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ABSTRACT

Scattering transforms are a new type of summary statistics recently developed for the study of highly non-Gaussian processes, which
have been shown to be very promising for astrophysical studies. In particular, they allow one to build generative models of com-
plex non-linear fields from a limited amount of data, and have also been used as the basis of new statistical component separation
algorithms. In the context of upcoming cosmological surveys, such as LiteBIRD for the cosmic microwave background polarization
or Rubin-LSST and Euclid for study of the large scale structures of the Universe, the extension of these tools to spherical data is
necessary. We develop scattering transforms on the sphere and focus on the construction of maximum-entropy generative models of
several astrophysical fields. We construct, from a single target field, generative models of homogeneous astrophysical and cosmolog-
ical fields, whose samples are quantitatively compared to the target fields using common statistics (power spectrum, pixel probability
density function and Minkowski functionals). Our sampled fields agree well with the target fields, both statistically and visually. These
generative models therefore open up a wide range of new applications for future astrophysical and cosmological studies; particularly
those for which very little simulated data is available. We make our code available to the community so that this work can be easily
reproduced and developed further. �

Key words. Physical data and processes, Methods: data analysis, Methods: statistical, Cosmology: Large-scale structure of Universe

1. Introduction

Scattering transforms are a recently developed class of summary
statistics for the study of non-Gaussian processes (Mallat 2012;
Bruna & Mallat 2013). These statistics, which are built from suc-
cessive wavelet convolutions and pointwise non-linearities such
as a modulus, are inspired by neural networks but do not require
any training step. Introduced recently in astrophysics (Allys et al.
2019, 2020), scattering transforms have since demonstrated their
ability to characterize highly non-Gaussian processes, for in-
stance for parameter estimation and classification tasks in fields
as varied as the interstellar medium (Regaldo-Saint Blancard
et al. 2020; Saydjari et al. 2021; Lei & Clark 2023), the large
scales structures of the Universe (Allys et al. 2020; Cheng et al.
2020; Cheng & Ménard 2021; Valogiannis & Dvorkin 2022a,b),
or the epoch of reionization (Greig et al. 2022; Hothi et al. 2024).

Another feature of scattering transforms is that they allow
one to build very efficient generative models of physical fields,
in a maximum entropy framework (Bruna & Mallat 2019). This
allows one to sample new approximate realisations of a given
process relying only on its scattering transform statistics, which
can be estimated from a small amount of data, sometime even a
single example image (Allys et al. 2020; Régaldo-Saint Blan-
card et al. 2023; Price et al. 2023; Cheng et al. 2024b). One
application of such generative models is for training data aug-
mentation for machine learning applications. For instance, it has
been shown in Jeffrey et al. (2022), with simulated data, that
⋆ louise.mousset@phys.ens.fr

such scattering transform models constructed from a single po-
larized microwave dust foreground patch can be sufficient to sep-
arate primordial CMB B-modes from this dust emission, even in
an artificially challenging mono-frequency approach. Moreover,
the framework on which these generative models have been con-
structed has led to the development of new statistical compo-
nent separation algorithms, which have for instance been suc-
cessfully applied to astrophysical data (Regaldo-Saint Blancard
et al. 2021; Delouis et al. 2022; Auclair et al. 2024) and seismic
signals (Siahkoohi et al. 2023a,b).

While these promising scattering transform generative mod-
els have mainly been developed for 2D planar data, the adapta-
tion of these tools to spherical data is necessary for cosmolog-
ical analysis, especially for the next generation of full sky sur-
veys, such as LiteBIRD (LiteBIRD Collaboration et al. 2023),
Euclid (Laureijs et al. 2011) or Rubin-LSST (LSST Science Col-
laboration et al. 2009). The adaptation of a first generation of
scattering transforms to spherical signals was already introduced
in McEwen et al. (2022), and used as a form of dimensionality
reduction for other machine learning purposes. In this paper, we
extend state-of-the-art scattering transforms (Morel et al. 2023;
Cheng et al. 2024b), named scattering covariances and abbrevi-
ated by SC in the following, to spherical fields.

The extension of scattering transforms to spherical data
raises some difficulties: the definition of a directional spheri-
cal convolution with oriented filters such as wavelets (McEwen
et al. 2015b, 2018); and the transposition of the planar trans-
lations which appear in certain scattering transform representa-
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tions. As a first step, we restrict ourselves to fields with statisti-
cally homogeneous fields with properties that do not depend on
the position on the sphere. The generalisation beyond statistical
homogeneity will be presented in a forthcoming paper. This nat-
urally leads us to cosmological fields, such as a weak lensing
field from the Large Scale Structures (LSS) of the Universe, and
maps of the thermal Sunyaev-Zeldovitch (tSZ) effect of the Cos-
mic Microwave Background (CMB). We also consider a map of
the Venus surface. In this paper, for all these spherical data, scat-
tering transform generative models are constructed and validated
from one single full-sky image.

In Sec. 2, we present the extension of the SC statistics to
spherical fields. Then, in Sec. 3, we present SC-based generative
models, and discuss their numerical implementation. Finally, in
Sec. 4, we present the results obtained with these models for
the four non-Gaussian spherical fields studied. Conclusions are
presented in Sec. 5.

2. Scattering covariance on the sphere

The Scattering Covariances (SC), or scattering spectra, were pre-
viously introduced in Morel et al. (2023) for one dimensional
data and in Cheng et al. (2024b) for two dimension planar maps.
In this paper we extend those statistics to spherical maps. This
section introduces sampling schemes, directional convolutions,
and wavelet transforms on the sphere, after which we define the
SC statistics.

