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Abstract

A core motivation of science is to evaluate which scientific model best explains observed data. Bayesian
model comparison provides a principled statistical approach to comparing scientific models and has
found widespread application within cosmology and astrophysics. Calculating the Bayesian evidence is
computationally challenging, especially as we continue to explore increasingly more complex models.
The Savage-Dickey density ratio (SDDR) provides a method to calculate the Bayes factor (evidence
ratio) between two nested models using only posterior samples from the super model. The SDDR
requires the calculation of a normalised marginal distribution over the extra parameters of the super
model, which has typically been performed using classical density estimators, such as histograms.
Classical density estimators, however, can struggle to scale to high-dimensional settings. We introduce
a neural SDDR approach using normalizing flows that can scale to settings where the super model
contains a large number of extra parameters. We demonstrate the effectiveness of this neural SDDR
methodology applied to both toy and realistic cosmological examples. For a field-level inference setting,
we show that Bayes factors computed for a Bayesian hierarchical model (BHM) and simulation-
based inference (SBI) approach are consistent, providing further validation that SBI extracts as much
cosmological information from the field as the BHM approach. The SDDR estimator with normalizing
flows is implemented in the open-source harmonic Python package. �

1. INTRODUCTION

A core aspect of science is to determine which scientific
model of reality is the most accurate. Bayesian model
comparison provides a principled statistical approach to
comparing scientific models that has found widespread
application, particularly in astrophysics and cosmology
(Trotta 2007). With advances in computational power,
it is possible to analyse increasingly complex cosmolo-
gical and astrophysical models. To describe these more
complex and intricate models, additional parameters are
often required, including those that are physically inter-
esting as well as those that might be considered nuisance
parameters yet must be modelled (e.g. von Wietersheim-
Kramsta et al. 2025).
These more complex models that often exist in higher-

dimensional parameter spaces, however, can be costly
to analyse, with some models being infeasible to ex-
plore due to insurmountable computational costs. We
can make use of modern machine learning techniques
and their underlying technologies to massively accelerate
the computational speed of performing Bayesian infer-
ence. This can be achieved by combining (i) emulation
of physical models by machine learning techniques; (ii)
differentiable and probabilistic programming ; (iii) scal-
able Markov chain Monte Carlo sampling (MCMC) that
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makes use of gradient information, and (iv) decoupled
and scalable Bayesian model selection, as advocated in
Piras et al. (2024). Gradient-based Markov chain Monte
Carlo (MCMC) sampling algorithms that can leverage
gradients computed efficiently by automatic differenti-
ation make sampling in higher-dimensional parameter
spaces tractable, e.g. the No-U-Turn Sampler (NUTS;
Hoffman & Gelman 2014), a highly efficient and adapt-
ive variant of Hamiltonian Monte Carlo (HMC; Duane
et al. 1987; Neal 1996).
Bayesian model selection requires the computation of

the Bayesian evidence, which is typically performed by
nested sampling (Skilling 2006; see Ashton et al. 2022;
Buchner 2023 for reviews), where sampling must be per-
formed in a prescribed nested manner for which a vari-
ety of algorithms have been developed (Feroz & Hob-
son 2008; Feroz et al. 2009; Higson et al. 2019; Feroz
et al. 2019; Handley et al. 2015a,b; Speagle 2020; Buch-
ner 2021; Cai et al. 2021; McEwen et al. 2023; Lange
2023). Nested sampling is thus not applicable for ar-
bitrary MCMC sampling algorithms. To compute the
Bayesian evidence for arbitrary sampling algorithms,
such as NUTS, we require methods to compute the
Bayesian evidence that are decoupled from the sampling
algorithm while being scalable. Methods that require
only posterior samples to compute the evidence have be-
come increasingly popular (Dickey 1971; DiCiccio et al.
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1997; Trotta 2007; Heavens et al. 2017; Jia & Seljak 2020;
McEwen et al. 2021; Srinivasan et al. 2024; Rinaldi et al.
2024). Amongst these methods, the learned harmonic
mean estimator (McEwen et al. 2021; Polanska et al.
2023; Polanska et al. 2024a), available in the harmonic
software package, has been shown to provide robust and
scalable evidence calculations and has been growing in
popularity within astrophysics and cosmology (Spurio
Mancini et al. 2023; Piras et al. 2024; Polanska et al.
2024b; Spurio Mancini et al. 2024; Stiskalek & Desmond
2024; Du et al. 2025; Carrion et al. 2025; Stiskalek et al.
2025).
Even with such acceleration, the process of performing

