FB step

& FB step 4\ af

DUALFB

sub-iterations F \/

Sparsity 1 Sparsity nj,
w, z© v, =
= (k) = o
d aff)
FB step FB step

forward step

5»\\":?'} s‘”"F }
[

backward step backward step

\_,—(k) a® g
a® | a af)

& FB step

Pc
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é
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Standard algorithms

Output Data

4

mﬂ %
CPU Raw Data
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(CPU, GPU, Xeon Phi)
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms

ﬂ
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PURIFY reconstruction
VLA observation of 3C129
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Figure: VLA visibility coverage for 3C129
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of 3C129

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of 3C129 imaged by CLEAN (natural)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of 3C129 images by CLEAN (uniform)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of 3C129 images by PURIFY
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PURIFY reconstruction
VLA observation of 3C129

Pixels
Pixels
Pixels

mJy/Beam

(c) PURIFY
McEwen, et al. 2016)

mJy/Beam :

(b) CLEAN (uniform)

" miygeam
(a) CLEAN (natural)
Figure: 3C129 recovered images and residuals (Pratley,
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PURIFY reconstruction
VLA observation of Cygnus A

10
50
=
< 0
—=50

-10955—100 =50 0 50 100 150
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Figure: VLA visibility coverage for Cygnus A

(Extra)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of Cygnus A

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of Cygnus A imaged by CLEAN (natural)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of Cygnus A images by CLEAN (uniform)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of Cygnus A images by PURIFY
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PURIFY reconstruction
VLA observation of Cygnus A

Jy/Beam Jy/Beam Jy/Beam

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY
Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

v (k)

Figure: VLA visibility coverage for PKS J0334-39
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
ATCA observation of PKS J0334-39

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of PKS J0334-39 imaged by CLEAN (natural)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of PKS J0334-39 images by CLEAN (uniform)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of PKS J0334-39 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0334-39

EEETT O I
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Pixels
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(b) CLEAN (uniform)

may/Beam
(a) CLEAN (natural)
Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: ATCA visibility coverage for Cygnus A
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
ATCA observation of PKS J0116-473

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)

Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of PKS J0116-473 imaged by CLEAN (natural)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of PKS J0116-473 images by CLEAN (uniform)
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Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of PKS J0116-473 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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(a) CLEAN (natural) (b) CLEAN (uniform)
Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)
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__Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems _
PURIFY reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

Observation PURIFY CLEAN CLEAN
(natural) (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36
PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24
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Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]

o Generalisation of projection operator:
Pc(x) = arg min [zc(u) + ||lu — a:HQ/Q] ,
u

where 1¢(u) = oo if u ¢ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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Proximal MCMC methods

@ Exploit proximal calculus.

@ “Replace gradients with sub-gradients”.

—
2

Figure: Illustration of sub-gradients [Credit: Wikipedia (Maksim)]

Y
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Proximal MALA

Moreau approximation

o Moreau approximation of f(x) o exp(—g(x)):

MA _ _ v — ||
N7 (=) = sup f(u)exp

weRN 2\

@ Important properties of fRAA(m):
QO Asx—0, M (x) - f(x)

@ Viog fiM(2) = (prox;(x) — =)/A

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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Inference Computational Harmonic Analy

Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (:c — 5T (D — 'y)/202)

f1

Single forward-backward iteration

@ Analytic approximation:

, where & = & — 6@T (dx — y)/202.

proxg/2(w) ~o+ W (softm;/Q(llle;) = \IIT'T;))
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Inference Computational Harmonic Analy ne Learning Inve

Proximal MALA

Computing proximity operators for the synthesis case

Recall posterior: () o exp(—g(x)).

[
5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

Let §(z(a)) = fl (a)+ fz (a), where

@ Must solve an optimisation problem for each iteration!

— OWyl2 u — a2
lly I3 + I Hz}

5/2, \ :
prox, (@) = argmin {p||u||1 —+ 252 3

u€eRL

o Taylor expansion at point a: ||y — ®Wu|j3 ~ ||y — ®Wa|? + 2(u — a) TWidf (dWa — y).

Then proximity operator approximated by

proxg/2(a) = prox:i/Z (a —swiof(owa — y)/202)

1

Single forward-backward iteration

o Analytic approximation:

proxg/Q(a) ~ soft 5 /2 (a —swiof(owa — y)/2a2)
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MYULA

Moreau-Yosida approximation

o Moreau-Yosida approximation (Moreau envelope) of f:

lu — 2|

(@)= inf f(u)+ 7

o Important properties of fQAY(:c)
O As)—0, W (z) = f(z)

Q Vf:’w(m) = (x— prox}‘(m))/k

z ; o ; :
Figure: lllustration of Moreau-Yosida envelope of |z| for varying A [Credit: Stack exchange (ubpdqn)]
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MYULA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(x) = fi(x) + fa(x), where

fi(@) = pl|Wiz|; |and [ fo(@) = |ly — &3 /257
Prior Likelihood

@ Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox{/z(w) =z+W (softﬂa/Q(WTw) ‘UT"”)) ’
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__________________Bayesian Inference Computational Harmonic Analysis_Machine Learning _Inverse Problems _
MYULA

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

fi(a) = ullalls {and| fa(a) = ||y — ®Wal3/20°

Prior Likelihood

o Let g(z(a)) = fi(a)+ fa(a), where

@ Only need to compute proximity operator of fi, which can be computed analytically
without any approximation:

prox‘;{Q(a,) = soft,,5/2(a)
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Hypothesis testing

Big Data in Cosmology (Extra)



Hypothesis testing
Method

@ Is structure in an image physical or an artifact?
@ Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — )% defined by posterior isosurface: Co, = {x : g(x) < Yo }.
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Hypothesis testing
Method

@ Is structure in an image physical or an artifact?
@ Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — )% defined by posterior isosurface: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

@ Cut out region containing structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image «’.

© Test whether ' € Cy:

o If ' ¢ C, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.

o If &’ € C, uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: HII region of M31
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Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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n Inference Computational Harmonic Anal Machine rning Inverse Problems

Hypothesis testing

Numerical experiments

. 1. Cannot reject null
‘ ‘ hypothesis
' ' = cannot make strong
statistical statement about
origin of structure

(a) Recovered image (b) Surrogate with region removed

Figure: Cygnus A
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Machine Learning

Inverse Problems

ayesian Inference Computational Harmonic Analysis

Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28

Big Data in Cosmology

= structure physical

1. Reject null hypothesis

(Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

2. Cannot reject null
hypothesis

= cannot make strong
statistical statement about
origin of structure

(a) Recovered image (b) Surrogate with region removed

Figure: 3C288
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Hypothesis testing

Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Test Ground Hypothesis
Image area truth Method test

P-MALA

M31 1 v MYULA
MAP

P-MALA

Cygnus A 1 v MYULA*
MAP

P-MALA

W28 1 v MYULA
MAP

P-MALA

1 v MYULA
MAP

P-MALA

2 X MYULA
MAP

3C288

3 X XN N NN N N[X X XSS

(* Can correctly detect physical structure if use median point estimator.)
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