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We present a framework that for the first time allows Bayesian model comparison to be performed for field-level
inference of cosmological models. We achieve this by taking a simulation-based inference (SBI) approach using
neural likelihood estimation, which we couple with the learned harmonic mean estimator in order to compute the
Bayesian evidence for model comparison. We apply our framework to mock Stage IV cosmic shear observations
to assess its effectiveness at distinguishing between various models of dark energy. If the recent DESI results
that provided exciting hints of dynamical dark energy were indeed the true underlying model, our analysis shows
Stage IV cosmic shear surveys could definitively detect dynamical dark energy. We also perform traditional
power spectrum likelihood-based inference for comparison, which we find is not able to distinguish between
dark energy models, highlighting the enhanced constraining power for model comparison of our field-level SBI
approach.

I. INTRODUCTION

Central questions in cosmology are often those of model
comparison. For example, what model best describes the un-
derlying nature of dark energy? The concordance ΛCDM
model attributes dark energy to Einstein’s cosmological con-
stant Λ. In the 𝑤CDM model, the dark energy equation-of-
state parameter 𝑤 is constant in time but allowed to vary from
-1 to be constrained by observations. In dynamical dark en-
ergy models, such as the 𝑤0𝑤𝑎CDM model, 𝑤 is free to evolve
over time. Recent results from the DESI collaboration [1] hint
at the exciting possibility of dynamical dark energy, although
the consensus at present is that there is no evidence to prefer a
model more complicated than ΛCDM. In this work we present
a cosmic shear analysis pipeline for cosmological model com-
parison and study its effectiveness at comparing the ΛCDM,
𝑤CDM and 𝑤0𝑤𝑎CDM cosmological models.

While traditional cosmological inference pipelines are typi-
cally based on likelihood-based analysis of two-point statistics,
it is widely known that probes of the large-scale structure con-
tain a great deal of cosmological information beyond two-point
statistics due to the non-linear nature of gravity. Field-level
inference is capable of capturing this higher-order statistical
information [e.g. 2–8]). Upcoming Stage IV surveys of the
large-scale structure, such as Euclid [9], Rubin Observatory
Legacy Survey of Space and Time (Rubin-LSST) [10] or Ro-
man [11] will acquire data that contain significant high-order
cosmological information in the observed fields.

However, field-level inference with such data is challenging
due to the high-dimensional nature of the parameter space to be
inferred and the complexity of the forward model. Typically
only parameter estimation is considered, as model compari-
son is too computationally costly. Yet, the more information
we acquire, the better we can distinguish between underly-
ing models. Consequently, performing model comparison on
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field-level data may enable us to definitively determine which
dark energy model best describes our Universe.

An alternative to the aforementioned likelihood-based field-
level inference approaches are those that employ simulation-
based inference (SBI) [e.g. 12]. In this paradigm it is possible
to run forward simulations that are able to fully propagate all
known uncertainties from parameters to data without needing
to explicitly define their corresponding probability distribu-
tions. Thus, this approach captures all uncertainties in the
data without any statistical simplifications. Modern SBI ap-
proaches based on neural density estimation have been ap-
plied successfully to two-point statistical analyses in cosmol-
ogy [13–16] and to field-level analyses [17–21]. Since SBI
methods still require large numbers of simulations for train-
ing, accelerating simulations is important and becomes even
more pertinent for field-level analyses. In particular, neural
emulators, such as CosmoPower [22], can offer considerable
computational savings that in many cases are essential. Fur-
thermore, they also typically support automatic differentiation,
which can be leveraged for further acceleration or to reduce
the volume of training data needed [23, 24].

Bayesian model comparison provides a principled frame-
work to distinguish between models—naturally incorporating
Occam’s razor to trade off model complexity and goodness of
fit—that has already found widespread use in cosmology [25].
Model comparison requires computation of the Bayesian evi-
dence, which is computationally challenging even in moderate
numbers of dimensions. Nested sampling [26] is often used
to compute the evidence, as implemented in numerous algo-
rithms [e.g. 27–34], although this requires coupling sampling
and evidence calculation. Recently, the learned harmonic
mean estimator [35] has been presented as an alternative to
nested sampling that is flexible, robust, and scalable [36–38].
Moreover, as the learned harmonic mean requires posterior
samples only, it is agnostic to the sampling strategy adopted
and so can be combined with accelerated sampling techniques,
such as the No U-Turn Sampler (NUTS; [39]), FlowMC [40], or
others, as demonstrated already [38, 41]. However, Bayesian
model comparison has not typically been considered for field-
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level analyses due to the high-dimensional parameter spaces
involved and the difficulties in scaling evidence computation
to those dimensions (a notable exception is proximal nested
sampling [33, 42], which has been scaled to field-level infer-
ence but that is restricted to convex likelihoods and so not
applicable to complex cosmological models).

