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Abstract—For the accurate representation and reconstruction
of band-limited signals on the sphere, an optimal-dimensionality
sampling scheme has been recently proposed which requires the
optimal number of samples equal to the number of degrees
of freedom of the signal in the spectral (harmonic) domain.
The computation of the spherical harmonic transform (SHT)
associated with the optimal-dimensionality sampling requires the
inversion of a series of linear systems in an iterative manner.
The stability of the inversion depends on the placement of iso-
latitude rings of samples along co-latitude. In this work, we have
developed a method to place these iso-latitude rings of samples
with the objective of improving the well-conditioning of the linear
systems involved in the computation of the SHT. We also propose
a multi-pass SHT algorithm to iteratively improve the accuracy
of the SHT of band-limited signals. Furthermore, we review
the changes in the computational complexity and improvement
in accuracy of the SHT with the embedding of the proposed
methods. Through numerical experiments, we illustrate that the
proposed variations and improvements in the SHT algorithm
corresponding to the optimal-dimensionality sampling scheme
significantly enhance the accuracy of the SHT.

Index Terms—unit sphere, sampling, spherical harmonic trans-
form, optimal-dimensionality, condition number minimization,
harmonic analysis

I. INTRODUCTION

Signal analysis on spherical bodies has widespread appli-

cations in the fields of cosmology, geodesy, geomagnetics,

acoustics and computer graphics [1]–[6]. Data measured over

the surface of a spherical object, i.e., in the spatial domain,

can be transformed to the harmonic domain using the spherical

harmonic transform (SHT) which is the analogue in spherical

geometry of the renowned Fourier transform in Euclidean

geometry [7]. Sampling schemes utilized for computing SHTs

are categorized as theoretically exact, accurate or approxi-

mate [8]–[18]. In this work, we consider those schemes which

enable exact or accurate computation of the SHT of band-

limited signals. Different sampling schemes have different

spatial dimensionality defined as the number of sample points

required to accurately or exactly compute the SHT and thus

capture the information content of band-limited signals. For

the computation of SHTs of a signal band-limited at L (defined

in Section II-B), the optimal spatial dimensionality attainable
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by any sampling scheme on the sphere is L2, which is equal to

the degrees of freedom of the band-limited signal in harmonic

space.

Driscoll and Healy [8] developed an exact method to

compute the SHT of a signal, that is band-limited at L, which

requires ∼ (asymptotically, as L → ∞) 4L2 equiangular

samples on the sphere, where the complexity of most stable

algorithm to compute SHT is O(L3). In comparison, the

sampling scheme presented by McEwen and Wiaux [18]

requires ∼ 2L2 equiangular samples to exactly compute the

SHT with complexity O(L3). The Gauss-Legendre sampling

scheme [18], [19] also requires ∼ 2L2 for exact computation

of the SHT, where the complexity to compute the SHT is

O(L3). To the best of our knowledge, there does not exist

any theoretically exact sampling scheme with dimensionality

less than ∼ 2L2. On the other hand, the SHT can also

be computed approximately using the least-squares based

method proposed by Sneeuw [9], which, although requiring L2

samples, becomes inaccurate and computationally inefficient

scaling as O(L6) for large band-limits.

Recently, an optimal-dimensionality sampling scheme has

been proposed in [20] for the accurate computation of the

SHT of band-limited signals using only L2 samples. Optimal-

dimensionality sampling has been customized to serve the

needs of applications in acoustics [4] and diffusion MRI [21].

Although the SHT associated with this sampling scheme

requires the optimal number of samples, it has computational

complexity of O(L3.37). The computation of the SHT for

optimal-dimensionality sampling involves inversion of a series

of systems of linear equations. For accurate inversion of these

systems, a condition number minimization method has been

proposed in [20] to determine the locations of samples.

This paper aims to improve the accuracy of the SHT

associated with the optimal-dimensionality sampling scheme.