Bayesian model comparison can still be highly computa-
tionally costly as it requires acquiring posterior samples
along with their respective likelihood values for every
model being evaluated. However, if the models being
compared have a relationship where one model is a nested
model of the larger super model, then we can make use
of the Savage-Dickey density ratio (SDDR; Dickey 1971;
Verdinelli & Wasserman 1995; O’Hagan & Forster 2004)
to perform Bayesian model comparison without needing
to explicitly acquire samples from the nested model. The
term ‘nested’ here refers to a relationship between two
models where a super model reduces to a smaller, nested
model when some of the super model’s parameters are
fixed at particular values, as is often the case in cosmo-
logical settings. We refer to the parameters common to
both the super and nested model as common paramet-
ers and the additional parameters of the super model as
extra parameters. This approximately halves the compu-
tational cost of performing Bayesian model comparison
as we only need to perform sampling once for the su-
per model. The SDDR has already been applied to cos-
mology, for instance by Trotta (2007); Marin & Robert
(2009); Verde et al. (2013); Leistedt et al. (2014); Salva-
telli et al. (2014); Di Valentino et al. (2017, 2020); Kreisch
et al. (2020).
Besides requiring nested models, the SDDR also re-

quires there to be sufficient posterior support with high
enough sample density around the parameter values
where the super model reduces to the nested model to
be able to evaluate the marginal posterior accurately. If
this requirement is not met, calculating the evidence dir-
ectly with the learned harmonic mean provides a good
alternative.
Traditionally the SDDR has been calculated through

the use of classical density estimators, such as histograms
or kernel density estimation. For situations where there
are only a small number of extra parameters, classical
density estimators provide good estimates of the evid-
ence ratio. However, this approach can fail even in set-
tings with just a few extra parameters as, e.g., it becomes
computationally difficult to normalise the histogram of
the probability distribution of the extra parameters by
numerical integration due to the curse of dimensionality.
Normalizing flows (Papamakarios et al. 2021), however,
are normalized by construction and thus are a natural
neural alternative to classical density estimators when
considering higher-dimensional problems. Thus, in this
work we make use of normalizing flows to estimate the
normalized probability distribution of the extra paramet-
ers. As such, we are able to perform SDDR calculations
with a large number of extra parameters.

The remainder of this article is organised as follows.
In Section 2 we provide a brief overview of SDDR and
our methodology with normalizing flows. In Section 3 we
demonstrate and validate the use of our SDDR methodo-
logy in both toy and realistic cosmological examples. We
conclude in Section 4.

2. SAVAGE-DICKEY DENSITY RATIO WITH
NORMALIZING FLOWS

In this section we provide a brief overview of the SDDR
and its connection to Bayesian model comparison. We in-
troduce our SDDR methodology with normalizing flows,
discuss how uncertatinties can be estimated and present
an open-source software implementation.

2.1. Bayesian model comparison

The Bayesian evidence is a measure of the probability
of obtaining the observed data given the model under
consideration, defined as

zi = p(d|Mi) =

∫
p(d|θ,Mi)p(θ|Mi)dθ, (1)

where zi denotes the Bayesian evidence of model Mi for
data, d. The evidence ratio, or Bayes factor, between any
two models, M1 and M2, can be used to assess which
model is favored by the data, expressed as

z1
z2

=
p(d|M1)

p(d|M2)
. (2)

In the case where we have equal prior probabilities for
each model, as is often the case in practice, the Bayes
factor reduces to the posterior model odds following
Bayes theorem:

z1
z2

=
p(M1|d)p(M2)

p(M2|d)p(M1)
=

p(M1|d)
p(M2|d)

. (3)

For models with equal prior model probabilities, the
Bayes factor can thus be used to inform us of which model
is more probable given the observed data.