While field-level SBI approaches capture high-order statisti-
cal information from the field, the underlying parameter space
includes parameters of interest only. In contrast, likelihood-
based field-level approaches consider the pixels of the observed
or initial field as parameters to be inferred, resulting in very
high dimensional parameter spaces. The reduced parameter
dimension of field-level SBI opens up the possibility of cos-
mological model comparison for field-level inference. Model
comparison for modern neural SBI approaches was first con-
sidered by Ref. [43], where the flexibility of the learned har-
monic mean estimator was exploited. Alternative approaches
to estimate the evidence that are applicable for SBI have since
been introduced where a model is trained specifically to com-
pute the evidence [44, 45].

In this work we present a framework for field-level Bayesian
inference, where for the first time we consider not only param-
eter estimation but also model selection. This is achieved by
performing field-level SBI, specifically neural likelihood esti-
mation (NLE; [46]), where cosmological forward models are
accelerated by the CosmoPower emulator [22, 47], that we cou-
ple with the learned harmonic mean for cosmological model
comparison [35, 37, 43]. We demonstrate a field-level pipeline
on simulated cosmic shear observations, showing that Stage
IV surveys can distinguish between different models of dark
energy. For comparison, we also consider a likelihood-based
analysis based on two-point statistics and demonstrate that it is
not able to distinguish between different models, emphasising
the effectiveness of field-level inference.

The remainder of this article is structured as follows. Sec-
tion II details the methodology introduced for field-level SBI
that also supports cosmological model comparison. In Sec-
tion III we apply our framework to mock Stage IV cosmic
shear observations to assess its effectiveness at distinguishing
between various models of dark energy. Concluding remarks
are made in Section IV.

II. METHODOLOGY

We introduce a framework for field-level inference that also
supports cosmological model comparison. Specifically, we
consider an SBI approach based on NLE (neural likelihood
estimation) that we couple with the learned harmonic mean
estimator. First, however, we outline the traditional power
spectrum likelihood-based inference approach that we consider
for comparison.

A. Power spectrum likelihood-based inference

For comparison purposes, we perform a likelihood-based
analysis of the weak lensing shear power spectrum. The likeli-

hood is assumed to be Gaussian, following the setup presented
in Ref. [7]. The log-likelihood is given by

log 𝑝(d|θ) = −1
2
[d − µ(θ)]𝑇C−1 [d − µ(θ)], (1)

up to a constant, where θ represents the underlying cosmolog-
ical parameters, d is the data vector and C is the covariance
matrix for a fixed fiducial cosmology (the same used to gener-
ate the mock data vector). The theory shear power spectrum
µ(θ) is calculated from the underlying matter power spec-
trum using jax-cosmo1 [48]. The non-linear matter power
spectrum is provided by CosmoPower-JAX2 [47], a JAX im-
plementation of CosmoPower [22], which provides a neural
network to emulate the non-linear matter power spectrum. In
this work we couple CosmoPower-JAX with jax-cosmo, us-
ing the former to emulate the non-linear prescription given
by HMCode [49]. HMCode provides a parameterised prescrip-
tion to account for baryonic feedback; in this analysis we fix
the baryonic parameters 𝑐min and [0 to their dark matter-only
values, 3.13 and 0.603, respectively.

For the simulated data, we make use of a modified version of
sbi_lens3 [7] (adding support for the 𝑤0𝑤𝑎CDM model) to
generate correlated convergence maps following a log-normal
prescription with Gaussian noise across five tomographic bins.
The simulated data is configured to approximately mimic a
Stage IV survey. We use lenstool4 [50] to calculate the auto
and cross power spectra from the simulated noisy convergence
maps.

To generate posterior samples we perform Markov chain
Monte Carlo (MCMC) sampling using the NUTS [39] sam-
pler implemented in the NumPyro5 differentiable probabilistic
programming library [51, 52].

