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Abstract—This work presents the construction of a
novel spherical wavelet basis designed for incomplete
spherical datasets, i.e. datasets which are missing in a
particular region of the sphere. The eigenfunctions of
the Slepian spatial-spectral concentration problem (the
Slepian functions) are a set of orthogonal basis functions
which are more concentrated within a defined region.
Slepian functions allow one to compute a convolution
on the incomplete sphere by leveraging the recently
proposed sifting convolution and extending it to any set
of basis functions. Through a tiling of the Slepian har-
monic line, one may construct scale-discretised wavelets.
An illustration is presented based on an example region
on the sphere defined by the topographic map of the
Earth. The Slepian wavelets and corresponding wavelet
coefficients are constructed from this region and are
used in a straightforward denoising example.

Index Terms—Slepian functions, 2-sphere, wavelets.

I. Introduction

MANY applications in science and engineering mea-
sure data on the sphere, such as in computer

graphics [1], cosmology [2], geophysics [3], and planetary
science [4]. Often these data are not observed over the
whole sphere and are missing in some regions. For example,
in analyses of the cosmic microwave background, the region
around the Galactic plane is often removed due to strong
foreground microwave emissions [5]. A common approach
to deal with data of this form is to use wavelets, which
allow one to probe spatially localised, scale-dependent
features of signals on the sphere. However, spherical wavelet
methods still have problems when data are missing, as
the boundaries of the region of missing data contaminate
nearby wavelet coefficients. A possible approach to solve
this problem is to construct wavelets that are concentrated
in the region itself.

Extracting non-trivial patterns and structures of interest
is a common task in data analysis. To overcome this
problem the data may be projected onto an appropriate
basis. In contrast to Fourier analyses, where oscillatory
features are considered, wavelets extract the contributions
of scale-dependent features in both space and frequency.
Wavelets on the sphere have been effectively applied in
fields such as astrophysics and cosmology [6]–[8], where
datasets are increasingly large and require analysis at high
resolutions for accurate theoretical predictions. Wavelet
theory is well established in the Euclidean domain. Scale-
discretised wavelets [9]–[13] lean on a tiling of the harmonic
line to produce an exact wavelet transform in both the
continuous and discrete settings.

Functions cannot simultaneously have finite support
in both the spatial (time) and spectral (frequency) do-
mains [14], [15]. Slepian, Landau and Pollak solved the fun-
damental problem of finding and representing the functions
that are optimally energy concentrated in both the time
and frequency domains [14], [16], [17]. The Slepian spatial-
spectral concentration problem, or Slepian concentration
problem for short, produces the orthogonal functions opti-
mally concentrated in the spatial (spectral) domain and ex-
actly limited in the spectral (spatial) domain. The Slepian
functions and their multidimensional counterparts [18],
[19] have been used in many branches of science and
engineering (e.g. signal processing [20], geophysics [21]–[23],
and medical imaging [24]). In particular, these functions
have been used in solving partial differential equations [25],
[26], inverse problems [27], [28], interpolation [29], [30]
and extrapolation [31]. In fields with spatially limited
observations, the functions have become the dominant
spatial or spectral windows for regularisation of quadratic
inverse problems of power spectral estimation [21].

The initial formulation of the Slepian concentration prob-
lem was developed in the Euclidean domain; however, this
has since been generalised to other geometries [3], [32]–[37].
The Slepian concentration problem for functions defined
on the 2-sphere has been extensively investigated [3], [32],
[33]; often simplifying to the axisymmetric case [22], [38].
The ensuing bandlimited, spatially concentrated functions
have been applied for localised spectral analysis [32], and
spectral estimation of signals [39] defined on the sphere.

Various wavelet-like analysis techniques to simultane-
ously probe signal content localised in space and frequency
have been considered before. Wavelets constructed on
Slepian functions in the Euclidean setting (i.e. prolate
spheroidal wave functions) have been constructed to yield
a multiresolution analysis [40]. Many techniques on the
sphere have also been developed, often motivated by
applications in geophysics or cosmology. Sometimes the
Slepian functions on the sphere themselves have been
used [41]; whereas other times, spatially localised spherical
harmonic transforms are used instead (e.g. [32], [42]–[44]).
Slepian frames on the sphere are constructed in [23],
which provide a wavelet-like representation but do not
constitute a tight frame with an explicit inverse transform.
A Slepian-spatial transform is developed in [45] based on
the directional convolution between the signal and a Slepian
function. An approach to solving inverse problems with
regional data on the sphere is presented in [46], which
results in Slepian functions that can be used to derive a
singular value decomposition (SVD) approach. Standard
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regularisation techniques based on a known SVD can then
be applied to inverse problems where data are only defined
on a region.

This work presents a novel spherical wavelet basis
designed for incomplete spherical datasets. Here, the scale-
discretised wavelet construction on the sphere [9]–[13]
is extended to support situations where data are only
defined over a partial region of the sphere. Scale-discretised
wavelets have the advantage that they constitute a tight
frame, exhibit an explicit inversion formula, and have
excellent localisation properties in both spatial and spectral
domains. The eigenfunctions of the Slepian concentration
problem provide the orthogonal basis functions (the Slepian
functions) for the region from which they are constructed.
A scale-discretised wavelet transform is built on these
basis functions. A tiling of the Slepian line allows one
to define Slepian scale-discretised wavelets. By generalising
the sifting convolution [47], recently presented by the
authors of the current article, one may perform convolutions
over the incomplete sphere using the Slepian functions
as a basis. The Slepian wavelet transform then follows
by performing convolutions of signals defined over the
incomplete sphere with the Slepian wavelets. The original
function can then be reconstructed from its Slepian wavelet
coefficients. Slepian scale-discretised wavelets on the sphere
have many possible applications wherever data are defined
over a partial region of the sphere; for example, in many
cosmological analyses.