2.1. Sampling of spherical maps

A spherical field can be represented by its spherical harmonic
transform which is the spherical equivalent of the Fourier trans-
form for planar maps. In the following, we work with the usual
spherical coordinates ω = (θ, φ), with colatitude θ and longitude
φ. With these coordinates, the spherical harmonic coefficients Iℓm
of a spherical field I(ω) defined over the sphere S2 correspond to
the projection onto the spherical harmonics Yℓm(ω):

Iℓm =
∫
S2

I(ω)Y∗ℓm(ω)dΩ(ω) , (1)

where dΩ(ω) = sin θdθdφ is the solid angle element. The field
can then be represented by its harmonic expansion, given by

I(ω) =
L−1∑
ℓ=0

ℓ∑
m=−ℓ

IℓmYℓm(ω) . (2)

The ℓ index is called the multipole and is inversely proportional
to angular scales on the sky, while the order m at a given ℓ goes
from −ℓ to ℓ and captures the anisotropic component of I(ω).
The maximum value of ℓ considered, which is ℓmax = L − 1,
determines the smallest scale in the transform. For a real field,
the coefficients satisfy the relation

Iℓm = (−1)mI∗ℓ−m . (3)

The numerical computation of the forward and inverse spher-
ical harmonic transform depends on the sampling in pixel space
of the spherical map, for which different choices can be made.
For example, in cosmology, the community often adopts Healpix
sampling (Górski et al. 2005), in which all pixels have the same
area, which can be an advantage in practice. With this sampling
the map resolution is given by the nside parameter, the number
of pixels being equal to 12 × nside2. However, with this sam-
pling, the spherical harmonic transform (as well as the Wigner

transform defined below) is not accurate and needs to be re-
fined iteratively. An alternative is instead to use an equiangular
sampling, e.g. defined in McEwen & Wiaux (2011), for which
these transforms can be computed exactly (to machine preci-
sion). With this sampling, abbreviated by MW, the angular di-
mensions of all pixels are the same, and maps are stored as 2D
arrays of shape (Nθ,Nφ) = (L, 2L−1). In this paper, the SC statis-
tics computations support various sampling schemes, including
Healpix, MW and others, while internal calculations typically
adopt sampling schemes, e.g. MW, that afford exact spherical
transforms for improved accuracy.

Another operation required, which is also sampling depen-
dent, is the average on the sphere, defined as:

⟨I(ω)⟩ =
1

4π

∫
S2

I(ω)dΩ(ω). (4)

In pixel space, this computation corresponds to

⟨I(ω)⟩ =
1

4π

∑
p

I(ωp)δΩp, (5)

where the sum is done over all pixels p, whose angular positions
are notedωp. For approximate quadrature δΩp can simply repre-
sent solid angle at pixel p. Alternatively, some sampling schemes
exhibit exact quadrature (McEwen & Wiaux 2011) in which case
δΩp denotes quadrature weights. When Iℓm has been computed,
one directly has

⟨I(ω)⟩ =
1

2
√
π

I00 . (6)

2.2. Wavelet transform on the sphere

SC statistics are computed from wavelet transforms, which are
obtained by convolving an initial map with a set of wavelet fil-
ters, where each filter extracts the local information at a particu-
lar scale and direction. Wavelet filters need to be localized both
in pixel and harmonic space. In this work, we follow McEwen
et al. (2015b, 2018) and define the wavelets in harmonic space
in separated form

Ψ
j
ℓm =

√
2ℓ + 1

8π2 κ
j
ℓ
ζℓm , (7)

in order to control their angular and directional localisation prop-
erties separately, respectively by kernel κ j

ℓ
, with filter scale j, and

directional component ζℓm. For the explicit definition of these
two functions, one can refer to, e.g., McEwen et al. (2015b). The
wavelets are designed to satisfy excellent spatial localisation and
asymptotic uncorrelation properties (McEwen et al. 2018).

Fig. 1, left panel, shows the Ψℓm coefficients of one filter at
a specific scale j and, right panel, a cut at m = 0 of the full fil-
ter set. Note that with our convention, j scales are ordered with
ℓ multipoles, meaning that when j increases, the corresponding
angular scale decreases (i.e. ℓ increases). Filters are maximum at
ℓ ≃ η j, with support within ℓ ∈ [η( j−1), η( j+1)], where η defines
the wavelet dilation parameter. In this paper we use dyadic scal-
ing, corresponding to η = 2. In the following, when perform-
ing a convolution with a filter set, the range of scales probed
by the wavelets is given by Jmin ≤ j ≤ Jmax where Jmin ≥ 0
and Jmax = ceil

(
log (L−1)

log η

)
. The number of scales is given by

J = Jmax − Jmin + 1. The angular resolution of the wavelets is
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Fig. 1. Left: real part of the Ψ j=4
ℓm filter. Right: a cut at m = 0 of the full

filter set for j spanning from Jmin = 1 to Jmax = 8.

parameterized by an integer N, allowing for the sample of 2N−1
directions (see below)1

Wavelet transforms are computed from convolutions be-
tween the field under study and this set of wavelets. Various con-
volutions on the sphere can be considered (Roddy & McEwen
2021). In this work we follow the standard directional convolu-
tion formalism presented in, e.g., McEwen et al. (2015b). These
convolutions produce a set of spherical maps filtered at different
scales (labelled by j) and orientations (labelled by γ).

The directional convolution I ⋆Ψ j of a field I with a wavelet
Ψ j consists in applying a rotation by a set ρ = (α, β, γ) of Euler
angles of the waveletΨ j initially located at the north pole, before
computing an inner product between the wavelet and the field I:

(I ⋆ Ψ j)(ρ) =
∫
Ω

I(ω)[RρΨ j(ω)]∗dΩ, (8)

where Rρ is the rotation by Euler angles ρ, and ∗ stands for
complex conjugation. From (I ⋆ Ψ j)(ρ) we can identify (β, α)
with the spherical coordinates ω = (θ, φ) and γ to the orientation
that is probed in the convolution. In this way, we obtain oriented
wavelet coefficients, with shorthand notation

(I ⋆ Ψ j,γ)(ω) ≡ (I ⋆ Ψ j)(α = φ, β = θ, γ). (9)

While (I ⋆Ψ j,γ) is a convenient notation, that also matches with
previous work, we however emphasize that there is no Ψ j,γ ori-
ented wavelet by itself.

