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Spatial and temporal scales of physical systems
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Pillars of science
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Computational cost of simulation
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e Modelling & simulation account for ~70% of
high-performance computing (HPC) usage

e Data analysis accounts for ~30%

Data Analysis
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Computational cost of simulation: climate simulation example

CMIP6: Coupled Model Intercomparison Project 6
e 40,000 years of climate simulations
e >1 billion core hours
e 40PB of data
 Carbon footprint of 1692t CO, equivalent (Acosta et al. 2024)
= 6.2 million car miles = driving around Earth 250x

Still not enought!
e Need higher resolution
(currently ~1°=100 km but require 0.01°=1 km; Palmer 2014)

« Too few emsembles for robust scenario analysis (uncertainties)
e Too few models (combinatorial explosion of parameters/forcings)
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Al to the rescue?

=

AR
Can we use Al to alleviate But doesn’t Al itself require
the computation cost of huge computational costs?

simulating physical systems?
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Computational costs of training large Al models
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Amortized hardware and energy cost to train frontier Al models over time % EPOCHAI
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Large vs small Al models
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Large Al models Small Al models
© Costly (compute, energy, carbon footprint) @ Cheap (compute, energy, carbon footprint)
® General purpose ® Specialised

Jason McEwen 8



The

Project t0: small language models  Alan Turing
RAG-augmented reasoning with lean R .
Training cc:aatt;a:+ : aD
language models (Chan et al. 2025) Syntrts queris o o+ 2
. . . ~2.000 reasoning traces : VvV
. Distillation tﬂl—> T —— — [ ] —— §2  Fineuning
o Fine—tuning Prg;;gto DeepSeek-R1 §
e Reasoning with budget forcing Toen & candition T t%lbistille:lor:;soning
RAG (retrieval ted tion) Simlerty (= (=
o retrieval-augmented generation g matching - [N dpossimy;re'?\,aml a
Knowledge base SR (gt(;%rr]se;artir:fg)a
@ Frontier performance, without frontier compute (1,000 docment

® Compute-constrained environments
@ Privacy-sensitive environments

Blog: Why we still need small language models
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https://arxiv.org/abs/2508.11386

1. for physical systems

2. for physical systems
o Emulation
o Programming frameworks
o Gradient-based MCMC sampling
o Decoupled Bayesian model comparison

3. Cosmological
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Traditional scientific inference
for physical systems



Traditional Bayesian inference for physical systems

Multipole moment, £
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Bayesian inference: parameter estimation

Bayes’ theorem

likelihood prior likelihood prior
p(x|6,M) p(6|M) £(0) =(0)
posterior p(x| M) | -
marginal likelihood marginal likelihood

for parameters 8, model M and observed data x.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Bayesian inference: model comparison

By Bayes’ theorem for model M;: For model comparison, consider posterior model
(x| M)p(M) odds:
PWX| M )PV
p(M; | X) = .
M= 5 b M)p(M) p(MX) _ pixIM)  p(My)

X

p(Mz|x)  p(x| M) p(M;)

posterior odds Bayes factor prior odds

Must compute the marginal likelihood (aka. Bayesian model evidence) given by the
normalising constant

7= p(x| M) :/d9£(9) ()
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Nested sampling (Skilling 2006)

Group the parameter space Q into a series of nested subspaces:
Q« = {x|L(x) > L*}. Define the prior volume £ within ;- by

£(L*) = /Q 7 (x)dx.

Feroz et al. ( 2013)

Marginal likelihood can then be rewritten as Nested subspaces

1
z:/O L(&)dE. L.

to compute likelihood level-sets
(iso-contours) L; and corresponding prior volumes 0 < & < 1.