The remainder of this article is as follows. Section II
presents some mathematical preliminaries of signals on the
sphere. The sifting convolution on the sphere is discussed,
in particular where the translation is defined as a product
of basis functions. A review of the Slepian concentration
problem on the sphere is presented. The proposed Slepian
wavelet theory is developed in Section III, which first
extends the sifting convolution to the Slepian basis. A scale-
discretised wavelet transform is introduced, along with the
generating functions which define the Slepian wavelets. An
example region is constructed from the topographic map
of the Earth in Section IV. The Slepian functions and
the resulting Slepian wavelets of this region are presented,
and the wavelet transform is performed. A straightforward
denoising example using hard-thresholding of the wavelet
coefficients illustrates a potential use case of these wavelets.
Lastly, Section V sets out some concluding remarks.

II. Mathematical Background and Problem
Formulation

Some mathematical preliminaries are discussed in Sec-
tion II-A with an introduction to signals on the sphere,
the spherical harmonic basis functions, and rotations on
the sphere. A directional convolution on the sphere, the
sifting convolution, is reviewed in Section II-B which was
recently developed by the authors of this work. Lastly, in
Section II-C the Slepian spatial concentration problem is
summarised.

A. Mathematical Preliminaries
1) Signals on the Sphere: The 2-sphere S2 is defined

as such S2 = {ω ∈ R3 :
∥∥ω

∥∥
2 = 1}, where

∥∥ω
∥∥

2
denotes the Euclidean norm. A point on the unit sphere
is parameterised by ω = (θ, ϕ), where the colatitude is
θ ∈ [0, π] and the longitude is ϕ ∈ [0, 2π). The Hilbert
space L2(S2) is formed by the complex-valued square-
integrable functions f(ω). The inner product induces a
norm

∥∥f
∥∥ =

√
⟨f |f⟩. Functions with a finite induced norm

are signals on the sphere.
2) Spherical Harmonics: The complete set of orthonor-

mal basis functions for the Hilbert space L2(S2) are the
spherical harmonics. By the completeness of the spherical
harmonics one may decompose any signal f ∈ L2(S2) as

f(ω) =
∞∑

ℓ=0

ℓ∑
m=−ℓ

fℓmYℓm(ω), (1)

where fℓm are the spherical harmonic coefficients given
by the usual projection onto the basis functions fℓm =
⟨f |Yℓm⟩. The phase convention adopted here is Y ∗

ℓm(ω) =
(−1)m

Yℓ(−m)(ω), such that f∗
ℓm = (−1)m

fℓ(−m) for a real
field. One often considers functions bandlimited at ℓmax,
i.e. signals such that fℓm = 0, ∀ℓ ≥ ℓmax. The shorthand
convention

∑
ℓm =

∑ℓmax−1
ℓ=0

∑ℓ
m=−ℓ may be adopted. The

addition theorem of the spherical harmonics states
ℓ∑

m=−ℓ

Yℓm(ω)Y ∗
ℓm(ω′) = 2ℓ + 1

4π
Pℓ(ω · ω′), (2)

where Pℓ(x) are the Legendre polynomials.
3) Rotation of a Signal on the 2-Sphere: Three-

dimensional rotations may be parametrised by the Euler
angles with ρ = (α, β, γ) ∈ rotation group SO(3), where
α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 2π). A rotation
Rρ consists of the sequence of rotations: (i) γ rotation
about the z-axis; (ii) β rotation about the y-axis; and
(iii) α rotation about the z-axis. A function rotated on
the sphere is defined by (Rρf)(ω) = f(R−1

ρ ω) where the
three-dimensional rotation matrix corresponding to Rρ is
Rρ.

B. Sifting Convolution on the Sphere
Convolutions are a central part of a continuous wavelet

transform. To construct Slepian wavelets, a directional
convolution (i.e. a convolution which accepts inputs that
are not invariant under azimuthal rotation) with an output
which remains on the sphere with minimal leakage outside
the region is required. The sifting convolution [47] is such
a convolution which was recently developed by the authors
of this work.

The rotation operator on the sphere is the usual counter-
part of the Euclidean translation operator in real space. An
alternative operator, Tω, may be defined which follows as
the harmonic space complement of the Euclidean setting.
In contrast to the standard rotation, this translation
considers two angles rather than three, which ensures its
output remains on the sphere. The complex exponentials
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ζu(x) = exp(iux), with x, u ∈ R form the standard
orthonormal basis of the Euclidean setting. The translation
of the basis functions is defined by a shift of coordinates
where ζu(x + x′) = ζu(x′)ζu(x), with x′ ∈ R and where the
final equality follows by the standard rule for exponents.