In practice, the directional convolution can be computed ac-
curately and efficiently in Wigner space, which is the Fourier
space associated with three-dimensional rotations described by
Euler angles. In this space, the directional convolution between
a field I and a wavelet Ψ j yields (McEwen et al. 2013, 2015b)

(I ⋆ Ψ j)ℓmn =
8π2

2ℓ + 1
IℓmΨ

j∗
ℓn, (10)

where Iℓm and Ψ j
ℓn are the spherical harmonic coefficients of

I and Ψ j, respectively, and (Ψ j ⋆ I)ℓmn are the Wigner coeffi-
cients of the convolved field, i.e. the Fourier representation of
the directional wavelet coefficients defined over Euler angles
ρ = (α, β, γ). To return to the spatial domain, we compute an
inverse Wigner transform, defined as

(I ⋆Ψ j,γ)(ω) ≡ (I ⋆Ψ j)(ρ) =
L∑
ℓ=0

2ℓ + 1
8π2

ℓ∑
m,n=−ℓ

(I ⋆Ψ j)ℓmnDℓ∗mn(ρ),

1 Although steerability could be exploited in future for further compu-
tational savings (McEwen et al. 2015b).

(11)

where Dℓmn(ρ) are the Wigner-D matrices (Varshalovich et al.
1988). Fast (inverse) Wigner transform algorithms can then be
leveraged for efficient computation (McEwen et al. 2015a; Price
& McEwen 2024). By computing the wavelet transform through
harmonic space as described, pixelisation artefacts are avoided.
Although the wavelets satisfy an admissibility condition such
that the field can be recovered exactly from its wavelet coef-
ficients (McEwen et al. 2015b), we are only concerned with the
forward wavelet transform in this work. In the following, we also
group the scale and orientation under a single index λ = ( j, γ),
writing I ⋆ Ψλ for the wavelet transform of the field I at a given
oriented scale λ.

While computing convolutions through harmonic represen-
tations is highly accurate it involves moderate computational
cost since generalised Fourier transforms on the sphere and
space of rotations must be computed (albeit using fast algo-
rithms). An alternative would be to compute the convolutions
in pixel space as done in Delouis et al. (2022). However this
can introduce pixelisation artefacts. A future avenue to consider
is hybrid discrete-continuous approaches as shown to be highly
computationally efficient while also avoiding discretization arte-
facts (Ocampo et al. 2023).

In order to optimize our numerical implementation, in par-
ticular the memory usage, all convolutions are computed in a
multi-scale framework, where the map resolution is tuned to the
scale at which the convolution is made. See Leistedt et al. (2013)
for more details.

Fig. 2 illustrates orthographic projections of the directional
spherical wavelets for two scales and three angles, viewed look-
ing down from the North pole.

j=2, =0° j=2, =72° j=2, =144°

j=3, =0° j=3, =72° j=3, =144°

Fig. 2. Orthographic projections of the directional spherical wavelets
for two scales and three angles, viewed looking down from the North
pole. In this case, we set N = 3 so that the angle γ takes 2N − 1 = 5
values between 0 and 360 deg but only three are shown here.

2.3. Scattering covariance coefficients

Scattering transforms cover several types of summary statistics,
see for instance Allys et al. (2019, 2020); Cheng et al. (2024b).
In this work, we consider the scattering covariances, or scattering
spectra, previously introduced in Morel et al. (2023) and Cheng
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et al. (2024b). We chose the SC, because they only rely on con-
volutions, and not on translations as the Wavelet Phase Harmon-
ics (Allys et al. 2020), which are difficult to univocally define on
spherical maps.

SC statistics characterize the power and sparsity at given
scales, as well as interaction between different scales. They are
built from successive applications of wavelet transforms and
modulus operators, followed by average and covariance compu-
tations (assuming that we work with homogeneous processes).
For a detailed introduction to these statistics, the reader is invited
to refer to Cheng et al. (2024b). We consider two coefficients at
a single scale j1 and a single angle γ1, i.e. λ1 = ( j1, γ1):

S λ1
1 = ⟨|I ⋆ Ψ

λ1 |⟩ , (12)

S λ1
2 = ⟨|I ⋆ Ψ

λ1 |2⟩ , (13)

and two coefficients that characterize the couplings between two
and three oriented scales2:

S λ1,λ2
3 = Cov

[
I ⋆ Ψλ1 , |I ⋆ Ψλ2 | ⋆ Ψλ1

]
, (14)

S λ1,λ2,λ3
4 = Cov

[
|I ⋆ Ψλ3 | ⋆ Ψλ1 , |I ⋆ Ψλ2 | ⋆ Ψλ1

]
, (15)

where ⟨·⟩ corresponds to the mean over the sphere, defined in
Sec. 2.1, and where covariances are defined as Cov[XY] =
⟨XY∗⟩ − ⟨X⟩⟨Y∗⟩ for two complex fields X and Y . Note that in
our case, the wavelet transforms are always zero mean, since
the wavelets are mean-free. Since taking the modulus of a
field mainly displaces its frequency support toward lower fre-
quency (Zhang & Mallat 2021; McEwen et al. 2022), it is suf-
ficient to consider terms for which j1 ≤ j2 ≤ j3. Moreover, we
introduce the additional parameter δ j, which corresponds to the
maximum distance between pairs of scales whose interactions is
characterized: i.e., the calculation of S 3 and S 4 are restricted to
pairs of scales such that j2 − j1 ≤ δ j and j3 − j1 ≤ δ j.

The dimension of S 1 and S 2 coefficients is JΘ with J the
number of scales and Θ = 2N − 1 the number of orientations.
Regarding S 3 and S 4, their dimensions are approximately J2Θ2

and J3Θ3 or Jδ jΘ
2 and Jδ jΘ

3 when considering a maximum
distance between scales δ j. The exact number of coefficients are
given in Tab. 2.