2.2. Savage-Dickey density ratio

The SDDR (Dickey 1971; Verdinelli & Wasserman
1995; O’Hagan & Forster 2004) is a method of calcu-
lating the Bayes factor, i.e. ratio of evidences between
two models, when one model is a nested model of the
other. It is useful when one does not have direct access
to the nested model or it is computational infeasible to
explore all possible nested models. The SDDR gives the
Bayes factor in terms of the ratio of the normalized mar-
ginal posterior to the prior density of the super model
in the extra parameter(s). This ratio is evaluated at the
point where the super model reduces to the nested model.
Model M1 can be considered a nested model of a larger
super model M2 if:

1. the parameters of M2 can be expressed as a set of
parameters {θ,η}, where θ are the common para-
meters of M1 and M2, whilst η are the extra para-
meters required to extend M1 to M2;

2. for some particular value of η = η1, the likelihood
of the super model reduces to the likelihood of the
nested model;
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3. the prior distributions of θ are identical for M1 and
M2;

4. the prior distributions of η and θ are separable, i.e.
p(θ,η) = p(θ)p(η).

The Bayes factor given data and two models M1 and
M2 is given by

z1
z2

=
p(d|M1)

p(d|M2)

=

∫
p(d|θ′,M1) p(θ

′|M1) dθ
′∫

p(d|θ′′,η′′,M2) p(θ
′′,η′′|M2) dθ

′′ dη′′ . (4)

As our models are nested, we have p(d|θ,M1) =
p(d|θ,η1,M2). It is then straightforward to show (Dickey
1971; Verdinelli & Wasserman 1995; O’Hagan & Forster
2004; Trotta 2007; Verde et al. 2013) that the Bayes
factor reduces to

z1
z2

=

∫
p(θ′,η1|d,M2) dθ

′

p(η1|M2)
. (5)

We can see that the integration of the posterior distri-
bution depicted in the numerator is simply marginaliza-
tion over the common parameters θ, yielding the margin-
alized posterior in η1. Hence, the Bayes factor between
two nested models is given by

z1
z2

=
p(η1|d,M2)

p(η1|M2)
. (6)

The numerator in Eq. (6) is the marginalised posterior
of the extra parameter(s) for the super model, whilst
the denominator is the prior of the extra parameter(s)
for the super model. A more detailed derivation of the
SDDR can be found in Appendix A.
It follows from Eq. (6) that to compute the SDDR one

only requires the posterior samples from the super model
and the prior distribution of the extra parameter(s). This
is a significant advantage as it means that we only need
to perform sampling once for the super model. We can
then use those samples to calculate the Bayes factor with
relation to all possible nested models.
As evaluation of the prior is typically trivial, the chal-

lenge lies in the evaluation of the marginal posterior at
η1, as it must be normalized. This requires numerical
integration in potentially high-dimensions if there are
many extra parameters. In this work, we consider two
approaches.
In the first approach we make use of classical density

estimators by way of a normalized histogram (as con-
sidered previously, e.g. Verde et al. 2013). We also intro-
duce a second approach where we make use of a neural
density estimator by way of normalizing flows to learn the
marginal posterior distribution. Importantly, it is only
with normalizing flows that we are able to calculate the
SDDR in high-dimensional marginal posterior spaces.
Care however needs to be taken when using the SDDR

as it is only valid when the posterior has sufficient sample
density around η1. If this requirement is not met, calcu-
lating the evidence directly with the learned harmonic
mean is preferred.

2.3. SDDR with classical density estimators

To compute the SDDR with classical density estimat-
ors we consider a simple normalized histogram. Following
normalization, we evaluate the marginal posterior prob-
ability at η1. Beyond even a few dimensions normalizing
a histogram becomes computationally challenging. This
is due to the need to numerically integrate over the high-
dimensional parameter space alongside the curse of di-
mensionality. Consequently, this method does not scale
well to high-dimensional problems.