In an analogous manner a translation operator on the
sphere may be defined as a product of the basis functions
(i.e. the spherical harmonics)

(Tω′Yℓm)(ω) ≡ Yℓm(ω′)Yℓm(ω), (3)
where ω′ = (θ′, ϕ′). The translation of an arbitrary function
f ∈ L2(S2) is thus

(Tω′f)(ω) =
∑
ℓm

fℓmYℓm(ω′)Yℓm(ω), (4)

which implies
(Tω′f)ℓm = fℓmYℓm(ω′). (5)

The sifting convolution on the sphere of f, g ∈ L2(S2)
follows by the inner product

(f ⊚ g)(ω) ≡
∫
S2

dΩ(ω′) (Tωf)(ω′)g∗(ω′), (6)

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure
on S2. In harmonic space this becomes

(f ⊚ g)ℓm = fℓmg∗
ℓm, ∀ℓ, m. (7)

This convolution permits directional kernels, whose output
remains on the sphere, and is efficient to compute — as it
is a product in harmonic space.

The translation Eq. (3) is a product of basis functions
and hence follows as the analogue of the Euclidean setting.
This translation can be extended to any set of arbitrary
basis functions. Thus, to create wavelets restricted to a
region of the sphere, one must seek the basis functions of
a region on the sphere. These basis functions are defined
in Section II-C.

C. Slepian Concentration Problem on the Sphere
A function cannot be strictly spacelimited as well

as strictly bandlimited [14], [15]. This work considers
optimally concentrated functions within a region R. Fig. 1
presents such an example region on the sphere.

1) Spatial Concentration of a Bandlimited Function:
To maximise the spatial concentration of a bandlimited
function f ∈ L2(S2) within a region R one may maximise
the following ratio:

µ =

∫
R

dΩ(ω)
∣∣f(ω)

∣∣2

∫
S2

dΩ(ω)
∣∣f(ω)

∣∣2
, (8)

where 0 < µ < 1 is a measure of the spatial concentration.
Using the spherical harmonic expansion of f this becomes

µ =

∑
ℓm

fℓm

∑
ℓ′m′

Kℓm,ℓ′m′f∗
ℓ′m′∑

ℓm

∣∣fℓm

∣∣2 , (9)

R

Fig. 1. In many application domains, data are observed on a partial
region of the sphere only, such as R.

where
Kℓm,ℓ′m′ =

∫
R

dΩ(ω) Yℓm(ω)Y ∗
ℓ′m′(ω) (10)

is an ℓ2
max × ℓ2

max matrix if including all ℓ and m. In
practice, Eq. (10) may be computed by discretising it using
quadrature weights over the sphere. Computing the integral
is non-trivial for a general region R with a high ℓmax.
One may rewrite Eq. (9) as a classical matrix variational
problem

µ = f †Kf

f †f
. (11)

The harmonic coefficients f are the solutions to the ℓ2
max ×

ℓ2
max eigenproblem

Kf = µf . (12)

The matrix K is real, symmetric and positive definite;
hence, the eigenvalues µp are always real. The eigenvalues
are a measure of how well concentrated the eigenvectors
are, cf. Eq. (8). Hence, the eigenvalues satisfy 1 > µ1 ≥
µ2 ≥ . . . ≥ µℓ2

max
> 0, with corresponding eigenvectors

f1, f2, . . . , f ℓ2
max

. The largest eigenvalue µ1 is strictly
less than one as no bandlimited function may be restricted
exactly within a region R, and the smallest eigenvalue µℓ2

max
is strictly greater than zero due to the positive definiteness
of the matrix K. Consider the sum of the eigenvalues

N =
∑
ℓm

Kℓm,ℓm =
∑
ℓm

∫
R

dΩ(ω) Yℓm(ω)Y ∗
ℓm(ω)

=
∑

ℓ

2ℓ + 1
4π

Pℓ(1)
∫
R

dΩ(ω)

= A

4π
ℓ2

max, (13)

where the second line follows by the addition theorem
Eq. (2), and A is the area of the region R. This N
is a spherical analogue interpretation of the Shannon
number [3], which is a good estimate of the number of
significant eigenvalues [48].

2) Slepian Decomposition: The Slepian functions offer
an alternative orthogonal basis on the sphere, decomposing
a function f ∈ L2(S2) into this basis is

f(ω) =
ℓ2

max∑
p=1

fpSp(ω), (14)
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where Sp(ω) are the Slepian functions. If the function f(ω)
is well-localised in the region R (i.e. f ∈ L2(R)), then N
well-localised Slepian functions can describe it

f(ω) ≈
N∑

p=1
fpSp(ω) =

∑
p

fpSp(ω), (15)

where a shorthand notation has been introduced. The usual
projection onto the basis functions permits one to calculate
the Slepian coefficients fp = ⟨f |Sp⟩.

For a well-localised function one instead may compute
the Slepian coefficients with an integral over the region R
rather than S2

fp ≈ 1
µp

∫
R

dΩ(ω) f(ω)S∗
p(ω), (16)

as ∫
R

dΩ(ω) f(ω)S∗
p(ω) ≈

∑
p′

fp′

∫
R

dΩ(ω) Sp′(ω)S∗
p(ω)

=
∑
p′

fp′S†
pKSp′ = fpµp, (17)

where Sp are the harmonic coefficients of Sp(ω). Although,
there will always be a small amount of signal leakage out
of the region. Note the use of the orthogonality results∫

S2

dΩ(ω) Sp(ω)S∗
p′(ω) = S†

p′Sp = δpp′ , (18)

and∫
R

dΩ(ω) Sp(ω)S∗
p′(ω) = S†

p′KSp = µpS†
p′Sp = µpδpp′ .