We serve this objective by developing a new method for

the placement of samples and proposing a variation in the

computation of the SHT. We develop a method, referred to

as the elimination method, for the placement of iso-latitude

rings of samples such that the condition number (ratio of the

largest to the smallest singular value) of the matrices used in

the computation of the SHT is minimized. Due to the iterative

nature of the resulting SHT algorithm, the error builds up in

the computation of the SHT. To resolve this issue, we also



propose a multi-pass SHT algorithm which iteratively reduces

the residual between the given signal and the reconstructed

signal. We also analyze the changes in the complexity of

the SHT with the use of these methods. Through numerical

experiments, we demonstrate the improvement in accuracy

with the use of the proposed methods. The remainder of

the paper is structured as follows. We present the necessary

mathematical background in Section II before reviewing the

optimal-dimensionality sampling scheme in Section III. Sec-

tion IV presents the proposed developments and also contains

the accuracy analysis. Concluding remarks are then made in

Section V.

II. MATHEMATICAL BACKGROUND

A. Signals on the Sphere

Let f(θ, φ) denote a complex-valued, square integrable

function on the unit sphere S
2, where θ ∈ [0, π] and φ ∈

[0, 2π) denote the co-latitude and longitude respectively. The

space formed by these functions is a Hilbert space, denoted

by L2(S2), equipped with the following inner product given

by

〈f, h〉 �
∫
S2

f(θ, φ)h(θ, φ) sin θ dθ dφ, (1)

for any two functions f, h ∈ L2(S2). In (1), (·) denotes

the complex conjugate operation, sin θdθdφ is the differential

surface element and

∫
S2

≡
∫ π

θ=0

∫ 2π

φ=0

is an integral over

the whole sphere. The inner product in (1) induces a norm

‖f‖ � 〈f, f〉1/2, and signals with finite induced norm are

referred to as “signals on the sphere”.

B. Harmonic Domain Representation

Signals can be transformed to the harmonic domain using

the natural basis – spherical harmonic basis functions (or

simply spherical harmonics). Spherical harmonics, denoted

by Y m
� (θ, φ) for integer degree � ≤ 0 and integer order

−� ≤ m ≤ �, are defined as

Y m
� (θ, φ) �

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ)eimφ, (2)

where Pm
� (·) is the associated Legendre function [7]. Any

function f ∈ L2(S2) can be expanded in terms of spherical

harmonics as

f(θ, φ) =

∞∑
�=0

�∑
m=−�

(f)m� Y m
� (θ, φ). (3)

Here (f)m� denotes the spherical harmonic coefficient of

degree � ≤ 0 and order −� ≤ m ≤ � and is given by the

spherical harmonic transform (SHT) as

(f)m� � 〈f, Y m
� 〉 =

∫
S2

f(θ, φ)Y m
� (θ, φ) sin θ dθ dφ. (4)

The synthesis equation, (3), to reconstruct the signal from its

spherical harmonic coefficients is referred to as inverse SHT.

A signal f ∈ L2(S2) is said to band-limited if (f)m� = 0 for

� ≥ L, where L is the band-limit of the signal, and can be

expressed in terms of spherical harmonics as

f(θ, φ) =

L−1∑
�=0

�∑
m=−�

(f)m� Y m
� (θ, φ). (5)

The signals, band-limited at L, form an L2 dimensional

subspace of L2(S2), which we denote by HL.

III. PROBLEM FORMULATION

A. Optimal Dimensionality Sampling on the Sphere

The optimal-dimensionality sampling scheme on the sphere

requires (optimal number) L2 samples to accurately compute

the SHT for a signal with band-limit L [20]. In this scheme,

L iso-latitude rings are placed on the sphere at locations (to

be explained shortly) given in vector θ, defined as

θ � [θ0 , θ1 , . . . , θL−1] . (6)

The ring placed at θk contains 2k+1 equiangular points along

longitude φ.

