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ABSTRACT
Uncertainty quantification is a critical missing component in radio interferometric imaging
that will only become increasingly important as the big-data era of radio interferometry
emerges. Statistical sampling approaches to perform Bayesian inference, like Markov Chain
Monte Carlo (MCMC) sampling, can in principle recover the full posterior distribution of the
image, from which uncertainties can then be quantified. However, for massive data sizes, like
those anticipated from the Square Kilometre Array (SKA), it will be difficult if not impossible
to apply any MCMC technique due to its inherent computational cost. We formulate Bayesian
inference problems with sparsity-promoting priors (motivated by compressive sensing), for
which we recover maximum a posteriori (MAP) point estimators of radio interferometric
images by convex optimisation. Exploiting recent developments in the theory of probabil-
ity concentration, we quantify uncertainties by post-processing the recovered MAP estimate.
Three strategies to quantify uncertainties are developed: (i) highest posterior density credi-
ble regions; (ii) local credible intervals (cf. error bars) for individual pixels and superpixels;
and (iii) hypothesis testing of image structure. These forms of uncertainty quantification pro-
vide rich information for analysing radio interferometric observations in a statistically robust
manner. Our MAP-based methods are approximately 105 times faster computationally than
state-of-the-art MCMC methods and, in addition, support highly distributed and parallelised
algorithmic structures. For the first time, our MAP-based techniques provide a means of quan-
tifying uncertainties for radio interferometric imaging for realistic data volumes and practical
use, and scale to the emerging big-data era of radio astronomy.

Key words: techniques: image processing – techniques: interferometric – methods: data anal-
ysis – methods: numerical – methods: statistical.

1 INTRODUCTION

Radio interferometric (RI) telescopes provide observations of the
radio emission of the sky with high angular resolution and sen-
sitivity, and provide a wealth of valuable information for astro-
physics and cosmology (Ryle & Vonberg 1946; Ryle & Hewish
1960; Thompson et al. 2017). Radio interferometers essentially ac-
quire Fourier measurements of the sky image of interest. Imaging
observations made by radio interferometers thus requires solving an
ill-posed linear inverse problem (Thompson et al. 2017), which is
an important first step in many subsequent scientific analyses. Since
the inverse problem is ill-posed (sometimes seriously), uncertainty
information (e.g. error estimates) regarding reconstructed images is
critical. Nevertheless, uncertainty information is currently lacking
in all RI imaging techniques used in practice. In Cai et al. (2017a),
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the first of these companion articles, we propose uncertainty quan-
tification strategies for RI imaging based on state-of-the-art Markov
chain Monte Carlo (MCMC) methods that sample the full poste-
rior distribution of the image, with the sparsity-promoting priors
that have been shown in practice to be highly effective (e.g. Pratley
et al. 2018). Excellent results were achieved and a variety of differ-
ent uncertainty quantification strategies were presented. However,
it is difficult to scale these strategies to big-data due to their high
computational overhead. We address this issue in the current arti-
cle.

Over the coming decades radio astronomy will transition into
the so-called big-data era. Generally speaking, the new genera-
tion of radio telescopes, such as the LOw Frequency ARray (LO-
FAR1), the Extended Very Large Array (EVLA2), the Australian
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Square Kilometre Array Pathfinder (ASKAP3), and the Murchi-
son Widefield Array (MWA4), will achieve much higher dynamic
range and angular resolution than previous instruments and will
acquire very large volumes of data. The Square Kilometer Array
(SKA5) will provide a considerable step again in dynamic range
(six or seven orders of magnitude beyond prior telescopes) and an-
gular resolution, and will acquire massive volumes of data, ush-
ering in the big-data era of radio astronomy. This emerging era
of big-data, inevitably, will bring further challenges and so uncer-
tainty quantification will be increasingly important. As discussed in
Cai et al. (2017a), existing image reconstruction techniques, such
as CLEAN-based methods (Högbom 1974; Bhatnagar & Corwnell
2004; Cornwell 2008; Stewart et al. 2011), the maximum entropy
method (MEM) (Ables 1974; Gull & Daniell 1978; Cornwell &
Evans 1985), and compressed sensing (CS) methods (Wiaux et al.
2009a,b; Suksmono 2009; Wenger et al. 2010; McEwen & Wiaux
2011; Li et al. 2011a,b; Carrillo et al. 2012, 2014; Wolz et al. 2013;
Dabbech et al. 2015; Dabbech et al. 2017; Garsden et al. 2015;
Onose et al. 2016, 2017; Pratley et al. 2018; Kartik et al. 2017), do
not provide uncertainty information regarding their reconstructed
images. The approaches that do provide some form of uncertainty
quantification (Sutter et al. 2014; Junklewitz et al. 2016; Greiner
et al. 2017) cannot scale to big-data due to their high computational
cost, are typically restricted to Gaussian or log-normal priors, and
are not currently used in practice. Please see our first article in this
companion series (Cai et al. 2017a) for a more thorough review of
RI imaging techniques and their properties.

