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What is big-data?

The nVs (originally 3Vs, then 6Vs, then 10Vs, ...):
Volume: many bytes (e.g. typically peta, exabytes)

Variety: structural heterogeneity (e.g. sub-populations, variety of sources)

Velocity: rate of generation and analysis




What is big-data?

The nVs (originally 3Vs, then 6Vs, then 10Vs, ...):
Volume: many bytes (e.g. typically peta, exabytes)

Variety: structural heterogeneity (e.g. sub-populations, variety of sources)

Velocity: rate of generation and analysis

Veracity: unreliability in sources
Variability: variation in data flow rate

@A Value: low value density




What is big-data in astronomy and astrophysics?

e Big machines
> experiments, physical hardware, computing

* Big theory and simulations for forward modelling

» cosmological evolution of linear perturbations, N-body simulations,
non-linear scales (astrophysics + cosmology), radiative transfer, semi-numerical methods

e Big parameter space
e Big algorithms
e Big collaborations

e Big engagement
> e.g. outreach, industry



What is big-data in astronomy and astrophysics?

Wide and deep data and observations



Challenges of big-data

A. Gandomi, M. Haider / International Journal of Information Management 35 (2015) 137-144
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Fig. 3. Processes for extracting insights from big data.

Computational challenges:
e Data too big (to hold in memory)
e Access and analysis too slow (unfeasible)

e Too much power/energy required



Challenges of big-data

Analysis challenges (Fan et al. 2014):

Heterogeneity, e.g. sub-populations, different data sources, tension between data
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Challenges of big-data

Analysis challenges (Fan et al. 2014):
Heterogeneity, e.g. sub-populations, different data sources, tension between data
Error accumulation, e.g. high-dimensional parameter spaces, bias
Spurious correlations, e.g. correlation vs causation, data dredging

A Incident endogeneity, e.g. chance correlation between signal of interest and error



Analysing big-data

Generic approaches to analysing big-data (Wang et al. 2015):
e Subsample
e Divide-and-conquer

e Stream processing



Analysing big-data

Generic approaches to analysing big-data (Wang et al. 2015):
e Subsample
e Divide-and-conquer

e Stream processing

Additional approaches in astronomy and astrophysics:
o Exploit structure (geometry, symmetry, physics)
e Modelling:
» Model-based consolidatory science

> Model-agnostic exploratory science

e Approximation



Analysing big-data

Examples of specific methods:

Bayesian analysis

MCMC sampling

Hierarchical probabilistic (Bayesian) models
Variable selection

Experimental design

Machine learning

Optimisation

Wavelets

Sparsity

Compressed sensing

= Astrostatistics and Astroinformatics

Jason McEwen
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ESA Planck satellite

Planck

Credit: Planck
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Planck

Observations made on the celestial sphere
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Planck

Observations of the cosmic microwave background (CMB)

Credit: WMAP
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llustrative Analyses Planck Euclid LSST SKA

Scale-discretised wavelets on the sphere
Transforms

e Spin scale-discretised wavelet transform is given by the projection onto each wavelet
(Wiaux, McEwen et al. 2008, McEwen et al. 2013, McEwen et al. 2015):

W (p) = (f, Ry s )

projection
o Original function may be recovered exactly in practice from wavelet coefficients:

- /Sz dQ(w)f (W) (Rp s ¥)* (w) -

/ do(p)W*™ (p)(Rp W) (w) . ’
S0(3)

o wavelet contribution
finite sum

(@)j=4 (b)j=3 (©Jj=2

Figure: Scale-discretised wavelets on the sphere.



llustrative Analyses Planck Euclid LSST SKA

Scale-discretised wavelets on the sphere
Fast algorithms and codes

o Fast algorithms essential (McEwen, Leistedt et al. 2015, Leistedt, McEwen et al. 2013, McEwen et al. 2013,
Leistedt McEwen et al. 2007, Wiaux, McEwen & Vielva 2007, Wiaux et al. 2005, Wandelt & Gorski 2001, Risbo 1996)

FastCSWT code http://www.fastcswt.org

Fast directional continuous spherical wavelet transform algorithms
McEwen et al. (2007)

® Fortran

® Supports directional and steerable wavelets

S2DW code http://www.s2dw.org

Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

® Fortran
® Parallelised

® Supports directional and steerable wavelets

® Supports inversion



http://www.fastcswt.org
http://www.s2dw.org

llustrative Analyses Planck Euclid LSST SKA

Scale-discretised wavelets on the sphere
Fast algorithms and codes

S2LET code http://www.s2let.org

S2LET: Fast wavelet analysis on the sphere
McEwen, Leistedt, Bittner, Peiris & Wiaux (2015), Leistedt, McEwen, et al. (2012)