The power spectrum of the field is mainly characterized by
the S λ1

2 coefficients defined in Eq. 13. These terms correspond
to the average of the power spectrum over the ℓ-wavelet band-
passes (Cheng et al. 2024b). However, they only constrain the
power spectrum over a small number of bands and this is usually
not precise enough for modeling purpose. Increasing the number
of scales j that we probe can be done by decreasing the wavelet
dilation parameter η. However, this leads to a large increase of
the total number of SC coefficients. For this reason, we have
considered additional S λ1

2 coefficients, built with a second filter
set with η′ < η (η = 2 and η′ ≃ 1.58) and a single orientation
N′ = 1 (isotropic filters). These coefficients are called S λ

′
1

2 and
they allow us to constrain the power spectrum over thinner ℓ-
bins.

2 Note than in Cheng et al. (2024b), the S λ1 ,λ2
3 are defined as

S λ1 ,λ2
3 = Cov

[
I ⋆ Ψλ1 , |I ⋆ Ψλ2 |

]
.

However, as only the ℓ harmonics appearing in both sides of the covari-
ance have a non-vanishing contribution, only harmonics captured by λ1
of the |Wλ2 I| term play a non-negligible role, and both formulations are
closely related.

For physics fields the power spectra can typically be mod-
elled by a power law, at least over certain scales (Cheng et al.
2024b). This leads to SC coefficients which can vary over sev-
eral orders of magnitude, since their amplitude is controlled by
the I ⋆ Ψλ terms, which filters the initial I field over the j fre-
quency band of the wavelet. This amplitude discrepancy can lead
to ill-conditioned optimizations. Following previous works (see,
for instance Cheng et al. 2024b), we avoid this issue by normal-
izing the SC statistics from the S 2 coefficients of a reference field
that we note S 2,ref . We thus define

S̄ λ1
1 =

S λ1
1√

S λ1
2,ref

, S̄ λ1
2 =

S λ1
2

S λ1
2,ref

, S̄ λ
′
1

2 =
S λ

′
1

2

S
λ′1
2,ref

, (16)

S̄ λ1,λ2
3 =

S λ1,λ2
3√

S λ1
2,refS

λ2
2,ref

, S̄ λ1,λ2,λ3
4 =

S λ1,λ2,λ3
4√

S λ2
2,refS

λ3
2,ref

. (17)

When constructing generative models below, we will take the
target field as the reference field, which will allows us to deal
with coefficients whose values will be at most of order unity.

3. Generative modeling

In this section we describe how to build generative models from
the SC statistics of a given field. We also give some details on
the numerical implementation of the generative models and the
associated computational cost.

3.1. Maximum entropy generative model

We build generative models under SC constraints. These are
maximum entropy microcanonical models, which are approx-
imately sampled by gradient descent. We refer the readers
to Bruna & Mallat (2019) for more details.

Such models are constructed from statistics Φ estimated
from a target field xt; in this paper the target field is a single
full-sky map. The associated microcanonical set Ωε of width ε
is

Ωε =
{
x : ||Φ(x) − Φ(xt)||2 < ε

}
, (18)

where ||.|| is the Euclidean norm. The microcanonical maximum
entropy model is the model of maximal entropy defined over Ωε,
which has a uniform distribution over this set.

In this paper, we approximate this sampling with a gradient
descent approach, which consists in transporting a higher en-
tropy white Gaussian distribution into a distribution supported
in Ωε. In practice, each new sample is obtained by first drawing
a white noise realization, and then performing a gradient descent
in pixel space, or in harmonic space, using a loss function

L(x) = ||Φ(x) − Φ(xt)||2 . (19)

The typical width ε of the microcanonical ensemble is then fixed
by the number of iterations used in the gradient descent. The
numerical details of this implementation are given in Sec. 3.2.

In our case, the summary statistics Φ(x) that we consider are
the mean over pixels ⟨x⟩, its variance Var(x) and the normalized
SC statistics, defined in Sec. 2.3. Thus, we have

Φ(x) =
{
⟨x⟩,Var(x), S̄ λ1

1 , S̄
λ1
2 , S̄

λ′1
2 , S̄

λ1,λ2
3 , S̄ λ1,λ2,λ3

4

}
. (20)

We note that the target statistics Φ(xt) are evaluated from a
single full-sky image, and that the SC generative models are then
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built from this single set of constraints. In this respect, our ap-
proach differs from machine learning-based approaches, which
generally require training on a large, and potentially very expen-
sive, dataset.

3.2. Details on the numerical implementation

In this work we consider scattering covariances defined on the
sphere, constructed using spherical wavelet transforms which in
turn depend on efficient spherical harmonic and Wigner trans-
forms (see Sec. 2.2). As outlined in Sec. 3.1 new images are
drawn from a SC microcanonical model by minimising the loss
defined in Eq. 19. A plethora of algorithms have been devel-
oped to solve such optimisation problems, however they typi-
cally require gradient information, which in turn requires that
each component of the loss be differentiable. Consequently, we
require the spherical scattering covariance and thus the spher-
ical wavelet, spherical harmonic and Wigner transforms to all
be differentiable. Recently, open-source JAX software that is
differentiable and GPU accelerated has been developed for all
of these transforms, including s2fft3 for spherical harmonic
and Wigner transforms (Price & McEwen 2024) and s2wav4

for spherical wavelet transforms (Price et al. 2024). As part of
the current work, we have developed a new open-source soft-
ware implementing the spherical scattering covariances called
s2scat5, which builds on top of s2fft and s2wav.

For a given target field we compute a generated field by min-
imising the loss defined in Eq. 19 through a gradient descent
in harmonic space with different initial conditions. These initial
conditions are Gaussian white noises sampled in spherical har-
monic domain, i.e., whose all Iℓm real and imaginary parts are
drawn from the same Gaussian distribution such that the total
variance of the target field is reproduced. In this way, the start-
ing angular power spectrum, as defined in Eq. 21, is flat.