B. Field-level SBI inference

To perform field-level SBI we do not need an analytical
prescription of the likelihood. Instead, we take an NLE (neu-
ral likelihood estimation; [46]) approach and learn an implicit
likelihood from forward simulated data-parameter pairs. In
contrast to Ref. [7] who adopt neural posterior estimation
(NPE; [53–55]), we adopt NLE since it provides greater flexi-
bility in the choice of proposal used for generating training data
and the neural density estimator can be integrated within an
MCMC framework that provides statistical guarantees. More-
over, it simplifies evidence calculation with the learned har-
monic mean [43].6

1 https://github.com/DifferentiableUniverseInitiative/jax_
cosmo

2 https://github.com/dpiras/cosmopower-jax
3 https://github.com/DifferentiableUniverseInitiative/sbi_
lens

4 https://github.com/apetri/LensTools
5 https://github.com/pyro-ppl/numpyro
6 The learned harmonic mean requires the evaluation of the likelihood, or its

surrogate, at posterior samples, hence model comparison with NPE requires
two density estimator to be trained [43].
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NLE involves training a conditional density estimator
𝑞ϕ (𝒅 |θ) to act as a surrogate for the likelihood 𝑝(𝒅 |θ) (con-
sidering it as a probability distribution over the data), where
ϕ represent the parameters of the density estimator (i.e. neu-
ral network weights). Given paired training data {θ𝑖 ,d𝑖} for
parameters drawn from an arbitray proposal θ𝑖 ∼ 𝑝(θ), the
NLE density estimator can be trained by minimising the neg-
ative log-likelihood of the surrogate, which can be shown to
be equivalent to maximising the Kullback-Leibler divergence
𝐷KL (·∥·) between the likelihood and its surrogate:

E𝑝 (𝒅 |θ) �̃� (θ)
[
−log 𝑞ϕ (𝒅 |θ)

]
= E �̃� (\ )

[
𝐷KL (𝑝(𝒅 |θ)∥𝑞ϕ (𝒅 |θ)

]
,

(2)

up to a constant. Consequently, when trained in this manner
the density estimator learns to approximate the likelihood over
the parameter space covered by the proposal distribution. For
this work we use normalizing flows [56] as the conditional
neural density estimator. Specifically, we adopt a masked
autoregressive flow (MAF; [57]) constructed out of masked
autoencoders for density estimation (MADE; [58]). In terms
of implementation, we make use of the sbi7 software package
[59] to construct and train the NLE density estimator.

We follow the same simulation procedure as described in
Section II A. Specifically, we make use of CosmoPower-JAX
to simulate the matter power spectrum, jax-cosmo to compute
the shear power spectrum, and a modified version of sbi_lens
to then generate correlated log-normal convergence maps with
Gaussian noise.

While modern neural density estimators can scale to rela-
tively high dimensional settings, for field-level SBI it is typical
to compress the field to a lower dimensional latent represen-
tation, for example by neural, statistical or wavelet scattering
based compression techniques [e.g. 17, 19, 60–64]. While
wavelet scattering transforms have recently been shown to be
effective for this purpose and do not require additional simu-
lations [21], for the purposes of this work we consider neural
compression. An extensive study of neural compression tech-
niques for SBI was recently performed by Ref. [7], demon-
strating that a convolutional neural network (CNN) trained
with a variational mutual information maximisation (VMIM;
[17]) loss function can achieve excellent compression perfor-
mance, capturing close to all higher order cosmological infor-
mation in cosmic shear fields. We therefore adopt this neural
compression technique and make use of the ResNet-18 CNN
architecture [65] implemented in Haiku8 [66] to compress the
convergence maps, training our own compressor following the
same procedure described in [67] and included in sbi_lens.

Finally, posterior samples are then generated by MCMC
sampling using the surrogate likelihood. In this case, for sim-
plicity we use the emcee9 software package [68] to perform
sampling, although alternative accelerated sampling tech-
niques could be considered.