(19)
One may transform from Slepian coefficients to spherical

harmonic coefficients by

fℓm =
∫
S2

dΩ(ω) f(ω)Y ∗
ℓm(ω) =

∑
p

fp(Sp)ℓm, (20)

where
(Sp)ℓm =

∫
S2

dΩ(ω) Sp(ω)Y ∗
ℓm(ω) (21)

are the eigenvectors of Eq. (12). The corresponding
transform from spherical harmonic coefficients to Slepian
coefficients is

fp =
∫
S2

dΩ(ω) f(ω)S∗
p(ω) =

∑
ℓm

fℓm(Sp)∗
ℓm. (22)

III. Slepian Wavelets
This section develops the theory behind Slepian wavelets.

The sifting convolution [47] is first extended to the Slepian
basis in Section III-A. This convolution is then used to
define the Slepian wavelet transform in Section III-B
with a suitable admissibility condition to ensure exact
reconstruction. The generating functions used to construct
Slepian wavelets that satisfy the admissibility condition are
presented in Section III-C. Lastly, in Section III-D some
properties of the wavelets are discussed.

A. Slepian Sifting Convolution
The central part of a continuous wavelet transform is a

convolution, and thus the Slepian functions can be used
as a basis to define wavelets in the region. The sifting
convolution on the sphere developed by the authors of
the current article [47] and defined in Section II-B, can
be extended to any arbitrary basis. Consider the sifting
convolution of a region on the sphere with a localised basis
given by the Slepian functions. The translation can be
defined by

(Tω′Sp)(ω) ≡ Sp(ω′)Sp(ω), (23)

where ω′ = (θ′, ϕ′), and the Sp(ω) are the Slepian functions
defined in Section II-C. Although the Slepian functions
are defined over the whole sphere they are concentrated
in a given region, therefore typically ω′ ∈ R. Thus, the
translation of an arbitrary function f ∈ L2(R) is

(Tω′f)(ω) =
∑

p

fpSp(ω′)Sp(ω), (24)

which in Slepian space becomes

(Tω′f)p = fpSp(ω′). (25)

The sifting convolution between two functions f, g ∈ L2(R)
is as before, i.e.

(f ⊚ g)(ω) ≡
∫
S2

dΩ(ω′) (Tωf)(ω′)g∗(ω′), (26)

which is a product in Slepian space

(f ⊚ g)p = fpg∗
p , (27)

and hence is efficient to compute. With a convolution
defined in Slepian space to hand, one may now define
the Slepian wavelets.

B. Slepian Scale-Discretised Wavelets on the Sphere
A tiling of Slepian space can be used to construct the

Slepian wavelet transform, where one may restrict the scale
parameter p to N = ℓ2

maxA/4π for a region R (or to ℓ2
max

for the entire sphere). One may probe spatially localised,
scale-dependent content through a scale-discretised wavelet
transform. These wavelets are defined similarly to [9], [10]
but expanded in the Slepian basis rather than the spherical
harmonics.

Now consider a signal of interest f ∈ L2(R) concentrated
within a region R. Wavelet coefficients W Ψj ∈ L2(R) may
be defined by a sifting convolution of f with the wavelet
Ψj ∈ L2(R) for wavelet scale j

W Ψj

(ω) = (Ψj ⊚ f)(ω)

=
∫
S2

dΩ(ω′) (TωΨj)(ω′)f∗(ω′), (28)

or in Slepian space

W Ψj

p = Ψj
pf∗

p , (29)
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where Ψj
p are the Slepian harmonic coefficients of the

wavelet at scale j.
Typically, wavelets are complemented with scaling func-

tions, with each capturing different scales of the underlying
function. Similarly to the wavelet coefficients, scaling
coefficients W Φ ∈ L2(R) may be defined by a sifting
convolution between f and the scaling function Φ ∈ L2(R)

W Φ(ω) = (Φ ⊚ f)(ω) =
∫
S2

dΩ(ω′) (TωΦ)(ω′)f∗(ω′), (30)

or in Slepian space

W Φ
p = Φpf∗

p , (31)

where Φp are the Slepian coefficients of the scaling function.
The function f may be reconstructed from its wavelet

and scaling coefficients given that the wavelets and scaling
function satisfy an admissibility condition by

f(ω) =
∫
S2

dΩ(ω′) (TωΦ)(ω′)W Φ∗(ω′)

+
J∑

j=J0

∫
S2

dΩ(ω′) (TωΨj)(ω′)W Ψj∗(ω′), (32)

or in Slepian space

fp = W Φ∗
p Φp +

J∑
j=J0

W Ψj∗
p Ψj

p. (33)

The lowest and highest scales j of the wavelet decomposi-
tion are represented by the parameters J0 and J respec-
tively — these parameters must be defined consistently to
ensure exact reconstruction [9]. The admissibility condition
on which synthesis of Eq. (32) relies, is thus

∣∣Φp

∣∣2 +
J∑

j=J0

∣∣Ψj
p

∣∣2 = 1, ∀p, (34)

which is found by substituting Eqs. (30) and (31) into
Eq. (33). One may now define wavelets and a scaling
function that satisfy this admissibility property.