2.4. SDDR with normalizing flows

Normalizing flows have the advantage of being nor-
malized by construction, and thus are a natural neural
density estimator analogue to classical density estimat-
ors that scale to higher-dimensional settings. A normal-
izing flow, in essence, learns the transformation from a
known tractable base distribution such as a Gaussian to
the target distribution. For a comprehensive review of
normalizing flows we refer the reader to Papamakarios
et al. (2021).
More specifically, a vector θ from an unknown distri-

bution p(θ) can be expressed through a transformation
B of a latent vector u sampled from the base distribution
q(u):

θ = B(u), u ∼ q(u). (7)

If B is invertible and both B and its inverse B−1 are
differentiable, we can calculate the density of the distri-
bution of θ through the change of variables formula by

p(θ) = q(u)| det JB(u)|−1, (8)

where JB(u) is the Jacobian corresponding to B. As this
transformation is composable, we can apply B multiple
times to obtain approximations of more complex target
distributions. A normalizing flow thus consists of a series
of such transformations.
In this work we make use of rational quadratic spline

flows (Durkan et al. 2019). Rational quadratic spline
flows split the input domain of u into multiple seg-
ments and apply monotonic rational quadratic polyno-
mial transformations to each segment. The polynomial
segments are restricted to match at bin boundaries such
that the transformed distribution is continuous and dif-
ferentiable.
The rational quadratic splines consist of learned para-

meters that are optimised during training as well as al-
ternating affine transformation layers to create the nor-
malizing flow. Network training is performed by minim-
izing the Kullback-Leibler divergence between samples of
the marginal posterior and the target distribution para-
meterised by the normalizing flow. We train the flow to
learn the marginal posterior distribution and evaluate
the flow at η1.

2.5. Uncertainty estimation

To obtain error estimates for both the classical and
neural SDDR methodologies we perform bootstrap-
ping. We randomly subsample the marginalised pos-
terior samples, with replacement, to create several sets
of bootstrapped samples. We then make use of each
bootstrapped sample set to calculate an SDDR estimate
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either with an independently trained flow or a normal-
ized histogram. We take the mean of these estimates as
our SDDR estimate and the standard deviation across
estimates as the error estimate.

2.6. Code implementation

The implementation of the SDDR using normalizing
flows can be found within the harmonic1 software pack-
age. We have chosen to implement our methods as part
of harmonic to provide a single code for Bayesian model
comparison that is versatile and can handle all situations.
The implementation is also consistent with the interface
of harmonic. harmonic is a professional code that is well-
tested and documented and can be installed from PyPi.
Given posterior samples, computation of the Bayes factor
using our implementation of the SDDR using normaliz-
ing flows requires very little computational resources to
train and run, typically running within a few minutes on
a single CPU. In the snippet in listing 1 we demonstrate
the use of SDDR within harmonic.

import harmonic as hm
import numpy as np

# Define the number of marginal dimensions
nparams = 4
# Load the marginalised posterior samples
marginalised_samples = np.load(’samples.npy’)
# Define the pre-calculated log prior value
log_prior_η_1 = -2
# The point of nesting
η_1 = np.array([-2.0, 0.0, -0.5, 0.5])
# Create the normalizing flow model
model = hm.model.RQSplineModel(nparams, temperature=1.0)
# Create the sddr object
sddr = hm.sddr.sddr(model, marginalised_samples)
# Calculate the Bayes factor
log_bf, std = sddr.log_bayes_factor(log_prior_η_1, η_1)

Listing 1: Example code snippet of how to use the SDDR
functionality within harmonic to calculate the Bayes
factor given η1 and its corresponding log prior value as
well as the samples of the extra parameters.