7 https://github.com/sbi-dev/sbi
8 https://github.com/google-deepmind/dm-haiku
9 https://github.com/dfm/emcee

Our overall pipeline, including the simulator, is automati-
cally differentiable, which can provide numerous advantages.
While an automatically differentiable simulator is not strictly
necessary for the SBI results presented in this work, it could
in principle be used to train the NLE model more efficiently,
requiring less training data [23, 24]. However, Ref. [67]
recently found that incorporating gradients provided by auto-
matic differentiation did not significantly improve field-level
SBI inference and so we have not considered this further in the
current article. Alternatively, the differentiable forward model
is essential for field-level likelihood-based inference with a
Bayesian hierarchical model (BHM) in order to leverage high-
dimensional sampling techniques that exploit gradient infor-
mation (e.g. NUTS). However, such an approach does not at
present support Bayesian model selection and so we have not
considered it further in the current article. We will present a
field-level BHM approach that can also provide the calculation
of the Bayesian evidence in an upcoming work.

C. Bayesian evidence for model comparison

For both settings considered previously, namely for both
power spectrum likelihood-based inference and field-level SBI
inference, we recover posterior samples by MCMC sampling.
Moreover, for each sample the unnormalized posterior den-
sity will be evaluated during sampling. Thus, we have access
to everything needed to compute the Bayesian evidence us-
ing the learned harmonic mean estimator, irrespective of the
underlying method used to generate the posterior samples.

The Bayesian evidence is given by the marginalised likeli-
hood

𝑧 = 𝑝(𝒅 |𝑀) =
∫

dθ 𝑝(𝒅 |θ, 𝑀)𝑝(θ |𝑀), (3)

for likelihood 𝑝(𝒅 |θ, 𝑀) and prior 𝑝(𝜽 |𝑀), where here we
have made the model 𝑀 explicit. The evidence is a critical
term to compute in order to compare models. The posterior
model odds between two competing models 𝑀1 and 𝑀2 can
be written as

𝑝(𝑀1 |𝒅)
𝑝(𝑀2 |𝒅)

=
𝑝(𝒅 |𝑀1)𝑝(𝑀1)
𝑝(𝒅 |𝑀2)𝑝(𝑀2)

, (4)

which follows by Bayes’ theorem. In many cases a priori prob-
abilities 𝑝(𝑀1) and 𝑝(𝑀2) of the two models are considered
to be equal, hence the ratio of posterior distributions becomes
equivalent to the evidence ratio or Bayes factor

𝐵12 =
𝑝(𝒅 |𝑀1)
𝑝(𝒅 |𝑀2)

=
𝑧1
𝑧2
. (5)

For notational brevity, henceforth we drop the explicit con-
ditioning on models unless there are multiple models under
consideration.

The learned harmonic mean can be used to compute the
evidence for different models, and thus to also compute Bayes
factors for Bayesian model comparison. While the original
harmonic mean [69] suffered from an exploding variance [70],

https://github.com/sbi-dev/sbi
https://github.com/dpiras/cosmopower-jax
https://github.com/DifferentiableUniverseInitiative/jax_cosmo
https://github.com/DifferentiableUniverseInitiative/sbi_lens
https://github.com/google-deepmind/dm-haiku
https://github.com/DifferentiableUniverseInitiative/sbi_lens
https://github.com/dfm/emcee
https://github.com/sbi-dev/sbi
https://github.com/google-deepmind/dm-haiku
https://github.com/dfm/emcee
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the learned harmonic mean solves this issue by integrating
machine learning to learn an internal target distribution [35].
Critically, the learned internal target must be concentrated
within the posterior. Normalizing flows provide an elegant
way to ensure this simply by lowering the temperature 𝑇 (i.e.
variance) of their base distribution [37], avoiding the need
for bespoke training. Given the learned target distribution
𝜑ψ (θ;𝑇) with parametersψ (i.e. neural network weights), the
reciprocal evidence 𝜌 = 𝑧−1 is then estimated as

�̂� =
1
𝑁

𝑁∑︁
𝑖=1

𝜑ϕ (\𝑖;𝑇)
𝑝(𝒅 |θ𝑖 , 𝑀)𝑝(θ𝑖 |𝑀) , θ𝑖 ∼ 𝑝(θ |𝒅, 𝑀). (6)

We compute evidence estimates from posterior samples for
both likelihood-based and SBI settings using the harmonic10
software package implementing the learned harmonic mean.