To avoid a repeated spherical harmonic transform as the first
step at each iteration in the computations, we chose to perform
the gradient descent in the spherical harmonic domain rather
than in pixel space. The variables we iterate on during the loss
minimization thus are the Iℓm coefficients. Because the maps are
real and thanks to relation (3), we can iterate on the Iℓm with
m ≥ 0 only. The loss minimization is done through a gradi-
ent descent with the L-BFGS algorithm described in Byrd et al.
(1995), using the JAX auto-differentiable framework (Bradbury
et al. 2018) and the jaxopt package (Blondel et al. 2022). We
stop the optimization after ∼ 400 iterations, which in our experi-
ment is the typical time for the loss function to decrease by about
four orders of magnitude and to reach a plateau at values around
0.1 (meaning, since the loss is not normalized by the number of
coefficients, that coefficients are on average constrained at sub-
percent accuracy).

3.3. Computational cost

As outlined in Sec. 2, computation of the scattering covariance
statistics requires repeated spherical convolutions with subse-
quent non-linear activation functions, in this case modulus oper-
ators. Although directional spherical convolutions may naïvely
be computed in pixel space with complexity O(L5) (McEwen
et al. 2007), they are more efficiently evaluated in harmonic
space with complexity O(NL3) (McEwen et al. 2007, 2013,

3 https://github.com/astro-informatics/s2fft
4 https://github.com/astro-informatics/s2wav
5 https://github.com/astro-informatics/s2scat

Precompute Mode
Bandlimit Forward Gradient JIT Compilation

256 15 ms 30 ms 20 s
512 100 ms 200 ms 25 s

Recursive Mode
Bandlimit Forward Gradient JIT Compilation

256 120 ms 300 ms 90 s
1024 5 s 10 s 3 m
2048 20 s 50 s 6 m

Table 1. Computational benchmarking results of the scattering covari-
ance transform provided by s2scat. These results were recovered on
a single NVIDIA A100 40GB GPU, although it is possible to run
across multiple GPUs. In our analysis we generate spherical images
through 400 iterations to be conservative. In practice however, we find
that ∼ 100 iterations is typically sufficient, in which case an image at
L = 256 may be generated in ∼ 4s. Furthermore, batched generation
can dramatically decrease per sample compute time. For example, 20
images at L = 256 can be generated in ∼ 12s, corresponding to ∼ 0.5s
per sample.

2015b). Furthermore, excellent accuracy can be achieved by
computing convolutions in harmonic space since pixelisation
artefacts are avoided.

We must repeatedly map to and from spherical harmonic
space within our generative model using s2fft (Price et al.
2023). Two operating modes are provided by s2scat: one com-
putes and caches the reduced Wigner d-functions, which are then
used at runtime (precompute mode); and the other computes
these functions on-the-fly through recursive algorithms (on-the-
fly mode). Conceptually, the precompute mode is fast but re-
quires O(L3) memory, whereas the on-the-fly mode is slower but
requires at most O(L2) memory. When running on GPUs for har-
monic bandlimits L ≤ 512 we recommend one adopts the pre-
compute mode, deferring to the on-the-fly algorithms at higher
resolutions. Although with GPU memory increasing rapidly with
hardware developments, it is likely that the precompute mode
can be ran at higher bandlimits on the latest and upcoming
GPUs.

High-level benchmarking results are presented in Tab. 1. In
each case we consider an azimuthal bandlimit of N = 3, which
corresponds to 5 directions on the sphere, and the full set of
anisotropic scattering covariances. Our benchmarking was per-
formed on a single NVIDIA A100 GPU with 40GB of on board
memory, though in practice s2scat may be distributed across
a large number of GPUs. For completeness, we record the time
for both a forward and gradient evaluation, in addition to the
time required for Just-In-Time (JIT) compilation. One may also
utilise the jax.vmap API, which allows one to batch calls to the
maximum entropy model presented in Sec. 3, resulting in more
optimal GPU utilisation. For example, suppose we sample from
our microcanonical model with 100 iterations of a first order op-
timiser (e.g. ADAM; Kingma & Ba 2014). Generating a single
new image at L = 256 takes ∼ 4s, whereas a batched call to gen-
erate 20 such images takes ∼ 12s which is ∼ 0.5s per new sam-
ple. Furthermore, the jax.pmap API allows one to batch calls
across GPU devices, therefore accelerating generation linearly
with the number of available GPUs.

4. Validation of the generative models

In this section we construct SC generative models from four as-
trophysical fields showing different types of structures. We then
compare the generated fields with the target one. We first do a
visual comparison of the maps to asses the quality of the spatial
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Fig. 3. Maps for LSS, tSZ and Venus fields (from top to bottom). The left column is the original target field. The central column shows one
sample of the generated maps. The right column shows a Gaussian field with the same power spectrum as the target. For LSS and tSZ, we plot the
logarithm of the fields, in order to better see the texture details. Color bars are identical within each field.

texture reproduction. We then compute various statistics in order
to quantitatively evaluate our generative model. For each type of
data, we draw 50 samples of the microcanonical ensemble and
compute the mean and the standard deviation over those 50 real-
isations. For the LSS and the tSZ fields, while the optimization is
performed on the logarithm of the maps, we compare the statis-
tics on the raw image, after taking the inverse transform.

Before any comparison, all maps are filtered in harmonic
space, only keeping the Iℓm coefficients such that ℓmin ≤ ℓ ≤ L
with ℓmin = η

Jmin the central frequency of the wavelet associ-
ated to Jmin. In this way, we consider only the scales that are
constrained during the optimization. Note however that if neces-
sary, it is possible to constrain in a similar scheme scales up to
lmin = 0.

We also propose a comparison with samples from a Gaussian
model built from the power spectrum of the target field. We have
produced 50 Gaussian realisations using the synfast method
from the Healpix package (Górski et al. 2005) which allows
one to construct such a Gaussian model from the angular power
spectrum of a target field. This allows us to quantify the contri-
bution of our models built from SC statistics compared to purely
Gaussian statistics.