3. APPLICATIONS

We calculate the SDDR with both classical dens-
ity estimators (histogram) and neural density estimat-
ors (normalizing flows) for a variety of toy and real-
istic cosmological examples. Furthermore, we validate the
Bayes factors computed against alternative approaches
such as nested sampling and the learned harmonic mean
(which require sampling both the super and nested mod-
els), finding excellent agreement. We demonstrate the
effectiveness of neural SDDR both in low-dimensional
marginal posterior spaces where we have access to the
classical density estimator method, but also in higher-
dimensional extra parameter spaces where the classical
density estimator method breaks down.

3.1. Gaussian toy examples

We construct two toy Gaussian likelihood examples
with either 1 or 4 extra parameters in the super model
compared to the nested model. In all scenarios we calcu-
late the log Bayes factor (evidence ratio) by the SDDR,
making use of both the classical histogram method and

1 https://github.com/astro-informatics/harmonic

Table 1: Gaussian toy model with 1 extra parameter.

Method Log Bayes factor

Nested sampling 0.905± 0.013
Learned harmonic mean 0.877± 0.002
SDDR (classical) 0.893± 0.021
SDDR (flows) 0.890± 0.056

the normalizing flow method. We validate our results
with a combination of both the learned harmonic mean
estimator using harmonic with samples obtained with
a MCMC sampler via emcee2 (Foreman-Mackey et al.
2013), and nested sampling with the use of nautilus3

(Lange 2023) to have two independent methods of calcu-
lating the Bayesian evidence.
We consider the data model d ∼ N (µ(θ),Σ), where

the mean µ is dependent on parameters θ but the co-
variance matrix Σ is not. The corresponding Gaussian
likelihood is given by

L(d | θ) =
exp

(
− 1

2 (d− µ(θ))TΣ−1(d− µ(θ)
)

(2π)n/2|Σ|1/2
, (9)

where n is the dimension of the data vector.
For the first Gaussian example we consider a data di-

mension of n = 3 and a super model with parameter
dimension d = 4 where

µ(θ) =

[
θ1
θ2

e0.5×θ3 + θ4

]
. (10)

In this first Gaussian model considered, the super model
(with 4 parameters) reduces to the nested model with
3 parameters when θ4 = −2.0. We initialise a ran-
dom covariance, Σ, by first creating a diagonal covari-
ance with elements randomly drawn from a 1D Gaussian
with mean of 1.0 and standard deviation of 0.1 ensur-
ing all elements are positive. Off diagonal elements in
the upper triangle that are only one index away from
the diagonal with matrix index i are then set with
Σi,i+1 = −1i × 0.5 ×

√
Σi,i × Σi+1,i+1. The upper tri-

angle is then symmetrised with the lower triangle mak-
ing the covariance matrix symmetrical. A mock data
vector is generated by evaluating the forward model at
θ = [0.0,−0.5, 0.5,−2.0], making the nested model the
ground truth. For inference we consider Gaussian priors
on all parameters with mean of 0.0 and diagonal covari-
ance of 2.0.
We find that with this simple example both the his-

togram and normalizing flow methods provide accurate
estimates of the Bayes factor that are in close agreement
with those computed by nested sampling and the learned
harmonic mean, as shown in Table 1. In this case, there
is a weak preference for the nested model which is indeed
the model used to generate the ground truth.
For the second toy Gaussian example, we consider the

same setup as before but we have a super model that
has 8 parameters whilst the nested model only has 4
parameters. The likelihood is again of the form shown
in Eq. 9, this time with n = 4, and the super model is

2 https://github.com/dfm/emcee
3 https://github.com/johannesulf/nautilus

https://github.com/astro-informatics/harmonic
https://github.com/dfm/emcee
https://github.com/johannesulf/nautilus
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Table 2: Gaussian toy model with 4 extra parameters.
Note that there is no entry for the histogram method
as already in this simple example it was computation-
ally challenging to normalize the marginal posterior his-
togram and thus calculate the SDDR.