It is important to note that evidence values are of course
sensitive to the choice of priors. This is a feature of Bayesian
model comparison and not a bug, as it encapsulates Occam’s
razor [71]. In the Bayesian formalism models are specified as
probability distributions over datasets and, since probability
distributions must be normalized, each model has a limited
“probability budget” to allocate. While a complex model can
represent a wide range of datasets well, it spreads its predic-
tive probability widely. In doing so, the model evidence of
complex models will be penalised if such complexity is not
required. There are a wide variety of ways to set priors ap-
propriately for Bayesian inference depending on the statistical
question at hand [72]. For example, approaches to setting pri-
ors include physical priors (e.g. non-negative mass or flux;
[73]), uninformative Jeffreys priors that are invariant to a pa-
rameter transformation [74], informative priors for example to
regularize inverse problems [e.g. 75], data-driven priors po-
tentially specified by a generative model [e.g. 42, 76, 77], or
data-informed priors, where the posterior of an a priori anal-
ysis is used as the prior for an analysis with new data [e.g.
78]. Despite a variety of methods to set appropriate piors,
there remains debate regarding sensitivity of the evidence to
prior choice [79–81]. If one wishes to remove the prior depen-
dence for the purpose of studying tensions between data-sets,
once the evidence is estimated it can be used to compute the
Bayesian suspiciousness [82, 83].

III. RESULTS

We apply the power spectrum likelihood-based and field-
level SBI inference frameworks outlined previously to sim-
ulated cosmic shear observatives intended to mimic a Stage
IV survey. We run MCMC sampling to generate posterior
samples, which we also use for evidence estimation with the
learned harmonic mean estimator to compare 𝑤CDM and
𝑤0𝑤𝑎CDM models to ΛCDM. We present marginal poste-
rior distributions of the cosmological parameters and Bayes

10 https://github.com/astro-informatics/harmonic

factors for comparisons between the models considered, for a
variety of ground truth data vectors.

While we follow the general methodology outlined in Sec-
tion II, specific details of the simulator, neural compressor,
neural density estimator, MCMC samplers, and learned har-
monic mean estimator can be found in Appendix A.

A. Models, mock data & priors

We consider three models, the ubiquitous ΛCDM and
𝑤CDM cosmological models and also a phenomenologi-
cal model that allows the equation of state for dark en-
ergy to evolve. For this dynamical dark energy we adopt
the Chevallier-Polarski-Linder (CPL) parameterisation with
𝑤(𝑎) = 𝑤0 + 𝑤𝑎 (1 − 𝑎) [84, 85], where 𝑎 denotes the
scale factor, resulting in the so-called 𝑤0𝑤𝑎CDM model.
For model comparison, we focus on comparing 𝑤CDM and
𝑤0𝑤𝑎CDM models to ΛCDM. Recent results presented by the
DESI collaboration [1] provide exciting hints of 𝑤0𝑤𝑎CDM,
although this is only for certain data combinations and thus is
far from conclusive.

For the two model comparisons performed (ΛCDM vs
𝑤CDM and ΛCDM vs 𝑤0𝑤𝑎CDM) we consider two different
ground truth mock data cases, one generated by each model,
resulting in four total model comparisons. Mock data cosmo-
logical parameter values and prior ranges are shown in Table I.
In our analysis for all parameters besides (𝑤0, 𝑤𝑎) we consider
the same priors as Ref. [86], matching the Rubin-LSST science
requirements document. The ground truth is set to the middle
of the prior range. We set 𝑤 = −1 in the ΛCDM case. For
other models we consider fiducial parameters as if the DESI
results hinting at dynamical dark energy were the ground truth.
That is, we set the (𝑤0, 𝑤𝑎) ground truth to the best-fit DESI
parameters for the data combination showing hints of dynam-
ical dark energy (DESI + CMB + PantheonPlus data) [1] for
both the 𝑤CDM (with 𝑤0 = 𝑤) and 𝑤0𝑤𝑎CDM cases. For
(𝑤0, 𝑤𝑎), the posterior distributions of the Dark Energy Sur-
vey (DES; [87]) year three data [88] are used as the prior, i.e.
we follow a data-informed prior approach (see Section II C).

B. ΛCDM vs 𝑤CDM

Figure 1 and Figure 2 show marginalised posterior distribu-
tions recovered for the power spectrum likelihood-based infer-
ence and field-level SBI inference, respectively, for ΛCDM vs
𝑤CDM. Both figures show results for the two different ground
truth mock data cases. Bayes factors for each setting are dis-
played on each marginal distribution plot. Furthermore, they
are summarised visually in Figure 3 for this ΛCDM vs 𝑤CDM
comparison. Bayes factors for all experiments are summarised
in Table II, complemented by the corresponding Jeffreys scale
[89, 90] and odds ratio (assuming identical prior model prob-
abilities).

