The Alan Turing Institute

Greener Science with AI: Sustainable Inference of Physical Systems

Jason McEwen
Mission Director for Fundamental Research

Centre for Intelligent Sustainable Computing Symposium Queen's University Belfast, August 2025

Spatial and temporal scales of physical systems

Pillars of science

2nd Pillar: Theoretical

3rd Pillar: Simulation

4th Pillar: Data-Driven

~1500

~1700

~1950

~2010

.

Computational cost of simulation

- Modelling & simulation account for ~70% of high-performance computing (HPC) usage
- Data analysis accounts for ~30%

Computational cost of simulation: climate simulation example

CMIP6: Coupled Model Intercomparison Project 6

- 40,000 years of climate simulations
- ≥1 billion core hours
- 40PB of data
- Carbon footprint of 1692t CO₂ equivalent (Acosta et al. 2024)
 - ≈ 6.2 million car miles ≈ driving around Earth 250x

Still not enought!

- Need higher resolution
 (currently ~1°≈100 km but require 0.01°≈1 km; Palmer 2014)
- Too few emsembles for robust scenario analysis (uncertainties)
- Too few models (combinatorial explosion of parameters/forcings)

Al to the rescue?

Can we use AI to alleviate the computation cost of simulating physical systems?

But doesn't AI itself require huge computational costs?

Computational costs of training large AI models

Amortized hardware and energy cost to train frontier AI models over time **FPOCH AI**

Large vs small AI models

Large AI models

- Costly (compute, energy, carbon footprint)
- General purpose

Small AI models

- Cheap (compute, energy, carbon footprint)
- Specialised

Project t0: small language models

RAG-augmented reasoning with lean language models (Chan et al. 2025)

- Distillation
- Fine-tuning
- Reasoning with budget forcing
- RAG (retrieval-augmented generation)
- Frontier performance, without frontier compute
- Compute-constrained environments
- Privacy-sensitive environments

Blog: Why we still need small language models

Outline

- 1. Traditional scientific inference for physical systems
- 2. Accelerated scientific inference for physical systems
 - Emulation
 - Programming frameworks
 - Gradient-based MCMC sampling
 - Decoupled Bayesian model comparison
- 3. Cosmological case studies

Traditional scientific inference for physical systems

Traditional Bayesian inference for physical systems

Bayesian inference: parameter estimation

Bayes' theorem

for parameters θ , model M and observed data x.

For **parameter estimation**, typically draw samples from the posterior by *Markov chain Monte Carlo (MCMC)* sampling.

Bayesian inference: model comparison

By Bayes' theorem for model M_i :

$$p(M_j | x) = \frac{p(x | M_j)p(M_j)}{\sum_j p(x | M_j)p(M_j)}.$$

For **model comparison**, consider posterior model odds:

$$\frac{p(M_1|x)}{p(M_2|x)} = \frac{p(x|M_1)}{p(x|M_2)} \times \frac{p(M_1)}{p(M_2)}.$$
posterior odds Bayes factor prior odds

Must compute the marginal likelihood (aka. Bayesian model evidence) given by the normalising constant

$$z = p(x \mid M) = \int d\theta \, \mathcal{L}(\theta) \, \pi(\theta)$$
.

→ Challenging computational problem.

Nested sampling (Skilling 2006)

Group the parameter space Ω into a series of **nested subspaces**: $\Omega_{L^*} = \{x \mid \mathcal{L}(x) \geq L^*\}$. Define the prior volume ξ within Ω_{L^*} by

$$\xi(L^*) = \int_{\Omega_{L^*}} \pi(x) dx.$$

Marginal likelihood can then be rewritten as

$$z=\int_0^1 \mathcal{L}(\xi) d\xi.$$

Require computational strategy to compute likelihood level-sets (iso-contours) L_i and corresponding prior volumes $0 < \xi_i \le 1$.

Crux: sample from the prior, subject to the likelihood level-set constraint, i.e. sample from the prior $\pi(x)$, such that $\mathcal{L}(x) > L^*$.

Nested subspaces

Reparameterised likelihood

Accelerated scientific inference for physical systems

Pillars of accelerated scientific inference

1st Pillar:
AI
Emulation

2nd Pillar:
Programming
Frameworks

3rd Pillar: Gradient-Based MCMC Sampling

Pillars of accelerated scientific inference

1st Pillar:
AI
Emulation

2nd Pillar: Programming Frameworks

3rd Pillar:
Gradient-Based
MCMC Sampling

4th Pillar:Decoupled ModelComparison

Simulation vs emulation

Simulate physical laws

- Accurate representation of physical model
- Highly computationally costly

Emulate by training an AI model to micmic physical laws

- Approximate representation of physical model
- Computationally efficient (once trained)
- Learning data-driven model has potential to be more accurate than physical model