Method Log Bayes factor

Nested sampling 2.227± 0.013
Learned harmonic mean 2.248± 0.007
SDDR (classical) —
SDDR (flows) 2.374± 0.088

defined with

µ(θ) =

 θ1 + arcsinh(θ5)
arctan(θ2) + θ26
e0.5×θ2 + θ7

e0.5×θ4 + arctan(θ8)

 , (11)

which reduces to the nested model by setting θ5 = −2.0,
θ6 = 0.2, θ7 = −0.2 and θ8 = 1.5. A mock data
vector is generated by evaluating the forward model
at θ = [0.0,−0.5, 0.5, 1.0,−2, 0.2,−0.2, 1.5], making the
nested model the ground truth once again. For inference
we again consider Gaussian priors on all parameters with
mean of 0.0 and diagonal covariance of 2.0.
Already in this setting we found it computationally

challenging to normalize the histogram accurately. As a
result we are unable to easily compute the SDDR with
the histogram methodology by direct numerical integra-
tion. Instead, we rely on the normalizing flow methodo-
logy to calculate SDDR and find that it is in good agree-
ment with the Bayes factor calculated from both nested
sampling and the learned harmonic mean as shown in
Table 2. Fig. 1 depicts the posterior contours with truth
markers for both the nested and super model and the
Bayes factor indicates that there is a definitive prefer-
ence for the nested model, which is the model used to
generate the ground truth.
Given that the toy Gaussian examples show good

agreement between the Bayes factor calculated with the
classical and flow SDDR methodologies, nested sampling
and the learned harmonic mean, we will now turn our
attention to more realistic cosmological examples.

3.2. Dark Energy Survey: ΛCDM vs. wCDM

The first more realistic cosmological scenario explored
is with the Dark Energy Survey (DES; The Dark Energy
Survey Collaboration 2005). We consider simulated DES
Year 1 weak lensing and clustering data following the
approach described in Campagne et al. (2023).
For this example two models are considered. The su-

per model is the wCDM cosmological model where dark
energy is treated as a fluid with equation of state char-
acterised by the w parameter. The corresponding nested
model is ΛCDM, which corresponds to setting w = −1
in the wCDM model. In this work we directly make use
of the posterior wCDM samples obtained already by Po-
lanska et al. (2024a) by MCMC sampling. We also com-
pare to the Bayes factors calculated by Polanska et al.
(2024a) using the learned harmonic mean and nested
sampling.
Table 3 reports the results obtained by our SDDR

methodology for the DES cosmology analysis. There is a
definitive preference for ΛCDM matching the truth. We

Table 3: DES cosmology ΛCDM vs. wCDM showing
correct preference for ΛCDM given mock ground truth.

Method Log Bayes factor

Nested sampling 2.23± 0.45
Learned harmonic mean 2.15± 0.01
SDDR (classical) 2.14± 0.02
SDDR (flows) 2.13± 0.02

Table 4: Stage-IV weak lensing ΛCDM vs. w0waCDM
showing correct preference for ΛCDM given mock ground
truth.

Method Log Bayes factor

Nested sampling 0.78± 0.71
Learned harmonic mean 1.53± 0.07
SDDR (classical) 1.75± 0.06
SDDR (flows) 1.75± 0.06

find that our methodology is in good agreement with the
results obtained in the original analysis. A clear advant-
age here is that we are able to obtain these evidence ratios
without needing to perform additional MCMC sampling
of the nested ΛCDM model, approximately halving the
computational cost as the SDDR method has negligible
computational cost compared to the MCMC sampling of
the models.

3.3. Stage-IV weak lensing: ΛCDM vs. w0waCDM

We explore another more realistic cosmological ex-
ample that was also considered in Piras et al. (2024).
The models being compared are those of ΛCDM and
w0waCDM. The super model of w0waCDM is a phe-
nomenological model where dark energy is not only
treated as a fluid, but is also allowed to evolve with time,
characterised by the two parameters of w0 and wa. It re-
duces to ΛCDM when we set w0 = −1 and wa = 0.
This analysis followed a next-generation simulated weak
lensing setup and featured a super model that had 39
parameters and a corresponding nested model with 37
parameters.
Such higher-dimensional spaces are typically more

challenging to explore. If one is only interested in the
Bayes factor, however, then the SDDR can alleviate chal-
lenges presented from direct evidence calculation as we
only need concern ourselves with the extra parameters of
the super model, η, and the evaluation of that marginal
posterior volume at η1.
Table 4 shows the results obtained through the classical

density (histogram) and neural (normalizing flow) SDDR
methodologies. The results we obtain with the SDDR
are broadly consistent with the results obtained in Piras
et al. (2024), showing correct preference for the ΛCDM
model used to generate the ground truth.