C. Generating Functions
To tile the Slepian line, one requires a set of smooth

generating functions. This work utilises a set of such
functions defined by [9], a brief summary follows. Consider
the C∞ Schwartz function with compact support on [−1, 1]

s(t) ≡

{
exp

(
1/(t2 − 1)

)
, t ∈ [−1, 1],

0, t /∈ [−1, 1],
(35)

for t ∈ R. One may then introduce the positive real
parameter λ ∈ R+

∗ to map s(t) to

sλ(t) ≡ s

(
2λ

λ − 1(t − λ−1) − 1
)

, (36)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
p
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N=690

p
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p

3
p

4
p

5
p

6
p

7
p

8
p

9
p

Fig. 2. The tiling of the Slepian line with parameters λ = 3, J0 =
2 and bandlimit ℓmax = 128, where increasing p represents worse
concentration. The black dashed line marks the Shannon number for
the South America region N = 690. The scaling function and the first
five wavelets are non-zero, as the coefficients are within the Shannon
number.

which has compact support in [1/λ, 1]. The smoothly
decreasing function kλ is then defined by

kλ(t) ≡
1∫

t

dt′ s2
λ(t′)
t′

/ 1∫
1/λ

dt′ s2
λ(t′)
t′ , (37)

which is unity for t < 1/λ, zero for t > 1, and smoothly
decreasing from unity to zero for t ∈ [1/λ, 1]. The wavelet
generating function is defined

κλ(t) ≡
√

kλ(t/λ) − kλ(t), (38)

and the scaling function generating function

ηλ(t) ≡
√

kλ(t). (39)

A natural approach is to define the wavelets Ψj
p from the

generating functions κλ to have support on [λj−1, λj+1],
which yields

Ψj
p ≡ κλ

(
p

λj

)
. (40)

The admissibility condition Eq. (34) is satisfied for these
wavelets for p ≥ λJ0 , where J0 is the lowest wavelet
scale used in the decomposition. The scaling function Φ is
constructed to extract the modes that cannot be probed
by the wavelets (i.e. modes with p < λJ0)

Φp ≡ ηλ

(
p

λJ0

)
. (41)

J is set to ensure exact reconstruction yielding J =
⌈ logλ(N)⌉. The lowest wavelet scale J0 is arbitrary, pro-
vided 0 ≤ J0 < J . The Slepian wavelets are constructed
by the tiling of the Slepian line as shown in Fig. 2.
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D. Properties
The properties of Slepian wavelets are reviewed here,

which are often akin to the standard spherical scale-
discretised wavelets constructed on the spherical harmonics,
but not always.

1) Localisation: Typically, scale-discretised wavelets are
constructed through a tiling of the harmonic line. Therefore,
the value of j in the wavelets Ψj corresponds to increasingly
higher frequencies (smaller scales). The Slepian setting,
however, is less straightforward. Here, p is a measure of
spatial concentration, where the lower the value of p the
more well-localised the Slepian function is. The Slepian
wavelets are built on a tiling of the Slepian harmonic
line, hence the localisation is captured in the wavelets
and corresponding wavelet coefficients.

2) Wavelet Energy: The wavelet energy is∥∥Ψj
∥∥2 =

∫
S2

dΩ(ω)
∣∣Ψj(ω)

∣∣2 =
∑

p

∣∣Ψj
p

∣∣2
. (42)

A similar expression exists for the scaling function energy.
3) Parseval Frame: Slepian scale-discretised wavelets on

the sphere satisfy the following Parseval frame property

A
∥∥f

∥∥2 ≤
∫
S2

dΩ(ω)
∣∣ ⟨TωΦ|f⟩

∣∣2

+
J∑

j=J0

∫
S2

dΩ(ω)
∣∣ ⟨TωΨj |f⟩

∣∣2 ≤ B
∥∥f

∥∥2
, (43)

with A, B ∈ R+
∗ . This can be proved by noting the Slepian

representation of the scaling coefficients Eq. (31) and the
wavelet coefficients Eq. (29), and using the orthogonality
of the Slepian functions Eq. (18)∑

p

∣∣Φp

∣∣2∣∣fp

∣∣2 +
J∑

j=J0

∣∣Ψj
p

∣∣2∣∣fp

∣∣2 =
∥∥f

∥∥2
, (44)

where the equality follows by the admissibility condition
Eq. (34). Thus, scale-discretised wavelets provide a Parseval
frame with A = B = 1, implying that the energy of f is
conserved in wavelet space.

4) Wavelet Domain Variance: For notational brevity,
define a quantity

φ ∈ {Φ, Ψj} (45)

to represent both the scaling function and the wavelets.
The variance of the wavelet/scaling coefficients is given by[

∆W φ(ω)
]2 = ⟨

∣∣W φ(ω)
∣∣2⟩ −

∣∣ ⟨W φ(ω)⟩
∣∣2

. (46)

For the common case of zero-mean Gaussian noise, the
expected value of the Slepian coefficients is zero, and hence
the wavelet/scaling coefficient expectation is zero. Thus,
the variance of the wavelet/scaling coefficients is[

∆W φ(ω)
]2 =

∑
p

∑
p′

φpφ∗
p′Sp(ω)S∗

p′(ω) ⟨f∗
p fp′⟩ . (47)

To simplify Eq. (47) further, consider homogenous and
isotropic noise defined by its power spectrum

⟨fℓmf∗
ℓ′m′⟩ = Cℓδℓℓ′δmm′ , (48)

where Cℓ = σ2 for white noise. The power spectrum in
harmonic space may be converted to the Slepian space by

⟨fpf∗
p′⟩ =

∑
ℓm

∑
ℓ′m′

⟨fℓmf∗
ℓ′m′⟩ (Sp)∗

ℓm(Sp′)ℓ′m′

= σ2δpp′ , (49)

where the first line follows from Eq. (22), and the last
line follows from the orthogonality of the Slepian functions
Eq. (18). Thus, the final expression for the wavelet domain
variance becomes[

∆W φ(ω)
]2 = σ2

∑
p

∣∣φp

∣∣2∣∣Sp(ω)
∣∣2

, (50)

and hence the variance depends on the position on the
sphere.