® C, Matlab, IDL, Python
® Supports directional and steerable wavelets, ridgelets and curvelets

® Supports inversion

® Supports spin

® Faster algorithms

SO3 code http://www.sothree.org

SO3: Fast Wigner transforms on the rotation group
McEwen, Bittner, Leistedt, Peiris & Wiaux (2015)

® C, Matlab, Python

® Fast and exact Fourier transforms on the rotation group SO(3)
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Planck component separation

Planck

217 GHz

545 GHz

857 GHz
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llustrative Analyses Planck Euclid LSST SKA

Planck component separation
SILC

o SILC: Blind Planck component separation via Scale-discretised,
directional wavelet Internal Linear Combination (Rogers, Peiris, Leistedt,
McEwen & Pontzen 2016)

q4d 9.
{"‘l} Keir Rogers
PR
\ / “.‘ »~
Harmonic
Tegmark et al. (2003)

Spatial
WMAP Collab. (2003)

l + Morphological

NILC: Delabrouille et al. (2009)
SILC: Rogers et al. (2016)
Wang et al. (2015)




llustrative Analyses Planck Euclid LSST SKA

Planck component separation
SILC

e SILC (R1) maps available for download: http://www.silc-cmb.org
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http://www.silc-cmb.org

PlanckEucid  LSST SKA
Bianchi VII, cosmologies

Test fundamental assumptions on which modern cosmology is based, e.g. isotropy.

Relax assumptions about the global structure of spacetime by allowing anisotropy about
each point in the universe, i.e. rotation and shear.

* Yields more general solutions to Einstein’s field equations — Bianchi cosmologies.

e Induces a characteristic subdominant, deterministic signature in the CMB, which is
embedded in the usual stochastic anisotropies (Collins & Hawking 1973, Barrow et al. 1985).

Q

Figure: Bianchi CMB contribution.
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llustrative Analyses Planck Euclid LSST SKA

Bianchi VII, cosmologies
Simulations

Figure: Simulated CMB contributions in Bianchi VII, cosmologies for varying parameters.

Jason McEwen Big-Data in Astronomy and Astrophysics




Big-Data lllustrative Analyses Concluding Remarks Planck Euclid LSST SKA

Bianchi VII, cosmologies
Bayesian analysis

e Apply Bayesian analysis of McEwen et al. (2013) to Planck data (previously WMAP).

e Likelihood given by

1 —x*(©c,08)/2
P(d\@g,@c)(xie[ C(6c B)/],
[X(©c)|

where

X*(6c,©8) = [d —b(©)] "X~ (Oc) [d — b(O8)] . ’

e Compute the Bayesian evidence to determine preferred model:

E:P(d|M):/d@P(d|@,M)P(®|M). ’

e Use MultiNest to compute the posteriors and evidences via nested sampling
(Feroz & Hobson 2008, Feroz et al. 2009).



llustrative Analyses Planck Euclid LSST SKA

Bianchi VII, cosmologies
Planck component-separated data

-500. I I +500.

Figure: Planck 2013 sMICA component-separated data.



llustrative Analyses Planck Euclid LSST SKA

Bianchi VII, cosmologies
Best-fit Bianchi component (flat-decoupled-Bianchi model)
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Figure: Best-fit template of flat-decoupled-Bianchi VII, model.



llustrative Analyses Planck Euclid LSST SKA

Bianchi VII, cosmologies
Planck results

BUT parameter estimates are not consistent with concordance cosmology.

o Follow up with Planck 2015 polarisation data, rules our flat-Bianchi-decoupled model.

e Find no evidence for Bianchi VI, cosmologies and constrain vorticity to
(Planck Collaboration XVIII 2015):

(w/H)o < 7.6 x 10710

95% confidence level
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ESA Euclid satellite

Euclid

Credit: Euclid

«O>» «Fr « > < » Q>
Jason McEwen Big-Data in Astr and Astrophysics



llustrative Analyses Planck Euclid LSST SKA

Euclid sky coverage
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llustrative Analyses Planck Euclid LSST SKA

Euclid sky coverage
2 weeks
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llustrative Analyses Planck Euclid LSST SKA

Euclid sky coverage
6 months
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llustrative Analyses Planck Euclid LSST SKA

Euclid sky coverage
1 year
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Euclid sky coverage
5 years
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Galaxies on the 3D ball

Credit: SDSS
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A EIEl) LSST S
Fourier-LAGuerre wavelets (flaglets) on the ball

o Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet
(Leistedt & McEwen 2012):