3.4. Field-level weak lensing inference: ΛCDM vs.
wCDM

In the field-level setting, where the evidence is typically
challenging to compute due to the high-dimensionality of
parameters, we can still make use of the SDDR to per-
form model comparison. The SDDR methodology is only
dependent on the marginal posterior samples of para-
meter η and the ability to evaluate the posterior prob-
ability at the point of nesting, i.e. at η = η1, and so
even in high-dimensional inference settings can provide
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Figure 1. Posterior contours of the toy Gaussian model with 4 extra parameters including both the super model (red)
and the nested model (blue). The dashed lines depict the ground truth.

a robust and precise estimate of the Bayes factor.
For the field-level setting, we consider the wCDM ana-

lysis presented in Lanzieri et al. (2024); Zeghal et al.
(2024). This scenario considers wCDM with a field-level
cosmological analysis constructed using a Bayesian hier-
archical model (BHM) with a mock stage-IV weak lens-
ing survey setup. Like the DES Y1 example presen-
ted previously, the wCDM model reduces to the ΛCDM
model when setting w = −1. This is in general a costly
setup to run even when harnessing modern hardware and
gradient-accelerated methodologies, with Zeghal et al.
(2024) writing that the explicit full field inference re-

quired O(105) to O(106) forward model evaluations to
converge.
Previous works (Lanzieri et al. 2024; Zeghal et al. 2024)

did not explicitly calculate the Bayesian evidence. How-
ever, using the SDDR approach we are able to calcu-
late the Bayes factor for the BHM setting between the
wCDM and ΛCDM models for the first time. As we do
not have access to the field-level evidence either calcu-
lated with the learned harmonic mean or with nested
sampling directly for the BHM setting, we validate our
results by comparison with a simulation-based inference
(SBI) analysis that compressed the field with a convolu-
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Method Log Bayes factor

BHM SDDR (classical) 0.951± 0.012
BHM SDDR (flows) 0.947± 0.011

SBI learned harmonic mean 1.093± 0.014
SBI SDDR (classical) 0.905± 0.018
SBI SDDR (flows) 0.934± 0.020

Table 5: Field-level cosmology example comparing
wCDM vs. ΛCDM.

tional neural network. We leverage recent work presen-
ted in Spurio Mancini et al. (2024) which made use of
the same simulator setup as in Lanzieri et al. (2024) but
performed an SBI analysis based on neural likelihood es-
timation (in contrast to the neural posterior estimation
performed by Lanzieri et al. 2024). We make use of the
SBI chains computed by Spurio Mancini et al. (2024) to
calculate the log Bayes factor with the SDDR.
Table 5 shows the results obtained from the SDDR

methodology for the field-level BHM and SBI wCDM
analysis with both classical (histogram) and neural (nor-
malizing flows) methods, showing consistent results and
correct preference for the ΛCDM model used to generate
the ground truth. We compare the Bayes factors com-
puted by the SDDR for the SBI scenario to that com-
puted by the learned harmonic mean estimator, finding
close agreement with respect to the interpretation of the
Bayes factor on the Jeffreys scale (Jeffreys 1939; Nesseris
& Garćıa-Bellido 2013) leading to the same conclusions.
Moreover, the Bayes factors computed by the BHM and
SBI approaches are also in close agreement, further val-
idating the accuracy of not only the SDDR approach but
also the SBI approximate inference framework.