IV. Numerical Illustration
This section demonstrates the construction and ap-

plication of Slepian wavelets for an example region on
the sphere. A region is constructed from a topographic
map of the Earth in Section IV-A, and the resulting
eigenfunctions and eigenvalues are found. The Slepian
wavelets and wavelet coefficients of this region are shown in
Section IV-B. A straightforward denoising example is pre-
sented in Section IV-C which demonstrates a possible use
case of Slepian wavelets. All computations are performed
with the SSHT1 [49] and S2LET2 [11] codes, on which the
Slepian wavelet transforms on the sphere are built. Further,
the SLEPLET [50] code has been developed to perform the
work in this article.

A. South America Region
A region on the sphere is constructed from the Earth

Gravitational Model EGM2008 dataset [51], which is a
topographic map of the Earth. The left panel of Fig. 3
presents the dataset up to an order of ℓmax = 128, smoothed
with a FWHM = 1.17◦ to avoid aliasing, and centred on
a view of South America. The smoothing is performed
purely to improve the visuals from bandlimiting the initial
dataset. A masked region R is constructed by centring a
polar cap of angular opening 40◦ over South America, and
then: (i) setting the field value to zero outside the cap; and
(ii) setting the negative field value inside the cap to zero.
The resulting region is shown in the right panel of Fig. 3.
Another region is considered in Appendix A.

The Slepian functions of this region are found by
solving the eigenproblem Eq. (12), and then performing
an inverse spherical harmonic transform. The Shannon
number Eq. (13) of R is N = 690. An example set
of Slepian functions for this region is given in Fig. 4
for p ∈ {1, 10, 25, 50, 100, 200}, with the corresponding
eigenvalue µp, which is a measure of the concentration
within the region. The Slepian functions initially peak in
the middle of the region representing good concentration,

1http://astro-informatics.github.io/ssht/
2http://astro-informatics.github.io/s2let/

http://astro-informatics.github.io/ssht/
http://astro-informatics.github.io/s2let/
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+0.0e+0

+2.2e+3

(a) EGM2008
−1.9e+3

+0.0e+0

+1.9e+3

(b) R

Fig. 3. Panel (a) corresponds to a topographic map of the Earth
(from the EGM2008 dataset) centred on a view of South America.
The dataset is bandlimited at ℓmax = 128, and smoothed with
FWHM = 1.17◦. Panel (b) presents the region R, the shape of which
is constructed from the Slepian coefficients of the South America
mask. The field value outside the region in panel (b) is set to negative
infinity for illustrative purposes. The amplitude of the right panel is
set by the height of the Andes, rather than the lowest depths of the
sea.

and gradually spread out as p increases. The boundaries of
the region are captured by those Slepian functions where
p ≲ N corresponding to the wavelets in panels (e–f) of
Fig. 6. The corresponding N eigenvalues are shown in
Fig. 5, where the eigenvalues remain ∼1 for many p values
until decreasing towards zero.

B. Wavelets and Wavelet Coefficients

Recall the Slepian scaling function and wavelets de-
scribed in Section III-C. These functions are constructed
from a tiling of the Slepian line with parameters λ = 3,
J0 = 2 and bandlimit ℓmax = 128 as shown in Fig. 2, where
the Shannon number of the South America region has
been highlighted. In practice, this means that the scaling
function and the wavelets for scales j ∈ {2, 3, 4, 5, 6} are
the only non-zero basis functions for this region.

The scaling function and corresponding wavelets are
shown in Fig. 6. The scaling function and the lower
wavelet scales are more concentrated within the region
as they are based on the Slepian functions corresponding
to the eigenvalues on the left of Fig. 5. In contrast, the
higher wavelet scales are focused on the boundaries of the
region due to the less well-concentrated Slepian functions.
One may calculate the corresponding scaling and wavelet
coefficients using the wavelet transforms in Eqs. (30)
and (28) respectively. The wavelet and scaling coefficients
for the Earth topographic data of the South America region
are shown in Fig. 7.

C. Wavelet Denoising

A typical use case of wavelets is to denoise signals.
Wavelets localise features in the data to different scales,
hence the important parts of the signal can be preserved
whilst removing the noise. To test the efficacy of Slepian
wavelets, white noise is added to the constructed region
R in the right panel of Fig. 3. A straightforward hard-
thresholding scheme is developed to perform the denoising.

−2.5e+1

+0.0e+0

+2.5e+1

(a) Re
{

S1(ω)
}

, µ1 = 1.00
−1.5e+1

+0.0e+0

+1.5e+1

(b) Re
{

S10(ω)
}

, µ10 = 1.00

−5.4e+0

+0.0e+0

+5.4e+0

(c) Re
{

S25(ω)
}

, µ25 = 1.00
−4.6e+0

+0.0e+0

+4.6e+0

(d) Re
{

S50(ω)
}

, µ50 = 1.00

−4.7e+0

+0.0e+0

+4.7e+0

(e) Re
{

S100(ω)
}

, µ100 = 1.00
−6.8e+0

+0.0e+0

+6.8e+0

(f) Re
{

S200(ω)
}

, µ200 = 1.00

Fig. 4. The Slepian functions of the South America region Sp(ω)
for p ∈ {1, 10, 25, 50, 100, 200} shown left-to-right, top-to-bottom.
The corresponding eigenvalue µp is a measure of the concentration
within the given region R, which remain ∼1 for many p values before
decreasing towards zero. Note the radial structure of the Slepian
functions for a region on S2 like that of the spherical harmonics.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
p

