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1st Pillar: 
Experimental

2nd Pillar: 
Theoretical

3rd Pillar: 
Simulation

4th Pillar: 
Data-Driven

Pillars of science
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Modelling & simulation account for ~70% of
high-performance computing (HPC) usage
Data analysis accounts for ~30%

Simulation & Modelling
70%

Data Analysis
30%
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Computational cost of simulation
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CMIP6: Coupled Model Intercomparison Project 6
40,000 years of climate simulations
≥1 billion core hours
40PB of data 
Carbon footprint of 1692t CO  equivalent (Acosta et al. 2024)2

        ≈ 6.2 million car miles ≈ driving around Earth 250x
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Computational cost of simulation: climate simulation example

Still not enought!
Need higher resolution 

        (currently ~1°≈100 km but require 0.01°≈1 km; Palmer 2014)
Too few emsembles for robust scenario analysis (uncertainties)
Too few models (combinatorial explosion of parameters/forcings)



But doesn’t AI itself require
huge computational costs?
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Can we use AI to alleviate
the computation cost of

simulating physical systems?

AI to the rescue?



Computational costs of training large AI models
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Large AI models

Large vs small AI models

Costly (compute, energy, carbon footprint)
General purpose

Small AI models

Cheap (compute, energy, carbon footprint)
Specialised



Project t0: small language models
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RAG-augmented reasoning with lean
language models (Chan et al. 2025)

Distillation
Fine-tuning
Reasoning with budget forcing
RAG (retrieval-augmented generation)

Blog: Why we still need small language models

Frontier performance, without frontier compute
Compute-constrained environments
Privacy-sensitive environments

https://arxiv.org/abs/2508.11386


Outline

1. Traditional scientific inference for physical systems

2. Accelerated scientific inference for physical systems
Emulation
Programming frameworks
Gradient-based MCMC sampling
Decoupled Bayesian model comparison

3. Cosmological case studies
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Traditional scientific inference 
for physical systems
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Physical Simulator

Observational Data

Bayesian Inference
(coupled parameter estimation

& model comparison)

Traditional Bayesian inference for physical systems
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Parameters

Instrument

MCMC samples

Evidence 



Bayesian inference: parameter estimation
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Bayesian inference: model comparison
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Nested sampling (Skilling 2006)
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Accelerated scientific inference 
for physical systems
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1st Pillar: 
AI

Emulation

2nd Pillar: 
Programming
Frameworks

3rd Pillar: 
Gradient-Based
MCMC Sampling

4th Pillar: 
Decoupled Model

Comparison

Pillars of accelerated scientific inference
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1st Pillar: 
AI

Emulation

2nd Pillar: 
Programming
Frameworks

3rd Pillar: 
Gradient-Based
MCMC Sampling

4th Pillar: 
Decoupled Model

Comparison

Pillars of accelerated scientific inference
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Highly computationally costly
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Simulate physical laws

Simulation vs emulation

Accurate representation of physical model

Emulate by training an AI model
to micmic physical laws

Computationally efficient (once trained)
Learning data-driven model has potential to
be more accurate than physical model

Approximate representation of physical model



AutoEmulate: general purpose emulation package

https://www.autoemulate.com 20Jason McEwen

https://www.autoemulate.com/


AutoEmulate: more than a learned emulator
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Sensitivity analysis History matching Simulator in the loop Bayesian calibration



AutoEmulate team
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Emulation for cosmology
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https://github.com/alessiospuriomancini/cosmopower

https://github.com/dpiras/cosmopower-jax

https://github.com/alessiospuriomancini/cosmopower
https://github.com/dpiras/cosmopower-jax


1st Pillar: 
AI

Emulation
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Programming
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Pillars of accelerated scientific inference
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Programming frameworks
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Automatic differentiation GPU acceleration Probabilistic programming

NumPyroXLAJAX



1st Pillar: 
AI

Emulation

2nd Pillar: 
Programming
Frameworks

3rd Pillar: 
Gradient-Based
MCMC Sampling

4th Pillar: 
Decoupled Model

Comparison

Pillars of accelerated scientific inference
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Consider Hamiltonian Monte Carlo (HMC), where samples θ  
augmented with momentum p. Hamiltonian given by 

                                                                  ,
where M is the mass matrix.  Evolution given by dynamics

                          ,                         .

Gradient-accelerated MCMC sampling
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Exploit gradient information to scale MCMC efficiently to
higher dimensional settings (e.g. Hamiltonian or Langevin
dynamics).

Consider No U-Turn (NUTS) algorithm.
Compute gradients efficiently by automatic differentiation.
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Pillars of accelerated scientific inference
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The problem of nested sampling for Bayesian model comparison
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Original harmonic mean estimator
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Importance sampling interpretation of harmonic mean estimator
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Re-targeted harmonic mean estimator
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How set importance sampling target distribution?
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Learned harmonic mean estimator
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Constraining tails of target approach 1: bespoke optimisation problem

35Jason McEwen



Constraining tails of target approach 2: normalizing flows
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(Polanska et al. McEwen 2024)



Harmonic code
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Physical Simulator

Observational Data

Bayesian Inference
(coupled parameter estimation

& model comparison)

Traditional Bayesian inference for physical systems

Parameters

Instrument

MCMC samples

Evidence 

38Jason McEwen



Observational Data

Accelerated
parameter

estimation 

Accelerated Bayesian inference for physical systems
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Gradients

Instrument

Emulator

MCMC samples Evidence Decoupled
model

comparison

Parameters

GPU GPU

GPU



Cosmological case studies
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Towards a fundamental understanding of our Universe
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Atacama Cosmology Telescope (ACT) analysis
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(Only Pillar 4)



Euclid (Stage IV survey)-like analysis
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Simulating training data = 1 CPU day   |   Training = 1 GPU hour   |   Amortized over all analyses



44Jason McEwen monthly UK household electricity weekly UK car usageLegend:

Traditional approach Accelerated approach (ours)

Energy ≈ 4,000 kWh ≈ 19 household electricity months

Carbon ≈ 0.8t CO  ≈ 3,000 car miles ≈ 22 car weeks2

Energy ≈ 187 kWh ≈ 1 household electricity month

Carbon ≈ 0.04t CO  ≈ 143 car miles ≈ 1 car week2

Euclid (Stage IV survey)-like analysis
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Euclid-Rubin-Roman (3x Stage IV survey)-like analysis

Same trained emulator as used previously
(Simulating training data = 1 CPU day   |   Training = 1 GPU hour   |   Amortized over all analyses)
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Euclid-Rubin-Roman (3x Stage IV survey)-like analysis

monthly UK household electricity weekly UK car usageLegend:

Traditional approach Accelerated approach (ours)

Energy ≈ 72,000 kWh ≈ 338 household electricity months

Carbon ≈ 14.8t CO  ≈ 54,000 car miles ≈ 401 car weeks2

Energy ≈ 1,500 kWh ≈ 7 household electricity months

Carbon ≈ 0.3t CO  ≈ 1,140 car miles ≈ 9 car weeks2



1st Pillar: 
AI

Emulation

2nd Pillar: 
Programming
Frameworks

3rd Pillar: 
Gradient-Based
MCMC Sampling

4th Pillar: 
Decoupled Model

Comparison

Accelerated scientific inference for physical systems

Dramatic reductions in compute cost, energy usage and carbon emissions... for every analysis.

https://www.autoemulate.com https://github.com/astro-informatics/harmonic
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https://www.autoemulate.com/
https://github.com/astro-informatics/harmonic