It is apparent from the Bayes factors that it is not possible
to distinguish between ΛCDM and 𝑤CDM models using the

https://github.com/astro-informatics/harmonic
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FIG. 1. Marginal posterior distributions of cosmological parameters for the power spectrum likelihood-based inference, comparing ΛCDM
vs 𝑤CDM. Ground truth underlying parameter values are indicated by dashed lines. Left: ΛCDM ground truth data vector. Right: 𝑤CDM
ground truth data vector. For both ground truth scenarios the Bayesian evidence values show it is not possibile to distinguish cosmological
models.

FIG. 2. Marginal posterior distributions of cosmological parameters for the field-level SBI inference, comparing ΛCDM vs 𝑤CDM. Ground
truth underlying parameter values are indicated by dashed lines. Left: ΛCDM ground truth data vector. Right: 𝑤CDM ground truth data
vector. For the former ground truth scenario the Bayesian evidence weakly prefers the true underlying model ΛCDM. For the latter ground
truth scenario the Bayesian evidence strongly pefers the true underlying model 𝑤CDM.
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TABLE I. Cosmological parameter values for the mock data and prior
ranges. The normal distribution is denoted N , while a truncated
normal is denoted N𝑇 . The distribution for Ωcdm is truncated to have
a lower bound of -1. The distribution for 𝑤 is truncated to have a
lower bound of -2.0 and an upper bound of -0.33.

Parameter Mock data Prior range

Ωcdm 0.2664 N𝑇 (0.2664, 0.2)
Ωb 0.0492 N(0.0492, 0.006)
𝜎8 0.831 N(0.831, 0.14)
ℎ 0.6727 N(0.6727, 0.063)
𝑛s 0.9645 N(0.9645, 0.08)
𝑤 (ΛCDM) -1.0 -

𝑤 (𝑤CDM) -0.827 N𝑇 (−1.0, 0.9)
𝑤0 (𝑤0𝑤𝑎CDM) -0.827 N(−0.95, 0.08)
𝑤𝑎 (𝑤0𝑤𝑎CDM) -0.75 N(−0.4, 0.4)

FIG. 3. Bayes factors with errors for the ΛCDM vs 𝑤CDM com-
parison. The shaded regions correspond to the strength of the Bayes
factor on the Jeffreys scale. Note that power spectrum likelihood-
based inference cannot distinguish between ΛCDM and 𝑤CDM,
whereas field-level SBI inference can.

power spectrum alone, for either ΛCDM or 𝑤CDM ground
truth mock data.

In contrast, for the field-level SBI inference it is possible
to distinguish between ΛCDM and 𝑤CDM. Evidence for the
correct underlying ground truth model is nevertheless consid-
ered weak on the Jeffreys scale at an odds ratio of 2.10:1 for
the ΛCDM mock data, but it is strong with an odds ratio of
53.5:1 for the 𝑤CDM mock data. Furthermore, mismatches
in data and model are now distinguishable visually from the
contours of Figure 2, with the incorrect model showing a clear
bias. Of course, when analysing real data the true underlying
model is not known and so the evidence must be used for model
comparison. The enhanced model constraining power of the
field-level SBI analysis due to the extraction of high-order
cosmological information is clear.

C. ΛCDM vs 𝑤0𝑤𝑎CDM

Figure 4 and Figure 5 show marginalised posterior distri-
butions recovered for the power spectrum likelihood-based in-
ference and field-level SBI inference, respectively, for ΛCDM
vs 𝑤0𝑤𝑎CDM. Both figures show results for the two different
ground truth mock data cases. Bayes factors for each setting
are displayed on each marginal distribution plot. Furthermore,
they are summarised visually in Figure 6 and also included in
Table II.

Similar to when comparing ΛCDM and 𝑤CDM, it is appar-
ent from the Bayes factors that it is not possible to distinguish
betweenΛCDM and𝑤0𝑤𝑎CDM models using the power spec-
trum alone, for eitherΛCDM or𝑤0𝑤𝑎CDM ground truth mock
data.