B. SHT Formulation

For a signal f ∈ HL sampled using optimal-dimensionality

sampling scheme, we define a vector gm, for every |m| < L
as

gm �
[
Gm(θ|m|), Gm(θ|m|+1), . . . , Gm(θL−1)

]T
, (7)

where Gm(θk) for each θk ∈ θ is given as

Gm(θk) �
∫ 2π

0

f(θk, φ)e
−imφdφ = 2π

L−1∑
�=m

(f)m� P̃m
� (θk).

(8)

Here P̃m
� (θk) � Y m

� (θk, 0) denotes scaled associated Leg-

endre functions. The second equality in (8) is obtained by

using (2) and (5) and employing the orthogonality of complex

exponentials. By defining another vector fm as

fm =
[
(f)m|m|, (f)

m
|m|+1, . . . , (f)

m
L−1

]T
, (9)

containing the spherical harmonic coefficients of order m, we

formulate a linear system given as

gm = Pm fm, (10)

where the Pm is an (L−|m|)×(L−|m|) matrix with elements

given by

Pm(i, j) = P̃m
|m|+j−1(θ|m|+i−1). (11)

C. Problem Under Consideration

The spherical harmonic coefficients for each order |m| ≤ L
contained in fm can be recovered by solving the linear system

given in (10). Computation of the SHT, i.e., the computation of

spherical harmonic coefficients of the signal f ∈ HL sampled

according to the optimal-dimensionality sampling scheme,

involves the inversion of a series of linear systems formed by

the matrix Pm (defined in (11)) for m = 0, 1, . . . , L−1 [20]. A

condition number minimization method has been proposed in

[20] to determine the locations of the iso-latitude rings indexed

in (6) such that the matrix Pm for each m = 0, 1, . . . , L− 1
is well-conditioned and the SHT can be accurately computed.



With an objective to improve the accuracy of the SHT, we

consider the problem of determining the locations of iso-

latitude rings of samples which reduce (improve) the condition

number (ratio of the largest to the smallest eigenvalue) of the

matrices Pm, m = 0, 1, . . . , L − 1. The θ vector containing

the locations of iso-latitude rings, initially in the ascending

order of co-latitude angle, is re-ordered such that every Pm

matrix has minimum condition number. To further increase

the accuracy of the SHT, we also propose a multi-pass SHT

algorithm which iteratively reduces the error between the given

signal (samples in spatial domain) and the signal synthesized

using the computed spherical harmonic coefficients.

IV. OPTIMIZED SAMPLES PLACEMENT AND MULTI-PASS

SHT

With an objective to improve the accuracy of the SHT using

optimal number of samples, we first present our proposed

method for the placement of the iso-latitude rings of samples

and later we present iterative method for the computation of

the SHT.

A. Condition Number Minimization

The recovery of fm for each |m| < L using (10) requires in-

version of the Pm matrix for each |m| < L. For accurate com-

putation of the SHT, it is therefore necessary that the matrix

Pm is invertible and well-conditioned. Since Pm is a matrix

of associated Legendre polynomials of order m and degrees

|m| ≤ � < L evaluated at θi, i = |m|, |m+ 1|, . . . , L− 1, its

accurate inversion depends on the locations of the iso-latitude

rings indexed in (6). To determine the locations of the iso-

latitude rings, we propose a condition number minimization

technique, herein referred to as the elimination method, for

the construction of the vector θ.

Let Ω be a set of L equiangular co-latitude angles between

0 and π defined as

Ω �
{
π (2t+ 1)

2L− 1

}
, t = 0, 1, . . . , L− 1. (12)

For m = 0, the Pm matrix is formed by inserting all elements

of set Ω in (11) and has dimension L×L. Since Pm, for m=1,

requires L − 1 co-latitude angles, we eliminate one element,

say {Ωj}, from the set Ω and calculate the condition number,

denoted by κm, of Pm using all possible L− 1 combinations

of residual elements Ω\ {Ωj}. The element {Ωj}, whose

elimination results in the lowest condition number of Pm, is

then selected as the first element of the θ vector. The Ω set is

then updated as Ω ← Ω\ {Ωj}. The same procedure is carried

out for the construction of the θ vector for m = 2, 3, . . . , L−1
which we summarize below in the form of an algorithm.