‘ W () = (o, Torpy s %) ’: /133 Er f(0) (T ) 9 ) (1)

projection

« Original function may be recovered exactly in practice from wavelet coefficients:

NOEIDY

ii

/ de(p) / & W (1, p) (T py s ) ()
S0(3) R+

- wavelet contribution
finite sum



llustrative Analyses Planck Euclid LSST SKA

Fourier-LAGuerre wavelets (flaglets) on the ball

i
J
i
J
i
J
i
J
3D with zz slices slice z =0 slice z = 0 half sphere r = R/2 _ half sphere;r = /2. halEsphere r= R/2
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3D weak gravitational lensing

Euclid

galaxy

galaxy cluster

lensed galaxy images

distorted light-rays

Credit: CFHTLenS
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A EIEl) LSST S
3D weak gravitational lensing

e 3D weak lensing with spin wavelets on the ball (Leistedt, McEwen, Kitching,
Peiris 2015).

e Wavelet transform of 3D cosmic shear:

Boris Leistedt

‘ w2y (n,r) = (27 © 299) (n, )

e Wavelet covariance:

. s
' (myn! v,y = (W2 (n,r) W2 *( "))

compute from data

e Theory wavelet covariance:

o 2 Ny )2 . e
A wn iy = 235 % dkkz/ KK CPP (k, k') Po(n - n') o HE (K, r) S HYT (K1)
U Rt R+

compute from theory

e Simultaneous spatial and scale representation (can handle complicated sky
coverage and filter unreliable harmonic modes).
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Large Synoptic Survey Telescope (LSST)

Credit: LSST
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Supernova
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S gk

Credit: SpaceTelescope.org
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Planck Euclid LSST SKA

lllustrative Analyses

Photometric supernova classification
Machine learning

o Photometric supernova classification by machine learning (Lochner,
McEwen, Peiris & Lahav, in prep.)

o Go beyond single techniques to study classes.

o Understand physical requirements (e.g. representative training, redshift). A 4
Michelle

Lochner

DES SN002166, z-band

Objoct: DES_SN040299.DAT, 2037, Type:1
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Figure: Feature selection classes (in order of increasing model independence)
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llustrative Analyses Planck Euclid LSST SKA

Photometric supernova classification
Importance of representative training data

AUC

s — SALT2
’ — Model 1
0> del
— Representative — Model 2
- - Non-representative —  Wavelets
0.4
nb knn neural_network  svm boost_forest

Algorithm
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Photometric supernova classification
Importance of redshift

AUC

— SALT2
— Model 1
0.5
— Redshift — Model 2
- - No redshift — Wavelets
0.4
nb knn neural_network  svm boost_forest
Algorithm
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Square Kilometre Array (SKA)

Credit: SKA
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Big-Data lllustrative Analyses

SKA sites
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The SKA poses a considerable big-data challenge

In excess of 1 Exabyte of raw data
in a single day - more than the
entire daily internet traffic

Square Kilometre Array

€15b ﬁrg;; billion global science

" Astronomers and engineers
w from mare than 70 institutes
in 20 countries

3000 dishes, each 15m wide

Automated data
classification = faster
with fewer errors

Guided search = easier
access for scientists
and non-scientists alike

-

Frees researchers to
be more productive
and creative

@ Using enough optica fibre to HHHHH
wrap twice around the Earth
IBM A prototype software
h ata to fill over |nformam_on architecture to manage
11,000,000 A combined collecting area of 5 million 64GB iPods Intensive the megadata
me about one square kilometre every day Framework generated by SKA
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The SKA poses a considerable big-data challenge

Astronomical Data Delu.ge

In excess of 1 Exabyte of raw data
in a single day - more than the
entire daily internet traffic

-y

Square Kilometre Array

€15b ﬁrg;; billion global science

Astronomers and engine
'S from more than 70 inst
in 20 countries

) 3000 dishes, each 15m wide

Automated data
classification = faster
with fewer errors

Guided search = easier
access for scientists
and non-scientists alike
Frees researchers to
be more productive
and creative

@ Using enough optical fibre to HHHHH
wrap twice around the Earth
IBM A prototype software
data to fill over Information architecture to manage
11,000,000 A combined collecting area of 15 4GB iPods Intensive the megadata
me about one square kilometre every day Framework generated by SKA




Planck Euclid  LSST SKA
Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

=




A Bl LSS S6
Compressive sensing

Developed by Candes et al. 2006 and Donoho 2006 (and others).
o Although many underlying ideas around for a long time.

o Exploits the sparsity of natural signals.

o Next evolution of wavelet analysis.

e Acquisition versus imaging.