In contrast, for the field-level SBI inference it is possible to
distinguish between ΛCDM and 𝑤0𝑤𝑎CDM and the correct
underlying model is selected. On the Jeffreys scale model se-
lection is definitive for both ground truth mock data scenarios.
It should also be noted that posterior contours are also more
accurately centred on the ground truth for the field-level SBI
inference, unlike for the power spectrum inference.

IV. CONCLUSIONS

We present a framework that for the first time allows
Bayesian model comparison to be performed for field-level
inference of cosmological models. We achieve this by lever-
aging SBI so that a reduced parameter space containing only
cosmological parameters of interest need be considered. This
reduces the dimensionality of the parameter space consider-
ably compared to likelihood-based field-level inference where
the pixels of the initial or observed field are treated as pa-
rameters to be inferred. Specifically, we take an NLE (neural
likelihood estimation) approach, training a density estimator
to learn a surrogate for the likelihood, using the CosmoPower
emulator [22, 47] to accelerate the generation of simulations
needed for training. We then perform MCMC sampling to
generate posterior samples, which are not only used for pa-
rameter estimator but to also compute the Bayesian evidence
for model selection using the learned harmonic mean estimator
implemented in the harmonic code [35, 37, 43].

We apply our framework to mock Stage IV cosmic shear ob-
servations to assess its effectiveness at distinguishing between
various models of dark energy. For comparison purposes we
also consider a traditional power spectrum likelihood-based
inference. Due to the higher order statistical information ex-
tracted by our field-level SBI approach, it is able to success-
fully distinguish dynamical dark energy from ΛCDM using
the Bayesian evidence, whereas the power spectrum inference
cannot. If the DESI results that hinted at the possibility of
dynamical dark energy [1] were indeed the true underlying
model, Stage IV surveys such as those by Euclid and Rubin-
LSST, would be able to provide definitive evidence for dynam-
ical dark energy.

Given the effectiveness of our field-level cosmological
model selection framework, it is important to extend it to a
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FIG. 4. Marginal posterior distributions of cosmological parameters for the power spectrum likelihood-based inference, comparing ΛCDM
vs 𝑤0𝑤𝑎CDM. Ground truth underlying parameter values are indicated by dashed lines. Left: ΛCDM ground truth data vector. Right:
𝑤0𝑤𝑎CDM ground truth data vector. For both ground truth scenarios the Bayesian evidence values show it is not possibile to distinguish
cosmological models.

FIG. 5. Marginal posterior distributions of cosmological parameters for the field-level SBI inference, comparing ΛCDM vs 𝑤0𝑤𝑎CDM.
Ground truth underlying parameter values are indicated by dashed lines. Left: ΛCDM ground truth data vector. Right: 𝑤0𝑤𝑎CDM ground
truth data vector. For the former ground truth scenario the Bayesian evidence definitively prefers the true underlying model ΛCDM. For the
latter ground truth scenario the Bayesian evidence definitively pefers the true underlying model 𝑤0𝑤𝑎CDM.
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TABLE II. Summary of Bayes factors, where they lie on the Jeffreys scale and corresponding odds ratio for the different model comparisons
and ground truth data vector model combinations considered. Notably we can see that using power spectrum likelihood-based inference
cannot distinguish between the cosmological models, whereas field-level SBI inference can distinguish between cosmological models.

Model Ground truth Method Bayes factor (log) Jeffreys scale Odds ratio

ΛCDM vs 𝑤CDM ΛCDM Power spectrum 0.08 ± 0.16 inconclusive 1.08 : 1
ΛCDM vs 𝑤CDM 𝑤CDM Power spectrum 0.16 ± 0.16 inconclusive 1.17 : 1
ΛCDM vs 𝑤CDM ΛCDM Field-level SBI 0.74 ± 0.25 weak 2.10 : 1
ΛCDM vs 𝑤CDM 𝑤CDM Field-level SBI 3.98 ± 0.20 strong 53.5 : 1

ΛCDM vs 𝑤0𝑤𝑎CDM ΛCDM Power spectrum 0.37 ± 0.14 inconclusive 1.45 : 1
ΛCDM vs 𝑤0𝑤𝑎CDM 𝑤0𝑤𝑎CDM Power spectrum 0.03 ± 0.16 inconclusive 1.03 : 1
ΛCDM vs 𝑤0𝑤𝑎CDM ΛCDM Field-level SBI 2.10 ± 0.14 definitive 8.17 : 1
ΛCDM vs 𝑤0𝑤𝑎CDM 𝑤0𝑤𝑎CDM Field-level SBI 1.90 ± 0.11 definitive 6.69 : 1