The θ vector constructed using the proposed elimination

method is optimized in a sense that it generates Pm matrices

of lower condition number as compared to the optimal-

dimensionality sampling scheme. This improvement in the

condition number comes from the fact that the proposed

elimination method has L− |m| choices for θm such that the

condition number of matrix Pm is minimized. In contrast, the

method proposed in [20] has |m| choices for the selection

Algorithm 1 Elimination Method

Require: θ given L
1: procedure ELIMINATION METHOD

2: Ω �
{

π (2t+1)
2L−1

}
t=0,1,...,L−1

.

3: for m = 0, 1, . . . , L− 1 do
4: for j = 0, 1, . . . , L−m do
5: αj ← Ω\ {Ωj}
6: evaluate Pm using (11) and

7: compute condition number κm

8: end for
9: determine index k for minimum value of κm

10: update θm ← Ωk

11: update Ω ← αk

12: end for
13: return θ
14: end procedure

m
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Fig. 1: The condition number κm of the matrix Pm, m =
0, 1, . . . , L−1 using the proposed optimized placement of iso-

latitude rings and the design proposed in [20] for band-limit

L = 32.

of θm and minimization of the condition number of matrix

the Pm. As an illustration, the condition number κm of the

matrix Pm, m = 0, 1, . . . , L−1 using the proposed optimized

placement of iso-latitude rings and the design proposed in

[20] is plotted in Fig. 1 for band-limit L = 32. We also

plot the maximum of the condition number κm obtained for

different band-limits 16 ≤ L ≤ 512 in Fig. 2. It is evident

that the proposed elimination method improves the well-

conditioning of the systems involved in the computation of

the SHT algorithm associated with the optimal-dimensionality

sampling on the sphere.

B. Multi-pass SHT

The spherical harmonic coefficients of a band-limited signal

sampled according to the optimal-dimensionality sampling

scheme are computed iteratively for each order in a sequence
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Fig. 2: The maximum of the condition number max(κm) , 0 ≤
m < L for different band-limits 16 ≤ L ≤ 512.

|m| = L − 1, L − 2, . . . , 0. The SHT is inherently iterative

in nature as the spherical harmonic coefficients of order |m|
are used in the computation of the SHT of order |m| − 1.

Consequently, the error propagates and builds up in the itera-

tive computation of spherical harmonic coefficients. To reduce

this error building-up, we propose a multi-pass SHT algorithm

which iteratively improves the accuracy of the SHT.

For a signal f ∈ HL sampled by the optimal-dimensionality

sampling scheme, the spherical harmonic coefficients can be

accurately computed by the algorithm presented in [20]1. We

define the residual (error) between the signal f and the signal

synthesized from the recovered spherical harmonic coefficients

as

rk(θ, φ) = f(θ, φ)−
L−1∑
�=0

�∑
m=−�

(f̃k)
m
� Y m

� (θ, φ) (13)

where (f̃k)
m
� denotes the spherical harmonic coefficient com-

puted using the proposed SHT algorithm and k = 1 (indicating

the number of times the transform has been carried out). Once

residual is computed, we use the SHT algorithm to compute

its spherical harmonic coefficients, denoted by (r̃k)
m
� , which

we use to update (f̃k)
m
� as

( ˜fk+1)
m
� = (f̃k)

m
� + (r̃k)

m
� . (14)

We propose to iteratively use (13) and (14) to compute (f̃k)
m
�

for k = 1, 2, . . ., until the following stopping criterion is met

max |rk+1(θ, φ)| > max |rk(θ, φ)|, (15)

where max is taken over the samples of the sampling scheme.