(a) Emmanuel Candes (b) David Donoho



Planck Euclid  LSST SKA
Radio interferometric inverse problem

o Consider the ill-posed inverse problem of radio interferometric imaging:

(o)

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.
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o Consider the ill-posed inverse problem of radio interferometric imaging:

).

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.

e Measurement operator| ® = MF CA | may incorporate:

> primary beam A of the telescope;
> w-modulation modulation C;
» Fourier transform F;

» masking M which encodes the incomplete measurements taken by the interferometer.



Planck Euclid  LSST SKA
Radio interferometric inverse problem

e Consider the ill-posed inverse problem of radio interferometric imaging:

).

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and = is instrumental noise.

e Measurement operator [ ® = MF CA | may incorporate:

> primary beam A of the telescope;
> w-modulation modulation C;
» Fourier transform F;

» masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.




A Bl LSS S6
Interferometric imaging with compressed sensing

o Solve the interferometric imaging problem

y=dx+n with &=MFCA |,

o Leverage ideas from compressive sensing (Donoho, Candes ) by applying a prior on
sparsity of the signal in a sparsifying dictionary .



A Bl LSS S6
Interferometric imaging with compressed sensing

e Solve the interferometric imaging problem

y=dx+n with &=MFCA |,

o Leverage ideas from compressive sensing (Donoho, Candes ) by applying a prior on
sparsity of the signal in a sparsifying dictionary .

e Basis Pursuit (BP) denoising problem

‘ o* — argminfja||; such that |ly — ®Tal, < e,
(87

BPDN

where the image is synthesised by x* = Va*.



llustrative Analyses Planck Euclid LSST SKA

SARA for radio interferometric imaging
Algorithm

o Sparsity averaging reweighted analysis (SARA) for Rl imaging
(Carrillo, McEwen & Wiaux 2012)

e Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

1
U= —[¥,¥...,P,

V4

thus ¥ € RV*P with D = gN.

e We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
=- concatenation of 9 bases

o Promote average sparsity by solving the reweighted ¢, analysis problem:

‘min |WU'E||; subjectto |y —®¥<e and >0,
XERN

where W € RP*? is a diagonal matrix with positive weights.

e Solve a sequence of reweighted ¢, problems using the solution of the previous
problem as the inverse weights — approximate the ¢, problem.



llustrative Analyses Planck Euclid LSST SKA

SARA for radio interferometric imaging
Results on simulations

(a) Original (b) “CLEAN” (SNR=16.67 dB) (c) “MS-CLEAN” (SNR=17.87 dB)
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SARA for radio interferometric imaging
Results on simulations

(d) BPDb8 (SNR=24.53 dB) (€) TV (SNR=26.47 dB) (f) SARA (SNR=29.08 dB)



Big-Data lllustrative Analyses Concluding Remarks Planck Euclid LSST SKA

Supporting continuous visibilities
Results on simulations

(a) Coverage (b) M31 (ground truth)

Figure: Reconstructed images from continuous visibilities.



Big-Data lllustrative Analyses Concluding Remarks Planck Euclid LSST SKA

Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB)

Figure: Reconstructed images from continuous visibilities.
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB) (d) “MS-CLEAN” (SNR= 11.1dB)

Figure: Reconstructed images from continuous visibilities.
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Supporting continuous visibilities
Results on simulations

(b) M31 (ground truth)

(c) “CLEAN” (SNR= 8.2dB) (d) “MS-CLEAN” (SNR= 11.1dB) (e) SARA (SNR= 13.4dB)

Figure: Reconstructed images from continuous visibilities.



Planck Euclid  LSST SKA
Distributed algorithms and codes

o Distributed storage and computation (Onose et al. 2016) by divide-and-conquer and
sub-sampling techniques

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.



http://basp-group.github.io/sopt/
http://basp-group.github.io/purify/

Concluding remarks

e Increasingly inter-disciplinary, drawing on statistics, applied mathematics, computer
science, information engineering, . ..

e Increasingly intra-disciplinary (e.g. Planck, Euclid, LSST, SKA, ...)

o Many methodological synergies



Concluding remarks

How can we exploit synergies?

Open (unencumbered) data and open code

Develop best practices (e.g. code development, general codes, reproducible/replicable
research, blinded analysis)

Explore HPC synergies (e.g. Dirac, Archer, Hartree, Google, Amazon, ...)
Go beyond individual techniques to understand properties of classes of approach
Develop common language

B Promote inter- and intra-disciplinary collaboration and communication,
e.g. Alan Turing Institute (ATI), workshops (e.g. BASP conference), Hackathons, ...
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