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What is big-data?

A. Gandomi, M. Haider / International Journal of Information Management 35 (2015) 137-144
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Fig. 1. Frequency distribution of documents containing the term “big data” in ProQuest Research Library.
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What is big-data?

The nVs (originally 3Vs, then 6Vs, then 10Vs, ...):
@ Volume: many bytes (e.g. typically peta, exabytes)
@ Variety: structural heterogeneity (e.g. sub-populations, variety of sources)

© Velocity: rate of generation and analysis

@ Veracity: unreliability in sources
© Variability: variation in data flow rate

© Value: low value density

Typically (but not exclusively) characterised by:
@ High-dimensional datum (wide)

@ Massive number of datum (deep)



What is big-data in astronomy and astrophysics?

@ Big machines (e.g. physical hardware, experiments)
@ Big theory

@ Big simulations

@ Big parameter space

@ Big algorithms

@ Big collaborations

@ Big engagement (e.g. outreach, industry)



What is big-data in astronomy and astrophysics?

Wide and deep observations (in addition to wide and deep data)



Challenges of big-data

A. Gandomi, M. Haider / International Journal of Information Management 35 (2015) 137-144
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Fig. 3. Processes for extracting insights from big data.
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Computational challenges:
@ Data too big (to hold in memory)
@ Access and analysis too slow (unfeasible)

@ Too much power/energy required
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Challenges of big-data

Analysis challenges (Fan et al. 2014):
@ Heterogeneity, e.g. sub-populations, different data sources, tension between data
@ Error accumulation, e.g. high-dimensional parameter spaces, bias
© Spurious correlations, e.g. correlation vs causation, data dredging

@ Incident endogeneity, e.g. chance correlation between signal of interest and error
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@ Subsample
@ Divide-and-conquer

@ Stream processing



Analysing big-data

Generic approaches to analysing big-data (Wang et al. 2015):
@ Subsample
@ Divide-and-conquer

@ Stream processing

Additional approaches in astronomy and astrophysics:
@ Exploit structure (geometry, symmetry, physics)
@ Modelling:
@ Model-based consolidatory science

e Model-agnostic exploratory science
@ Approximation



Analysing big-data

Examples of specific methods:

Bayesian analysis

MCMC sampling

Hierarchical probabilistic (Bayesian) models
Variable selection

Experimental design

Machine learning

Optimisation

Wavelets

Sparsity

Compressed sensing

= Astrostatistics and Astroinformatics
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Planck

Observations made on the celestial sphere
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llustrative Analyses Planck Euclid LSST SKA

Scale-discretised wavelets on the sphere
Transforms

@ Spin scale-discretised wavelet transform is given by the projection onto each wavelet
(Wiaux, McEwen et al. 2008, McEwen et al. 2013, McEwen et al. 2015):

W (p) = (f, Ry s )

projection
@ Original function may be recovered exactly in practice from wavelet coefficients:
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Figure: Scale-discretised wavelets on the sphere.



llustrative Analyses Planck Euclid LSST SKA

Scale-discretised wavelets on the sphere
Fast algorithms and codes

@ Fast algorithms essential (McEwen, Leistedt et al. 2015, Leistedt, McEwen et al. 2013, McEwen et al. 2013,
Leistedt McEwen et al. 2007, Wiaux, McEwen & Vielva 2007, Wiaux et al. 2005, Wandelt & Gorski 2001, Risbo 1996)

FastCSWT code http://www.fastcswt.org

Fast directional continuous spherical wavelet transform algorithms
McEwen et al. (2007)

@ Fortran

@ Supports directional and steerable wavelets

S2DW code http://www.s2dw.org

Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

@ Fortran
@ Parallelised

@ Supports directional and steerable wavelets

@ Supports inversion
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llustrative Analyses Planck Euclid LSST SKA

Scale-discretised wavelets on the sphere
Fast algorithms and codes

S2LET code http://www.s2let.org

S2LET: Fast wavelet analysis on the sphere
McEwen, Leistedt, Bittner, Peiris & Wiaux (2015), Leistedt, McEwen, et al. (2012)

@ C, Matlab, IDL, Python
Supports directional and steerable wavelets, ridgelets and curvelets

Supports inversion

]
(]
@ Supports spin
("]

Faster algorithms

SO3 code http://www.sothree.org

SO3: Fast Wigner transforms on the rotation group
McEwen, Bittner, Leistedt, Peiris & Wiaux (2015)

@ C, Matlab, Python

@ Fast and exact Fourier transforms on the rotation group SO(3)
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llustrative Analyses Planck Euclid LSST SKA

Planck component separation
SILC

@ SILC: Blind Planck component separation via Scale-discretised,
directional wavelet Internal Linear Combination (Rogers, Peiris, Leistedt,
McEwen & Pontzen 2016)
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llustrative Analyses Planck Euclid LSST SKA

Planck component separation
SILC

@ SILC (R1) maps available for download: http://www.silc—cmb.org
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http://www.silc-cmb.org

llustrative Analyses Planck Euclid LSST SKA

E/B separation
Exploiting scale-discretised wavelets

@ E/B separation with spin directional wavelets for CMB polarisation and

cosmic shear (Leistedt, McEwen, Bittner & Peiris, in prep.)