AutoEmulate: general purpose emulation package

Users with Domain expertise

No Machine learning expertise in Emulation is necessary

Democratising the use of Al for accelerating simulations in various industries

AutoEmulate: more than a learned emulator

Sensitivity analysis

History matching

Simulator in the loop

Bayesian calibration

AutoEmulate team

Emulation for cosmology

https://github.com/alessiospuriomancini/cosmopower
https://github.com/dpiras/cosmopower-jax

Pillars of accelerated scientific inference

1st Pillar: AI Emulation

2nd Pillar:
Programming
Frameworks

3rd Pillar:
Gradient-Based
MCMC Sampling

4th Pillar: Decoupled Model Comparison

Programming frameworks

Automatic differentiation

GPU acceleration

Probabilistic programming

Pillars of accelerated scientific inference

1st Pillar: AI Emulation

2nd Pillar: Programming Frameworks

3rd Pillar:
Gradient-Based
MCMC Sampling

4th Pillar: Decoupled Model Comparison

Gradient-accelerated MCMC sampling

Exploit gradient information to scale MCMC efficiently to higher dimensional settings (e.g. Hamiltonian or Langevin dynamics).

Consider Hamiltonian Monte Carlo (HMC), where samples θ augmented with momentum p. Hamiltonian given by

$$H(heta,\mathrm{p}) = -\mathrm{log}p(heta|x) + rac{1}{2}\mathrm{p}^{\mathrm{T}}M^{-1}\mathrm{p}$$

where M is the mass matrix. Evolution given by dynamics

$$rac{\mathrm{d} heta}{\mathrm{d}t} = rac{\partial H}{\partial \mathrm{p}} \quad , \quad rac{\mathrm{d}\mathrm{p}}{\mathrm{d}t} = -rac{\partial H}{\partial heta} \ .$$

Consider No U-Turn (NUTS) algorithm.

Compute gradients efficiently by automatic differentiation.

Pillars of accelerated scientific inference

1st Pillar: AI Emulation

2nd Pillar: Programming Frameworks

3rd Pillar: Gradient-Based MCMC Sampling

The problem of nested sampling for Bayesian model comparison

Nested sampling (Skilling 2006) has been the method of choice for almost two decades!

Many highly effective nested sampling algorithms (for a review see Ashton et al. 2022).

However, nested sampling has a fundamental problem...

Nested sampling tightly couples sampling strategy to marginal likelihood calculation.

As the name suggests, **one must sample in a nested manner**.

- ▶ **Precludes** many alternative **accelerated sampling** strategies that scale to high-dimensions.
- Precludes use in many simulation-based inference (SBI) and variational inference (VI) settings, where one draws posterior samples directly.

29

Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

$$\rho = \mathbb{E}_{p(\theta \mid X)} \left[\frac{1}{\mathcal{L}(\theta)} \right] = \int d\theta \frac{1}{\mathcal{L}(\theta)} p(\theta \mid X) = \int d\theta \frac{1}{\mathcal{L}(\theta)} \frac{\mathcal{L}(\theta) \pi(\theta)}{Z} = \frac{1}{Z}$$

Original harmonic mean estimator (Newton & Raftery 1994)

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\mathcal{L}(\theta_i)}, \quad \theta_i \sim p(\theta \mid x)$$

Only requires posterior samples!

But can fail catastrophically! (Neal 1994)

Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

importance sampling

$$\rho = \int d\theta \frac{1}{\mathcal{L}(\theta)} p(\theta \mid x) = \frac{1}{z} \int d\theta \frac{\pi(\theta)}{p(\theta \mid x)} p(\theta \mid x) .$$

Importance sampling interpretation:

- \triangleright Importance sampling target distribution is prior $\pi(\theta)$.
- \triangleright Importance sampling density is posterior $p(\theta | x)$.

For importance sampling, want sampling density to have fatter tails than target.

Importance sampling failure mode when sampling density is posterior and target is prior.

Re-targeted harmonic mean estimator

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

$$\rho = \mathbb{E}_{p(\theta \mid X)} \left[\frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \right] = \frac{1}{Z}$$

Normalised distribution $\varphi(\theta)$ now plays the role of the importance sampling target \rightsquigarrow must **not** have fatter tails than posterior.

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \frac{\varphi(\theta_i)}{\mathcal{L}(\theta_i)\pi(\theta_i)} , \quad \theta_i \sim p(\theta \mid x)$$

 \rightsquigarrow How set importance sampling target distribution $\varphi(\theta)$?

How set importance sampling target distribution?

Variety of cases been considered:

- ▶ Multi-variate Gaussian (e.g. Chib 1995)
- ▶ Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target: (McEwen et al. 2021)

$$arphi^{ ext{optimal}}(heta) = rac{\mathcal{L}(heta)\pi(heta)}{ extstyle Z}$$
 .