0.0

0.2

0.4

0.6

0.8

1.0
N=690

Fig. 5. The eigenvalues of the South America region concentrated
within the Shannon number N = 690. The majority of the eigenvalues
are ∼1 before decreasing rapidly towards zero around the Shannon
number.
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{
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}

−2.4e+1

+0.0e+0

+2.4e+1

(c) Re
{

Ψ3j(ω)
} −5.9e+1

+0.0e+0

+5.9e+1

(d) Re
{

Ψ4j(ω)
}

−9.0e+1

+0.0e+0

+9.0e+1

(e) Re
{

Ψ5j(ω)
} −9.3e+1

+0.0e+0

+9.3e+1

(f) Re
{

Ψ6j(ω)
}

Fig. 6. The scaling function and the wavelets for scales j ∈
{2, 3, 4, 5, 6} for the South America region shown left-to-right, top-to-
bottom. The wavelets are constructed through a tiling of the Slepian
line using scale-discretised functions, with parameters λ = 3, J0 = 2,
and bandlimit ℓmax = 128. In contrast to the standard axisymmetric
scale-discretised wavelets, Slepian wavelets have a radial structure
due to radial nature of the Slepian functions in Fig. 4.

To calculate the covariance of a filtered field (wavelet
coefficients), consider a signal localised in R in the presence
of noise

x(ω) = s(ω) + n(ω), (51)

where s(ω) and n(ω) are the signal and noise, respectively.
The power spectrum of the noise in Slepian space is as
before

⟨npn∗
p′⟩ = σ2δpp′ . (52)

To assess the fidelity of the observed signal, a signal-to-
noise-ratio in the region is given by

SNR(x) ≡ 10 log10

∥∥s
∥∥2∥∥x − s

∥∥2 . (53)

One seeks a denoised version of x, denoted d ∈ L2(R), with
large SNR(d) such that d isolates the informative signal
s. In contrast to standard spherical wavelets — where the
scaling function is often not used in denoising — with
Slepian wavelets, one treats both the scaling function and
the wavelets similarly. The Slepian functions, on which
the Slepian wavelet scaling function is constructed, can

−2.3e+2

+0.0e+0

+2.3e+2

(a) Re
{

W Φ(ω)
} −6.2e+2

+0.0e+0

+6.2e+2
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{

W Ψ2j (ω)
}

−6.7e+2

+0.0e+0

+6.7e+2

(c) Re
{

W Ψ3j (ω)
} −1.2e+3

+0.0e+0

+1.2e+3

(d) Re
{

W Ψ4j (ω)
}

−1.9e+3

+0.0e+0

+1.9e+3

(e) Re
{

W Ψ5j (ω)
} −6.7e+2

+0.0e+0

+6.7e+2

(f) Re
{

W Ψ6j (ω)
}

Fig. 7. The scale-discretised wavelet transform of the topographic
map of South America for parameters λ = 3, J0 = 2, and bandlimit
ℓmax = 128; i.e. with the wavelets shown in Fig. 6. Spatially localised,
scale-dependent features of the bandlimited signal may be extracted
by the wavelet coefficients given by the wavelet transform. The scaling
coefficients are given in the top left plot, while the wavelet coefficients
at scales j ∈ {2, 3, 4, 5, 6} are shown left-to-right, top-to-bottom.

be relatively well-localised and hence the Slepian wavelet
scaling coefficients are not necessarily a low-frequency
representation of the signal (see Section III-D1).

The wavelet/scaling coefficients of Eq. (51) are given
by the sum of the individual elements since the wavelet
transform is linear

Xφ(ω) = Sφ(ω) + Nφ(ω). (54)

Here, capital letters denote the wavelet coefficients, i.e.
Xφ(ω) = (φ ⊚ x)(ω). The noise in wavelet space is as
before[

∆Nφ(ω)
]2 = σ2

∑
p

∣∣φp

∣∣2∣∣Sp(ω)
∣∣2 ≡ σφ(ω)2

, (55)

where the quantity σφ defines the standard deviation of
the noise in wavelet space. One may perform denoising
by hard-thresholding the wavelet/scaling coefficients with
a threshold T proportional to the standard deviation of
the noise σφ. The denoised wavelet coefficients Dφ(ω) =
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(φ ⊚ d)(ω) become

Dφ(ω) =
{

0, Xφ(ω) < T φ(ω),
Xφ(ω), Xφ(ω) ≥ T φ(ω),

(56)

where T φ(ω) = Nσσφ(ω), with Nσ ∈ R+
∗ . The denoised

signal d may then be reconstructed from its wavelet/scaling
coefficients. The denoising formalism described above is
straightforward, and more sophisticated denoising strate-
gies can be developed; this procedure is merely provided
to show a practical use case of Slepian wavelets.

A noisy signal is constructed by adding Gaussian white
noise to the South America signal (set to zero outside the
region) described in Section IV-A. The initial signal-to-
noise ratio of the noised signal is 4.11 dB as shown in panel
(a) of Fig. 8. The denoising procedure described above
is performed with Nσ ∈ {2, 3, 5}, shown in panels (b–d).
This leads to a signal-to-noise ratio of 5.67 dB, 4.60 dB and
1.27 dB respectively. Thus, this hard-thresholding scheme
increases the power of the signal unless a significant amount
of signal is removed at which point the signal-to-noise
begins to decrease.