In Appendix A, we directly compare the SC statistics of the
target and the generated fields. This is an additional check for
the quality of the generative model. Indeed we expect them to
match as they are part of the coefficients constrained during the
optimization.

4.1. Description of the set of maps

We first present the astrophysical and cosmological fields from
which we construct SC generative models. They are expected
to have homogeneous statistical properties on the sphere. This
property is essential since this is assumed when computing
statistics through spatial averages. This requirement, as well as
a possible way to avoid this constraint, is discussed in Sec. 4.4.
The four different fields, denoted as follow, are:

– LSS: a Large Scale Structure simulation of weak lensing,
from the CosmoGrid data set (Kacprzak et al. 2023; Fluri
et al. 2022);

– tSZ: a thermal Sunyaev-Zeldovitch effect simulated map
from Simons observatory Galactic foreground simula-
tions (Ade et al. 2019), which were produced using the Se-
hgal et al. (2010) model with modifications to better match
the recent measurements;

– Venus: a map of the Venus planet from Science On a Sphere
database6;

– CMB: a CMB temperature map produced using the Python
Sky Model software (PySM) from Thorne et al. (2017).

We refer the readers to the references given above for more de-
tails on these fields. As a Gaussian field, the CMB map is a good
null-test for our method, as presented in Appendix B. The other
fields all originate from non-linear physical processes, and thus
have highly non-Gaussian structures, as can be seen in the left
column of Fig. 3. The diversity of these fields illustrates the gen-
erality and the versatility of our method, which could be used for
various physical data sets.
6 https://sos.noaa.gov/sos/
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J Jmin N δ j Trans. Nb. of terms
LSS 7 2 3 5 log. 8283 (35, 450, 7750)
tSZ 6 3 3 5 log. 6173 (30, 350, 5750)

Venus 7 2 3 5 lin. 8283 (35, 450, 7750)
CMB 8 1 3 5 lin. 10393 (40, 550, 9750)

Table 2. For each field, we give the number J of scales that we probe,
the value of Jmin, the value of N which corresponds to the angular res-
olution of the wavelets and the δ j parameter which corresponds to the
maximum distance between pairs of scales whose interactions is char-
acterized. We also indicate if we perform a logarithmic (log.) or a linear
(lin.) transformation on the target map, as discussed in Sec. 4.1. The
last column gives the total number of terms that composes our sum-
mary statistics Φ(x), with, between parenthesis, the detailed count for
S 1 (equal to S 2), S 3 and S 4.

While all these simulated maps are available in Healpix for-
mat, the computation of the SC is done directly from the har-
monic space. The conversion to this space is done using L − 1 =
ℓmax = 2nside, and thus acts as a low-pass filter operation. This
implies that spatial frequencies at ℓ ≥ L are filtered out in this
operation. Note that calculating the SC and performing the op-
timization directly in spherical harmonic space means that there
is no particular constraint on the sampling on the target map,
even if the internal SC calculation steps are based here on MW
or alternative sampling schemes to improve accuracy.

During the optimization process, all maps are normalized
such that their mean is zero and their standard deviation is one.
In addition, the LSS and tSZ fields are highly non-Gaussian,
making them difficult to model directly even with SC statistics.
This is why we instead chose to model the logarithm of these
maps7. This logarithmic transform brings the distribution closer
to a Gaussian one, and reduces in particular the weight of the
high amplitude tail of the probability density function, allowing
for better SC generative models. At the end of the optimization,
we however take the inverse transform for these maps, and we
assess the quality of the generative model on the raw images.

The generative models have been run on MW maps with a
resolution of L = 256 which corresponds to L(2L− 1) = 130816
pixels. These real signals have L2 = 65536 complex harmonic
coefficients. For the directional wavelets used to build the SC,
we have considered a dyadic scaling η = 2 and N = 3. This
leads to Jmax = 8 and 2N − 1 = 5 orientations. As shown in
Tab. 2, the value of Jmin was tuned to each field in order to take
into account the largest spatial scales that compose the maps.
The number J of scales that we probe is also given in the Ta-
ble. The maximum distance δ j between scales was fixed to five,
which allows us to divide the total number of SC coefficients by
approximately two without degrading the quality of the genera-
tive model. Concerning the additional S λ

′

2 coefficients, we chose
an axisymmetric filter set with N′ = 1 and a scaling given by
η′ ≃ 1.58. The exact total number of terms that composes the
summary statistics Φ(x) is given in Tab. 2.

4.2. Visual validation

As a first test we can visually compare the target field and the
generated ones, as presented in Fig. 3 for the LSS, tSZ and Venus
fields. They appear to be visually very similar to the original
maps, which clearly shows that the SC statistics capture an im-
portant part of the non-Gaussian texture of the field. On the con-

7 For the LSS field, the exact logarithmic transform applied on I is
log(I + ε) where ε = 10−3 is a regularization to deal with non-positive
fields.
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Fig. 4. Zoom on a region for the LSS (top), tSZ (middle) and Venus
(bottom) fields in order to see details of the texture. Similarly to the
previous figure, for LSS and tSZ, we plot the logarithm of the fields,
in order to better see the texture details. Color bars are identical within
each field.

trary, the structures are not reproduced in the Gaussian realisa-
tions shown on the right column. For LSS and tSZ, we plot the
logarithm of the fields which allows to better see the textures. In
addition, in Fig. 4, we show a zoom on a smaller region to bet-
ter visualize the details in the spatial structures. In Appendix C,
we also show four realisations of the fields starting from differ-
ent initial conditions. This shows the ability of our generative
models to sample independent realizations while capturing the
overall texture of the fields.

4.3. Statistical validation with standard summary statistics

Following a similar approach to Cheng et al. (2024b) and Price
et al. (2023), we compare summary statistics between the target
field and the generated field. As previously, we show the mean
and the standard deviation computed over the 50 realisations.
The summary statistics we chose to compare are:

– the Probability Density Function (PDF) of the map;

– the angular power spectrum;

– the three Minkowski functionals.