But clearly **not feasible** since requires knowledge of the evidence z (recall the target must be normalised) \rightsquigarrow requires problem to have been solved already!

Learned harmonic mean estimator

Learn an approximation of the optimal target distribution:

$$arphi(heta) \overset{ ext{Al}}{\simeq} arphi^{ ext{optimal}}(heta) = rac{\mathcal{L}(heta)\pi(heta)}{ extstyle Z}$$
 .

- Approximation not required to be highly accurate.
- ▷ Critically, must not have fatter tails than posterior.

Constraining tails of target approach 1: bespoke optimisation problem

Fit density estimator by **minimising variance of resulting estimator**, with possible regularisation:

min
$$\hat{\sigma}^2 + \lambda R$$
 subject to $\hat{\rho} = \hat{\mu}_1$.

Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select density estimation model and hyperparameters.

Constraining tails of target approach 2: normalizing flows

- Flexible: no bespoke training; can vary T after training.
- Robust: only one hyperparameter T that does not require fine tuning.
- Scalable: flows scale to higher dimensions than classical density estimators.

(Polanska et al. McEwen 2024)

Harmonic code

Github: https://github.com/astro-informatics/harmonic

Docs: https://astro-informatics.github.io/harmonic

Traditional Bayesian inference for physical systems

Accelerated Bayesian inference for physical systems

Cosmological case studies

Towards a fundamental understanding of our Universe

Atacama Cosmology Telescope (ACT) analysis

Compare Λ CDM (Einstein's cosmological constant) vs w_0w_a CDM (dynamical dark energy) using learned harmonic mean (McEwen et al.2021) with ACT data (Aiola et al. 2020).

Atacama Cosmology Telescope (ACT)

CMB observations

7D vs 9D models:	∧CDM	w_0w_aCDM	log BF∧CDM-w ₀ w _a CDM
Nested sampling	-168.92 ± 0.35	-169.38 ± 0.24	0.46 ± 0.42
Learned harmonic mean	-168.87 ± 0.29	-169.32 ± 0.25	0.45 ± 0.38

 \rightsquigarrow Λ CDM mildly favoured \rightsquigarrow $3 \times$ acceleration (Only Pillar 4)

Euclid (Stage IV survey)-like analysis

Compare Λ CDM vs w_0w_a CDM leveraging 4 pillars of AI-acceleration with Euclid-like lensing and clustering simulations (Piras et al. 2024).

Euclid satellite

Observation field

37D vs 39D models:	$log(z_{\Lambda CDM})$	$\log(z_{w_0w_aCDM})$	log BF∧CDM-w ₀ w _a CDM	Total computation time
Classical	-107.03 ± 0.27	-107.81 ± 0.74	0.78 ± 0.79	8 months (48 CPUs)
AI-accelerated (ours)	40956.55 ± 0.06	40955.03 ± 0.04	1.53 ± 0.07	2 days (12 GPUs)

Simulating training data = 1 CPU day | Training = 1 GPU hour | Amortized over all analyses

Euclid (Stage IV survey)-like analysis

Traditional approach

Energy ≈ 4,000 kWh ≈ 19 household electricity months

Accelerated approach (ours)

Energy ≈ 187 kWh ≈ 1 household electricity month

Legend:

Carbon ≈ 0.8t CO₂ ≈ 3,000 car miles ≈ 22 car weeks

Carbon ≈ 0.04t CO₂ ≈ 143 car miles ≈ 1 car week

Euclid-Rubin-Roman (3x Stage IV survey)-like analysis

Extend to combined 3× Stage IV Survey-like lensing and clustering simulations (Piras *et al.* 2024).

Euclid satellite

Rubin observatory

Roman satellite

157D vs 159D models:	$\log(z_{\Lambda CDM})$	$\log(z_{w_0w_aCDM})$	log BF	Total computation time
Classical AI-accelerated (ours)	Unfeasible 406689.6 ^{+0.5} -0.3	Unfeasible 406687.7 ^{+0.5} -0.3	Unfeasible 1.9 ^{+0.7} -0.5	12 years projected (48 CPUs) 8 days (24 GPUs)

Same trained emulator as used previously

(Simulating training data = 1 CPU day | Training = 1 GPU hour | Amortized over all analyses)

Euclid-Rubin-Roman (3x Stage IV survey)-like analysis

Traditional approach

Legend:

Accelerated approach (ours)

Energy ≈ 1,500 kWh ≈ 7 household electricity months

Carbon \approx 0.3t CO₂ \approx 1,140 car miles \approx 9 car weeks

Accelerated scientific inference for physical systems

1st Pillar: AI Emulation

2nd Pillar: Programming Frameworks

https://github.com/astro-informatics/harmonic

Dramatic reductions in compute cost, energy usage and carbon emissions... for every analysis.