Since the proposed method requires to compute the SHT

multiple times, we refer to the proposed method for the

computation of spherical harmonic coefficients as the multi-

1SHT can be computed accurately for band-limited signals sampled over
optimal-dimensionality sampling scheme [20] using the MATLAB based
package Novel Spherical Harmonic Transform (NSHT) publicly available at
www.zubairkhalid.org/nsht.

pass SHT. Later, we illustrate that the proposed method

significantly improves the accuracy of the SHT.

C. Computational Complexity Analysis

Here we briefly discuss the computational complexity of the

proposed elimination method for the placement of iso-latitude

rings and the multi-pass SHT algorithm. The elimination

method has the computational complexity of O(L5). However,

it only needs to be run once for the determination of θ for

each L. Furthermore, we note that the complexity of the

method presented in [20] for the placement of samples is

also O(L5). For the optimal-dimensionality sampling scheme,

the SHT can be computed with complexity of O(L3.37). For

the proposed multi-pass SHT algorithm, the complexity scales

with the number of iterations, denoted by K, needed for the

convergence of error. In the next section, we provide exam-

ples to illustrate that the proposed multi-pass SHT algorithm

converges quickly in K 
 L number of iterations.

D. Accuracy Analysis

In this section, we analyse the accuracy of the proposed

multi-pass SHT algorithm of a band-limited signal evaluated

using the optimal-dimensionality sampling scheme with iso-

latitude rings placed using the proposed elimination method.

Comparison between the proposed developments and the SHT

proposed in [20] has been carried out through numerical

experiments. In our experiment, we first take a band-limited

signal f ∈ HL by randomly generating its spherical har-

monic coefficients (f)m� . The real and imaginary parts of the

coefficients are uniformly distributed in [0, 1]. Using inverse

SHT, we obtain the signal f in the spatial domain, that

is, over the samples of the optimal-dimensionality sampling

scheme (proposed sampling or [20]). We then apply the SHT

presented in [20] and the proposed multi-pass SHT algorithm

to recover the spherical harmonic coefficients, denoted by

(f̃)m� and (f̃k)
m
� respectively. We conduct experiments for 10

different signals to obtain the average value of the maximum

error between reconstructed and original spherical harmonic

coefficients defined as

Emax � max |(f̃)m� − (f)m� |, (16)

Ek
max � max |(f̃k)m� − (f)m� |, (17)

which we plot for band-limits 8 ≤ L ≤ 1024 in Fig. 3,

where it can be observed that the proposed multi-pass SHT

algorithm and optimized placement of samples results in the

more accurate computation of the SHT.

We also analyse the convergence of the multi-pass SHT

algorithm and the improvement in the accuracy of the SHT

enabled by the proposed multi-pass SHT algorithm. We plot

the maximum absolute error Ek
max for band-limits L = 128

and L = 256 in Fig. 4, where it can be observed that the

proposed multi-pass SHT improves the accuracy of SHT and

converges (quickly) in K 
 L number of iterations.

V. CONCLUSIONS

In this work, we have proposed variations in the spheri-

cal harmonic transform (SHT) associated with the optimal-
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Fig. 4: Maximum error Ek
max, given in (17), between the

original and recovered spherical harmonic coefficients for

band-limits L = 128 and L = 256 and different iterations

of the multi-pass SHT.

dimensionality sampling scheme which consist of iso-latitude

rings of samples and enables accurate computation of the

SHT of band-limited signals using the optimal number of

samples given by the degrees of freedom required to represent

a band-limited signal in harmonic space. We have presented

the elimination method for the iterative placement of iso-

latitude rings of samples. The proposed placement reduces

the condition number of matrices involved in the computation

of SHT and consequently improves the accuracy of the SHT.

We have also proposed the multi-pass SHT algorithm which

iteratively reduces the residual between the given signal and

the reconstructed signal and therefore improves the overall

accuracy of the SHT. We have analyzed the changes in the

computational complexity and improvement in accuracy with

the use of proposed variations in the computation of the SHT.

We have also conducted numerical experiment to illustrate the

improvement in accuracy enabled by the proposed methods.
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