The PDF of the maps and the three Minkowski functionals
are performed on Healpix maps. To do that, the output Iℓm from
the loss minimization are projected to Healpix map by an in-
verse spherical harmonic transform at the end of the generative
process.
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Fig. 5. PDF and angular power spectra for the LSS, tSZ and Venus fields, from left to right. The first row shows the PDF with a linear y-axis scaling
while the second row shows the same PDF with a logarithmic y-axis. The third row shows the angular power spectra. The target is shown in blue,
the generated fields in red, and the Gaussian realisations in yellow. We plot the mean (solid line) and the standard deviation (shadow envelope)
over 50 realisations.

4.3.1. Probability density function

The PDF for the LSS, tSZ and Venus fields are shown in Fig. 5,
computed on the Healpix maps. On the first row, we show the
PDF with a linear y-axis scaling, while on the second row, we
show them with a logarithmic y-axis scaling in order to better
exhibit the tails of the distributions on several orders of magni-
tude. The target fields are shown in blue and the generated ones
in red. In yellow, we also show the comparison with the Gaussian
realizations. By definition, the PDF of these realizations presents
a Gaussian profile in linear scale and a parabolic profile in loga-
rithmic scale.

While the Venus field has a PDF which only slightly differs
from the Gaussian case, the two other fields clearly have non-
Gaussian features with large tails. The comparison of the target
and generated PDFs with the Gaussian PDF also allows us to
better see their non symmetric shape, which is characteristic of
non-Gaussian features. As we can see, the PDFs for SC models
are well reproduced on at least three orders of magnitude. The re-
sults obtained for the LSS fields, which are very good up to five
orders of magnitude, are especially striking. On the other hand,
results for the tSZ field begins begins to push the expressive limit
of our generative models. For the Venus maps, we identify the
abrupt jump in the histogram as a flaw in the data used, which
does not particularly illustrate a limitation of our maximum en-
tropy SC model.

4.3.2. Angular power spectrum

We calculate the power spectrum in the usual way as

Cℓ =
1

2ℓ + 1

m=ℓ∑
m=−ℓ

|Iℓm|2 , (21)

where the normalization factor 1/(2ℓ + 1) yields a flat power
spectrum in case of white Gaussian noise.

As discussed in Sec. 2.3, the power spectrum is constrained
during the optimization through the S 2 and the additional S ′2 co-
efficients. Note however that these coefficients do not constrain
the full power spectrum, each term only constraining a weighted
power spectrum over the frequency support of the associated
wavelet.

The third row of Fig. 5 shows the results for the generation
of LSS, tSZ and Venus fields, from left to right. Power spectra
are well reproduced over all scales, even when they vary over up
to four orders of magnitude. However, small oscillations around
the target can be seen in the generated power spectra. These are
residual features related to the frequency bands of the wavelets,
which illustrate the trade-off between the quality of reproduction
we want to achieve and the number of filters we use; i.e. the
computational efficiency of our generative model.

Note that in this paper, we include 11 of these additional S ′2
coefficients. This number, and the precise shape of the wavelets
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Fig. 6. The three Minkowski functionals V0, V1 and V2 for the LSS
field. Blue is the target, red the generated field and yellow the Gaussian
fields. For the generated field and the Gaussian realisations, we plot the
mean (solid) and the standard deviation (shadow envelope) computed
over 50 realisations.

used, could however be tuned to better reproduce the power
spectrum of the target. However, care must be taken not to over-
constrain these terms, as all the samples generated would then
have a power spectrum very close to that of the target, which
does not necessarily correspond to a good generative model. The
introduction of S ′2 terms is an improvement with respect to pre-
vious work, since it allows us to have better power spectrum
constraints without significantly increasing the overall number
of SC statistics.

4.3.3. Minkowski functionals

Finally, we compute the Minkowski functionals on the Healpix
maps. These standard non-Gaussian statistics characterize the
topology of the level sets of the field. In two dimensions, there
are three Minkowski functionals V0(u), V1(u) and V2(u) which
depend on a pixel value threshold u. We computed them with
Pynkowski software (Carones et al. 2024). We refer the reader
to this publication for the complete definition of those statistics.
The result is shown in Fig. 6 only for the LSS field while the
others are shown in Appendix D. In yellow, as a comparison,
we show the case of the Gaussian realisations. For the generated
field and the Gaussian realisations, we plot the mean (solid) and
the standard deviation (shadow envelope) computed over 50 re-
alisations. Thus, the SC models encompass very well these non-
Gaussian statistical features.

4.4. Limitations and discussions

This work is a first implementation of generative models from
state-of-the-art spherical SC. As a first proof of concept, we
constructed and validated these models on various cosmological
fields, most of them simulated. However, building such models
from real data, or using these tools to perform statistical compo-
nent separation, may require some additional work to deal with
their own specificity. In this section, we comment some of these
limitations, and how to overcome them.

A first limitation of our current work is the fact that our mod-
els assume the statistical homogeneity of the fields studied. How-
ever, the ability of dealing with non-homogeneous physical pro-
cesses is usually required when modeling astrophysical fields,
such as the Galactic emissions, which properties typically vary
strongly with latitude on the sky. An efficient way to deal with
this issue is to rely on different masks in pixel space, for which
statistical properties can be constrained independently (Delouis
et al. 2022). However, this requires a trade-off between the size
and number of masks: using a larger number of masks gives a
better description of large-scale variations in statistical proper-
ties, but increases the variance of SC statistics estimates on each
mask due to the smaller number of pixels used, as well as the to-
tal number of SC coefficients and the computational and memory
cost.