Feroz et al. (2013)

Crux: sample from the prior, subject to the likelihood level-set Reparameterised
S : . likelihood
constraint, i.e. sample from the prior «(x), such that £(x) > L*.
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Accelerated scientific inference
for physical systems



Pillars of accelerated scientific inference
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Pillars of accelerated scientific inference

Jason McEwen
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Simulation vs emulation
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Simulate physical laws

@ Accurate representation of physical model
€© Highly computationally costly

Jason McEwen

Al

Emulate by training an Al model
to micmic physical laws

© Approximate representation of physical model
® Computationally efficient (once trained)

@ Learning data-driven model has potential to
be more accurate than physical model
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The

AutoEmulate: general purpose emulation package Alan Turing

Institute

Users with Domain expertise

No Machine learning
Q expertise in Emulation is

necessary

Democratising the use of Al

-M- for accelerating simulations
in various industries

Auto Emulate Ehi

Jason McEwen https://www.autoemulate.com 20



https://www.autoemulate.com/

AutoEmulate: more than a learned emulator

<o (=

Sensitivity analysis History matching Simulator in the loop Bayesian calibration
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Emulation for cosmology

EE

COSMOPOUWUER

https://github.com/alessiospuriomancini/cosmopower

https://github.com/dpiras/cosmopower-jax
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https://github.com/alessiospuriomancini/cosmopower
https://github.com/dpiras/cosmopower-jax

Pillars of accelerated scientific inference
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Programming frameworks

Automatic differentiation GPU acceleration Probabilistic programming

X. Pl |

XLA NumPyro
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Pillars of accelerated scientific inference

Jason McEwen
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Gradient-accelerated MCMC sampling

Exploit gradient information to scale MCMC efficiently to
higher dimensional settings (e.g. Hamiltonian or Langevin
dynamics).

Consider Hamiltonian Monte Carlo (HMC), where samples 6
augmented with momentum p. Hamiltonian given by

1 ~
H(6,p) = —logp(flz) + 5p M 'p

where M iIs the mass matrix. Evolution given by dynamics
dd¢ OH dp  O0H

dt op o, dt 06 .

Consider No U-Turn (NUTS) algorithm.
Compute gradients efficiently by automatic differentiation.
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Pillars of accelerated scientific inference
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The problem of nested sampling for Bayesian model comparison

Nested sampling (Skilling 2006) has been the method of choice for almost two decades!
Many highly effective nested sampling algorithms (for a review see Ashton et al. 2022).

However, nested sampling has a

Nested sampling tightly couples sampling strategy to marginal likelihood calculation.

As the name suggests, one must sample in a nested manner.

> Precludes many alternative accelerated sampling strategies that scale to high-dimensions.

> Precludes use in many simulation-based inference (SBI) and variational inference (VI)
settings, where one draws posterior samples directly.
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

B 0)m(6) 1

Original harmonic mean estimator (Newton & Raftery 1994)

N
s | " |

® Only requires posterior samples! €© But can fail catastrophically! (Neal 1994)
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Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

Importance sampling
7(6)
/deﬁ(e (0]x) = /d@p(9|xp(9|x) |

Importance sampling interpretation:

> Importance sampling target distribution is prior = (6).
> Importance sampling density is posterior p(é | x).

For importance sampling, want sampling density to have fatter tails than target.

when sampling density Is posterior and target is prior.
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Re-targeted harmonic mean estimator

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

_ Y
P=E010| £(0)n(0) | ~ 2

Normalised distribution ¢(8) now plays the role of the importance sampling target
~ must not have fatter tails than posterior.

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

0; ~ p(0|x)

I 9(8)
P=N — L(0;)m(0)) ’

=1
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How set importance sampling target distribution?

Variety of cases been considered:

> Multi-variate Gaussian (e.g. Chib 1995)
> Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target: (McEwen et al. 2021)

L(O)r(6)

(poptimal(g) _
Z

But clearly not feasible since requires knowledge of the evidence z (recall the target must
be normalised) ~
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Learned harmonic mean estimator

Learn an approximation of the optimal target distribution:

L©O)(8)
V4

(‘0(9) g (poptimal(e) _

> Approximation not required to be highly accurate.

> Critically, must not have fatter tails than posterior.
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Constraining tails of target approach 1: bespoke optimisation problem

Fit density estimator by minimising variance of resulting estimator, with possible

regularisation:
min 6° + AR subjectto p = 1.

Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select density estimation model and hyperparameters.
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Constraining tails of target approach 2: normalizing flows

Lower , Concentrate
temperature probability

20 ™ PO(ZO) R ™ Pk(zk)

& Flexible: no bespoke training; can vary T after training.
& Robust: only one hyperparameter T that does not require fine tuning.
® Scalable: flows scale to higher dimensions than classical density estimators.

(Polanska et al. McEwen 2024)
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Harmonic code

HARMONIC

harmonic is an open source, well tested and documented Python implementation of the learnt harmonic mean
estimator ( ) to compute the marginal likelihood (Bayesian evidence), required for Bayesian
model selection.

Github: https://github.com/astro-informatics/harmonic

Docs: https://astro-informatics.github.io/harmonic
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Traditional Bayesian inference for physical systems

Multipole moment, £
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Bayesian inference for physical systems

Multipole moment,
2 10 50 500 1000 1500 2000 2500

Observational Data

Temperature fluctuations [ j K2 ]
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Cosmological case studies



Towards a fundamental understanding of our Universe

What is the origin of structure?
How did luminous large-scale structure form?

What is the nature of dark energy and dark matter?
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Atacama Cosmology Telescope (ACT) analysis

Compare ACDM (Einstein’s cosmological constant) vs wyw,CDM (dynamical dark energy)
using learned harmonic mean (McEwen et al.2021) with ACT data (Aiola et al. 2020).

Atacama Cosmology CMB observations
Telescope (ACT)

7D vs 9D models: ACDM WoWqCDM log BFACDM_WOWGCDM
Nested sampling —168.92 £ 0.35 —169.38 £ 0.24 0.46 £+ 0.42
Learned harmonic mean —168.87 == 0.29 —169.32 £+ 0.25 0.45 4+ 0.38

~» ACDM mildly favoured ~» 3x acceleration (Only Pillar 4)
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Euclid (Stage IV survey)-like analysis

Compare ACDM vs wow,CDM leveraging 4 pillars
of Al-acceleration with Euclid-like lensing and
clustering simulations (Piras et al. 2024).

Euclid satellite Observation field
37D vs 39D models: Iog(ZACDM) Iog(ZWUWGCDM) |Og BFACDM-WOWOCDM Total com putation time
Classical —107.03 = 0.27 —107.81 4+ 0.74 0.78 £ 0.79 8 months (48 CPUs)
Al-accelerated (ours)  40956.55 + 0.06  40955.03 4 0.04 1.53 4 0.07 2 days (12 GPUs)

Simulating training data =1 CPU day | Training =1GPU hour | Amortized over all analyses
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Euclid (Stage IV survey)-like analysis

Traditional approach

AAAAAAAAAAAAAAAAAAN A

Energy = 4,000 kWh = 19 household electricity months Energy = 187 kWh = 1 household electricity month
e e ey e G e e G e e ey G e e G e ey e G ey G =)

Carbon = 0.8t CO, = 3,000 car miles = 22 car weeks Carbon = 0.04t CO, = 143 car miles = 1 car week
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Euclid-Rubin-Roman (3x Stage IV survey)-like analysis

Extend to combined 3x Stage IV
Survey-like lensing and clustering
simulations (Piras et al. 2024).

Euclid satellite  Rubin observatory Roman satellite
157D vs 159D models: log(Zacpm) log (Zy,w,com) log BF Total computation time
Classical Unfeasible Unfeasible Unfeasible 12 years projected (48 CPUSs)
Al-accelerated (ours) — 406689.6703  406687.7103 1.9197 8 days (24 GPUs)

Same trained emulator as used previously
(Simulating training data =1 CPU day | Training =1GPU hour | Amortized over all analyses)
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Traditional approach

7 household electricity months
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A monthly UK household electricity
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Accelerated scientific inference for physical systems
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https://www.autoemulate.com https://github.com/astro-informatics/harmonic

Dramatic reductions in compute cost, energy usage and carbon emissions... for every analysis.
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