FIG. 6. Bayes factors with errors for the ΛCDM vs 𝑤0𝑤𝑎CDM
comparison. The shaded regions correspond to the strength of
the Bayes factor on the Jeffreys scale. Note that power spectrum
likelihood-based inference cannot distinguish between ΛCDM
and 𝑤0𝑤𝑎CDM, whereas field-level SBI inference can.

more realistic setting in preparation for application to Stage
IV surveys. In particular, more realistic simulations, obser-
vational effects and systematics need to be incorporated in
the forward model. Furthermore, the forward modelling, any
field-level emulation, and compression must be extended to
the spherical setting to support the wide fields of upcoming
surveys (e.g. using spherical machine learning or scatter-
ing techniques; [91–94]). Field-level SBI techniques exhibit
significant promise and when applied to upcoming Stage IV
surveys could provide one of the most effective means of de-
termining the underlying nature of dark energy.
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Appendix A: Configuration

While the general methodology is described in Section II,
we outline here the specific settings and parameters configured
to produce the results presented in Section III.

1. Survey settings

To simulate mock Stage IV survey data we follow the Rubin-
LSST science requirements document [95] and target a Y10
data release. This means that the underlying source galaxy
redshift distribution follows a Smail distribution [96] parame-
terised by

𝑛(𝑧) ∝ 𝑧2 exp
(
− 𝑧

𝑧0

)𝛼
, (A1)

with 𝑧0 = 0.11 and 𝛼 = 0.68 and with 5 redshift bins each con-
taining an equal number of galaxies and photometric redshift
error given by 𝜎𝑧 = 0.05(1 + 𝑧). To model survey observa-
tional noise, we assume a shape noise of 𝜎𝑒 = 0.26 and a
galaxy number density of 𝑛𝑔 = 27 arcmin−2. Following Ref.
[7] for sbi_lens we set the pixel area 𝐴pix = 5.49 arcmin2

and observed area to 10 × 10 deg2. As such, we model survey
noise as additive Gaussian noise with zero mean and variance
per tomographic bin given by

𝜎2
noise =

𝜎2
𝑒

𝑛𝑔𝐴pix
. (A2)

2. Compression

Compression is performed with a convolutional neural net-
work with a ResNet-18 architecture [65]. The network is im-
plemented in Haiku [66]. Following Ref. [7], we make use of
a Variational Mutual Information Maximization (VMIM) loss
function introduced to cosmology in Ref. [17] which is shown
to produce sufficient statistics for SBI. We train our own com-
pression with the aforementioned architecture following the
same procedure described in [67] and included in sbi_lens.
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3. SBI NLE density estimator

We make use of a masked autoregressive flow (MAF) [57]
as the conditional neural density estimator. The MAF is con-
structed out of 5 masked autoencoders for density estimation
(MADE) [58] with 50 hidden features each. The NLE den-
sity estimator is trained using the sbi software package [59].
Following the work of Ref. [7] we make use of 150,000 com-
pressed simulations for training, which is likely more than
strictly necessary.

4. MCMC

To obtain posterior samples, we make use of NUTS [39]
implemented in NumPyro for the power spectrum analysis as
detailed in Section II A and emcee [68] for the field-level SBI

analysis as detailed in Section II B. For NUTS we set the
number of chains to 3, with a burn-in length of 1200 and chain
length of 1800. For emceewe run 24 walkers with 200 burn-in
steps and 300 samples per walker. In both cases this results
in 7200 samples after burn-in. We plot our contours with the
getdist11 software package [97].

5. Learned harmonic mean estimator

For the internal learned target distribution of the learned
harmonic mean we train a rational quadratic spline flow [98],
including standardization [37], consisting of 2 layers, with 128
spline bins. For the results presented in this article we concen-
trated the flow using a temperature of 𝑇 = 0.8, although we
also found overall results were robust to changing the temper-
ature from 0.4 to 0.9 in steps of 0.1. Of the available MCMC
samples, 50% were used for training the flow and 50% for
evidence calculation.

11 https://github.com/cmbant/getdist
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