V. Conclusions
This work presents the construction of Slepian scale-

discretised wavelets on the sphere, which are wavelets
restricted to a region of the sphere. These wavelets can
be used in many fields of science and engineering where
data are measured on the sphere but are missing on a
particular region. A common approach to analysing data
of this form is by using spherical wavelets, which allow one
to probe spatially localised, scale-dependent features of
the signal. However, wavelet methods on the whole sphere
suffer problems when data are only defined on a particular
region, as the wavelet coefficients are contaminated near
the boundaries of the region. These distorted coefficients
may then be detected and removed for accurate analysis.
However, by removing the wavelet coefficients near the
boundary, the power of the data is not fully utilised. Slepian
wavelets offer a solution to this problem.

Slepian wavelets are constructed on the eigenfunctions of
the Slepian spatial-spectral concentration problem on the

sphere, which are the basis functions of the region. Through
a tiling of the Slepian line, one may define Slepian scale-
discretised wavelets that are localised within the region
of interest. The current work generalises the sifting convo-
lution [47] on the sphere beyond the spherical harmonic
setting to any basis, where here the Slepian functions define
the basis. The Slepian wavelet transform then follows by
performing convolutions over the incomplete sphere with
the Slepian wavelets. The original function can then be
reconstructed from its Slepian wavelet coefficients.

An example South America region is constructed from a
topographic map of the Earth, and the Slepian functions
and corresponding eigenvalues of this region are presented.
Through a wavelet transform, the wavelets and wavelet
coefficients of this region are found. The South America
signal is corrupted with Gaussian white noise in the
region, and a straightforward hard-thresholding denoising
formalism is described. The denoised signal plots are shown
for different values of Nσ, and an improvement to the signal-
to-noise ratio is observed. Through a direct connection to
the harmonic space, one can trace a variance directly to
the Slepian domain. Slepian wavelets can be used in many
standard wavelet applications, such as sparse regularisation
approaches to solve inverse problems [52]–[54]. This work
defines the Slepian functions in the spherical domain;
however, the eigenfunctions of the Slepian concentration
problem can be found for other manifolds. The sifting
convolution can be defined for a given manifold through
a translation of the eigenfunctions and, as such, Slepian
wavelets can be generalised to arbitrary manifolds, which
is the focus of future work.

Appendix
Africa Example

Another region R′ is constructed by centring a polar
cap of angular opening 41◦ over Africa on the EGM2008
dataset similarly to Section IV-A as shown in Fig. 9. The
eigenvalue plot is presented in Fig. 10, with a selection
of Slepian functions p ∈ {1, 10, 25, 50, 100, 200} given in
Fig. 11. Fig. 12 presents the corresponding scaling function
and the wavelets for scales j ∈ {2, 3, 4, 5, 6, 7} for the Africa
region. The wavelet and scaling coefficients for the Earth

−1.9e+3

+0.0e+0

+1.9e+3

(a) Initial Noisy Data
SNR(x) = 4.11 dB

−1.9e+3

+0.0e+0

+1.9e+3

(b) Denoised Nσ = 2
SNR(d) = 5.67 dB

−1.9e+3

+0.0e+0

+1.9e+3

(c) Denoised Nσ = 3
SNR(d) = 4.60 dB

−1.9e+3

+0.0e+0

+1.9e+3

(d) Denoised Nσ = 5
SNR(d) = 1.27 dB

Fig. 8. Panel (a) shows the initial noisy signal of the South America region with a signal-to-noise ratio of 4.11 dB. The scaling and wavelet
coefficients of the noisy signal are calculated and are then hard-thresholded for a few Nσ values. The corresponding denoised plots for
Nσ ∈ {2, 3, 5} are shown in panels (b–d). At Nσ = 2 the signal-to-noise ratio is boosted by 1.56 dB to 5.67 dB. As more signal is removed the
signal-to-noise ratio decreases to 4.60 dB at Nσ = 3, which is still higher than the initial noisy signal. At Nσ = 5 the signal-to-noise ratio is
1.27 dB, where only the Andes remains.
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+0.0e+0

+2.2e+3

(a) EGM2008
−1.2e+3

+0.0e+0

+1.2e+3

(b) R′

Fig. 9. Panel (a) corresponds to the EGM2008 dataset centred on a
view of Africa. As before, the dataset is bandlimited at ℓmax = 128,
and smoothed with FWHM = 1.17◦. Panel (b) presents the region
R′, the shape of which is constructed from the Slepian coefficients of
the Africa mask. The field value outside the region in panel (b) is set
to negative infinity for illustrative purposes. The amplitude of the
right panel is set by the height of Mount Kilimanjaro, rather than
the lowest depths of the sea.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
p

0.0
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Fig. 10. The eigenvalues of the Africa region concentrated within the
Shannon number N = 1208. The majority of the eigenvalues are ∼1
before decreasing rapidly towards zero around the Shannon number.

topographic data of the Africa region are given in Fig. 13.
Lastly, the denoising procedure in Section IV-C is repeated
for a noisy Africa signal with an initial signal-to-noise ratio
of 1.78 dB as shown in Fig. 14. This leads to a signal-to-
noise ratio of 3.95 dB, 2.93 dB and 0.55 dB respectively.
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