Algorithm to recover E/B signals using scale-discretised wavelets

@ Compute spin wavelet transform of Q + iU:
Spin wavelet transform

@+i)w) —e0— Wéqiiu(ﬂ)

@ Account for mask in harmonic and spatial domains simultaneously:

5 Mitigate mask 5
"/ ~
Worivle) ——  Whiw(p)

0+iU O+iU
© Construct E/B maps:
o o0 Inverse scalar wavelet transform ~ _
y = — . -
(a) We¥ (p) = —Re[ W2}, (0)] — E(w)
o 0 Inverse scalar wavelet transform ~ _
(b) WB (p) = —Im [WQJriU(P)] T) B(w)

Boris Leistedt
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E/B separation
Preliminary results

Mean of B maps Mean of B maps
reconstructed using harmonics reconstructed using wavelets
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Std dev of B maps
reconstructed using harmonics

Std dev of B maps
reconstructed using wavelets
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LSS on the 3D ball

Credit: SDSS
«CO» «Fr « DA
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A EIEl) LSST S
Fourier-LAGuerre wavelets (flaglets) on the ball

@ Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet
(Leistedt & McEwen 2012):

‘ W () = (o, Torpy s %) ’: /133 Er f(0) (T ) 9 ) (1)

projection

@ Original function may be recovered exactly in practice from wavelet coefficients:
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Fourier-LAGuerre wavelets (flaglets) on the ball

3D with zz slices slice z =0 slice z =0 half sphere r = R/2 half Spheﬁw‘ =R/2 half-sphere == Ré%
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3D weak lensing

@ 3D weak lensing with spin wavelets on the ball (Leistedt, McEwen, Kitching, Peiris 2015).

@ Wavelet transform of 3D cosmic shear:

i y
‘ sz;ll (nrr) = (27 QZ\IJU)(nv r)

@ Wavelet covariance:

. s
‘ T (myn! v, ') = (W2 (n,r) WY R )

compute from data

@ Theory wavelet covariance:

o 2 Ny )2 ; .
Y mon ry ) = 72%/ dkk2/ KK CPP (k, k') Po(n - n') MY (k1) o1 " (K1)
™ R+ R+
£

compute from theory

@ Simultaneous spatial and scale representation (can handle complicated sky coverage and
filter unreliable harmonic modes).
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Planck Euclid LSST SKA

lllustrative Analyses

Photometric supernova classification
Machine learning

@ Photometric supernova classification by machine learning (Lochner,
McEwen, Peiris & Lahav, in prep.)

@ Go beyond single techniques to study classes.

@ Understand physical requirements (e.g. representative training, redshift). A 4
Michelle

Lochner

DES SN002166, z-band

Objoct: DES_SN040299.DAT, 2037, Type:1
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Photometric supernova classification
Importance of representative training data

AUC
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Photometric supernova classification
Importance of redshift

AUC
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Planck Euclid  LSST SKA
Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

=




A Bl LSS S6
Compressive sensing

@ Developed by Candes et al. 2006 and Donoho 2006 (and others).
@ Although many underlying ideas around for a long time.
@ Exploits the sparsity of natural signals.

@ Active area of research with many new developments.



llustrative Analyses Planck Euclid LSST SKA

SARA for radio interferometric imaging
Algorithm

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[¥,¥...,P,

V4

thus ¥ € RV*P with D = gN.

@ We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
=- concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

‘min |WU'E||; subjectto |y —®¥<e and >0,
XERN

where W € RP*? is a diagonal matrix with positive weights.

@ Solve a sequence of reweighted ¢; problems using the solution of the previous
problem as the inverse weights — approximate the ¢, problem.



llustrative Analyses Planck Euclid LSST SKA

SARA for radio interferometric imaging
Results on simulations

(a) Original (b) “CLEAN” (SNR=16.67 dB) (c) “MS-CLEAN” (SNR=17.87 dB)



llustrative Analyses Planck Euclid LSST SKA

SARA for radio interferometric imaging
Results on simulations

(d) BPDb8 (SNR=24.53 dB) (€) TV (SNR=26.47 dB) (f) SARA (SNR=29.08 dB)
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Supporting continuous visibilities
Results on simulations

(a) Coverage (b) M31 (ground truth)

Figure: Reconstructed images from continuous visibilities.
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB)

Figure: Reconstructed images from continuous visibilities.
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB) (d) “MS-CLEAN” (SNR= 11.1dB)

Figure: Reconstructed images from continuous visibilities.
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB) (d) “MS-CLEAN” (SNR= 11.1dB) (e) SARA (SNR= 13.4dB)

Figure: Reconstructed images from continuous visibilities.



Planck Euclid  LSST SKA
Distributed algorithms and codes

@ Distributed storage and computation (Onose et al. 2016) by divide-and-conquer and
sub-sampling techniques

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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Concluding remarks

@ Increasingly inter-disciplinary, drawing on statistics, applied mathematics, computer
science, information engineernig, . ..

@ Increasingly intra-disciplinary (e.g. Planck, Euclid, LSST, SKA, ...)

@ Many methodological synergies
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Concluding remarks

How can we exploit synergies?

@ Open (unencumbered) data and open code

@ Develop best practices (e.g. code development, general codes, reproducible/replicable
research, blinded analysis)

Explore HPC synergies (e.g. Dirac, Archer, Hartree, Google, Amazon, ...)
Develop appropriate career progression routes
Go beyond individual techniques to understand properties of classes of approach

Develop common language

© © 06 6 ©

Promote inter- and intra-disciplinary collaboration and communication,
e.g. Alan Turing Institute (ATl), workshops (e.g. BASP conference), Hackathons, ...
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