A second limitation is the map resolution we can achieve.
For now, the generation of a new map at L = 256 and N = 3
takes ≤ 1s on a single GPU. This is thanks in part to a large
number of precomputed matrices necessary for the Wigner trans-
form which are, stored in memory (several Gigabytes). Specif-
ically this memory if cubic with L, which is prohibitive at high
L. When increasing the resolution beyond L ∼ 1024, we usu-
ally reach the GPU memory limit and the coefficients have to be
computed on-the-fly, though this of course depends on, available
GPU specifications. Critically, the on-the-fly approach dramati-
cally reduces memory requirements so that generations at high
L are at least feasible but at the cost of a significantly increased
computation time. In future we will explore further optimiza-
tions for high L. A key avenue we will explore is the introduction
of hybrid wavelet convolutions which operate efficiently in pixel
and harmonic space at high and low resolutions respectively (see
e.g. Delouis et al. 2022; Ocampo et al. 2023).

5. Conclusions

The main result of this paper is the extension of state-of-the-art
scattering transforms to spherical fields. We have worked with
the last generation of scattering transform statistics, named scat-
tering covariances (Cheng et al. 2024b), which were previously
introduced for one dimension and two dimensions planar fields.
They have the advantage of relying only on successive wavelet
transforms and modulus, as well as on covariances, and do not
require any translations. We have also used state-of-the-art direc-
tional wavelets on the sphere, computed in spherical harmonic
space (McEwen et al. 2015b). The numerical implementation of
this work s2scat, is open-source and publicly available. Fur-
thermore, it is fully autodifferentiable, using the JAX Python
framework (Bradbury et al. 2018) and building on the s2fft/
s2wav packages (Price & McEwen 2024; Price et al. 2024).

These developments allow us to build generative models
of full sky spherical fields without the need for large training
datasets. In fact, our method holds in the limit of a single data
realisation. The performance of those generative models were
validated quantitatively on different fields: a LSS weak lensing
field, maps of tSZ effect and of the CMB, as well as a map of
Venus surface, for which they performed extremely well. The
diversity in terms of structures between the maps shows the im-
pressive ability of SC to comprehensively characterize very dif-
ferent non-Gaussian textures.

This work introduces a new powerful innovative approach
for spherical data, and it opens interesting perspectives for as-
trophysical applications. In particular, we plan to use it for the
study and the modeling of CMB astrophysical foregrounds. The
first goal will be to have a tool to produce multiple realisations
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of the different astrophysical components, for example using the
AGORA simulations (Omori 2024). Then, scattering transforms
could play a role in component separation, relying both on re-
cently developed scattering transform-based statistical compo-
nent separations approaches, as well as investigating how classi-
cal component separation methods could benefit from scattering
transforms, using the non-Gaussianities as an additional lever
arm to disentangle different components.

Finally, we also point out that SC statistics provide highly in-
formative sets of statistics, which could be very useful for tasks
such as parameter inference, for instance Simulation Based In-
ference (SBI; Cranmer et al. 2020), from large cosmological sur-
veys (see, for instance Régaldo-Saint Blancard et al. 2024; Gatti
et al. 2024; Cheng et al. 2024a). This could be all the more use-
ful as the compression factor they enable, compared with a direct
description in pixel space, becomes extremely large at high res-
olution, due to logarithmic scale binning. This property could
be further enhanced by using compression schemes like the one
presented in Cheng et al. (2024b), which can make SC a very
informative and versatile compressed set of statistics.
Acknowledgements. We thank Sixin Zhang for helpful discussions about scat-
tering transforms. Most of the simulations were produced on the MesoPSL cal-
culation center, for which we thank the administrators. MAP and JDM are sup-
ported in part by EPSRC (grant number EP/W007673/1) and STFC (grant num-
ber ST/W001136/1).
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Appendix A: SC statistics

In Fig. A.1 we show the normalized SC coefficients S̄ 1, S̄ 2, S̄ 3 of
the LSS field. We plot the coefficients of the target field in blue,
the generated ones in red, as well as the Gaussian realisations in
yellow. Coefficients are plot following the lexicographic order.
We chose not to show S̄ 4 for readability because of the large
number of coefficients.

Regarding the Gaussian realisations, shown in yellow, we ex-
pect the S̄ 3 coefficients to be equal to zero up to the correlations
induced by the overlapping between wavelet bands. As we can
see, for S̄ 3, the mean is centered on zero.

By construction, S̄ 2 for the target field is equal to one. This
is because we have considered the S 2 coefficients of the target
as the reference to normalize all the coefficients, as described in
Sec. 2.3. In this way, all the normalized coefficients are of the or-
der of the unit. As we can see, SC statistics are well constrained
by the optimization, the generated coefficients in red well over-
lap the target coefficients in blue. S̄ 3 coefficients strongly differ
from the Gaussian field, showing clear non-Gaussian signatures.
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Fig. A.1. The normalized SC coefficients S̄ 1, S̄ 2, S̄ 3 for the logarithm
of the LSS field. We show the coefficients from the target field (blue),
the generated fields (red) and equivalent Gaussian realisations (yellow).
The mean and the standard deviation over the 50 realisations are shown
as a solid line with a shadow envelope.

Appendix B: CMB map as a null-test

It is important to check that the generative model behaves as we
expect for a Gaussian field. This is an important validation for a
maximum entropy generative model. This is why we tested it on
the CMB map. The result is shown in Fig. B.1. The upper parts
shows the target map, a generated field and a Gaussian realisa-
tion. As expected, the three maps look similar. We also plot the
PDF and the power spectrum which match very well.

Appendix C: Multiple realisations

Fig. C.1 shows multiple realisations obtained from the genera-
tive model, changing the initial Gaussian random noise. For each
fields, we show four maps out of the 50 that we computed. This
is to illustrate the visual similarity between the realisations.

Appendix D: Minkowski functionals for the three
others fields

Fig. D.1 shows the Minkowski functionals for the tSZ, Venus
and CMB maps.
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Fig. C.1. Four generative models of the LSS, tSZ and Venus fields (from top to bottom), obtained by changing the initial Gaussian random noise.
In total we ran 50 realisations for each field. Color scales are identical within each field.
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