4. CONCLUSIONS

In this work we have developed a neural methodology
to calculate the Savage-Dickey density ratio (SDDR) us-
ing normalizing flows. We have shown that our SDDR
method scales to cases with many extra parameters in-
volving high-dimensional marginal posterior spaces. We
subsequently compared it to a classical approach of mak-
ing use of normalized histograms, which is computation-
ally challenging when there are many extra paramet-
ers. In low-dimensional marginal settings, both meth-
ods produce accurate and precise Bayes factor estim-
ates. As expected, when extending the analysis to higher-
dimensional marginal settings such as the 4D marginal
posterior toy Gaussian example presented in Sec. 3.1, the
classical method begins to struggle. The normalizing flow
method however continues to provide accurate and pre-
cise calculations of the Bayes factor. We further validated
our normalizing flow methodology by producing consist-
ent results with the classical approach and Bayes factors
calculated with both nested sampling and the learned
harmonic mean.
For a field-level inference setting, where the num-

ber of parameters is very large but the number of ex-
tra parameters of the super model is low, we leverage
the SDDR to perform Bayesian model comparison for
the first time. Furthermore, we show that Bayes factors
computed for BHM (Bayesian hierarchical model) and
SBI (simulation-based inference) inference approaches
are consistent, providing further validation that the SBI
approach has extracted as much cosmological informa-
tion from the field as the BHM approach.

Our neural method also requires very little compu-
tational resources to train and run, typically running
within a few minutes on a single CPU, given the MCMC
chains. Making use of the neural SDDR with normal-
izing flows can approximately halve the computational
cost of performing model comparison when working with
nested models since one only needs to obtain posterior
samples from the super model. The code implementing
the neural SDDR methodology with normalizing flows
is included within the latest harmonic software package
release.
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APPENDIX

A. SDDR DERIVATION

What follows is a derivation of SDDR based on Verde et al. (2013). Suppose we have two models that are nested,
where M1 is the nested model and M2 is the super model with θ common parameters and η extra parameters that
extend the nested model to the super model. The Bayes factor is given by

z1
z2

=
p(d|M1)

p(d|M2)
(A1)

=

∫
p(d|θ′,M1) p(θ

′|M1) dθ
′∫

p(d|θ′′,η′′,M2) p(θ
′′,η′′|M2) dθ

′′ dη′′ (A2)

=

∫
p(d|θ′,η1,M2) p(θ

′|M1) dθ
′∫

p(d|θ′′,η′′,M2) p(θ
′′|M1) p(η′′|M2) dθ

′′ dη′′ , (A3)

where in the second line we have used the fact that as the models are nested, we have p(d|θ,M1) = p(d|θ,η1,M2). In
the third line we have used the fact that the prior distributions of θ are identical for M1 and M2 and that the prior
distributions of η and θ are separable, i.e. p(θ,η) = p(θ)p(η).
Multiplying both numerator and denominator by p(η1|M2) then gives

z1
z2

=
1

p(η1|M2)

∫
p(d|θ′,η1,M2) p(θ

′|M1) p(η1|M2) dθ
′∫

p(d|θ′′,η′′,M2) p(θ
′′|M1) p(η′′|M2) dθ

′′ dη′′ . (A4)

To simplify this expression, we note that the normalized parameter posterior for (θ,η) under the second model
applicable to all values of η is given by

p(θ,η|d,M2) =
p(d|θ,η,M2) p(θ|M1) p(η|M2)∫

p(d|θ′′,η′′,M2) p(θ
′′|M1) p(η′′|M2) dθ

′′ dη′′ . (A5)

Comparison with Eq. (A4) and setting η = η1 then yields
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z1
z2

=

∫
p(θ′,η1|d,M2) dθ

′

p(η1|M2)
. (A6)

We might notice that the integral in the numerator is performed only over a subset of parameters, and so is akin to
marginalization, reducing to the marginalized posterior p(η1|d,M2). Hence, the evidence ratio or Bayes factor between
two nested models is given by

z1
z2

=
p(η1|d,M2)

p(η1|M2)
. (A7)
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