The current state of the field thus triggers an urgent need to
develop efficient uncertainty quantification methods for RI imag-
ing that scale to big-data. Furthermore, we seek to support the
sparsity-promoting priors that have been demonstrated in practice
to be highly effective for RI imaging (e.g. Pratley et al. 2018). In
Cai et al. (2017a) (the first part of this companion series), we pro-
posed uncertainty quantification methods to address the RI imaging
problem with sparse priors. In the current article (the second part
of this companion series), we present fast uncertainty quantifica-
tion methods that not only support sparse priors but also scale to
big-data. The techniques presented in this article are very different
to those presented in Cai et al. (2017a) but support the same forms
of uncertainty quantification.

The uncertainty quantification methods proposed in Cai et al.
(2017a) are based on two proximal MCMC sampling methods,
i.e. the Moreau-Yoshida unadjusted Langevin algorithm (MYULA)
(Durmus et al. 2016) and the proximal Metropolis-adjusted
Langevin algorithm (Px-MALA) (Pereyra 2016b). The main steps
of the uncertainty quantification strategies presented in Cai et al.
(2017a) can be briefly summarised as follows: firstly, the poste-
rior distribution of the image is MCMC sampled; then, uncertainty
quantification is performed by using the generated samples to com-
pute local (pixel-wise) credible intervals, highest posterior density
(HPD) credible regions, and to perform hypothesis testing of im-
age structure. Two frameworks – analysis and synthesis models –
are considered. While excellent results were achieved in Cai et al.
(2017a), when it comes to big-data, the proposed approach would
suffer due to the long computation time required to sample the pos-
terior distribution (as would be the case for any MCMC sampling
approach).

3 http://www.atnf.csiro.au/projects/askap
4 http://www.mwatelescope.org/telescope
5 http://www.skatelescope.org/

In this article we exploit an analytic method to approximate
HPD credible regions from maximum a posteriori (MAP) estima-
tors, as derived in Pereyra (2017), in order to develop very fast
methods to perform uncertainty quantification for RI imaging. Our
approach supports sparse priors and scales to massive data sizes,
i.e. to big-data. We begin by formulating Bayesian MAP estimation
for RI imaging as unconstrained convex optimisation problems, for
analysis and synthesis forms. These are subsequently solved effi-
ciently by using convex minimisation algorithms (e.g. Combettes
& Pesquet 2010). Recent advances in convex optimisation have re-
sulted in techniques that achieve excellent reconstruction fidelity
(with convergence guarantees), are flexible, and exhibit relatively
low computational costs. They also afford algorithmic structures
that can be highly distributed and parallelised (e.g. Carrillo et al.
2014; Onose et al. 2016) and computed in an online manner (Cai
et al. 2017b). Note, specifically, that only one point estimator is
computed here for the analysis or synthesis form, in contrast to
sampling approaches that seek to explore the full posterior distri-
bution as in Cai et al. (2017a), which is very time consuming. MAP
estimation is then followed by various strategies to quantify un-
certainties. Precisely, first the method of Pereyra (2017) is used to
obtain approximate HPD credible regions for the recovered image.
These HPD regions are then used, for the first time, to compute
local credible intervals (cf. error bars) that analyse uncertainty spa-
tially and at different scales (pixles or superpixels). Finally, we also
use the HPD credible regions to perform hypothesis tests of image
structure. We test our proposed approaches on simulated RI ob-
servations to demonstrate their effectiveness and compare with the
MCMC methods presented in Cai et al. (2017a).

The remainder of this article is organised as follows. In Sec-
tion 2 we review the RI imaging inverse problem. In Section 3 we
apply convex optimisation algorithms to solve the MAP estima-
tion problem for RI imaging in the context of sparse priors. Note
that Sections 2 and 3 review background material for our specific
problem to provide clarity and completeness (i.e. so that all deriva-
tions are explicit and thus one could implement our methods if
one wanted). Uncertainty quantification techniques for RI imaging
based on MAP estimation are formulated in Section 4. The perfor-
mance of the proposed methods is then evaluated numerically in
Section 5, where we compare uncertainties quantified by proximal
MCMC methods and by MAP estimation. Finally, we conclude in
Section 6 with a summary of our main contributions and a discus-
sion of planned extensions.

2 RADIO INTERFEROMETRIC IMAGING

In this section the inverse problem related to RI image reconstruc-
tion is introduced. We briefly recall the use of proximal MCMC
methods to solve this problem (Cai et al. 2017a), which we use
as a benchmark in the experiments that follow. Finally, an intro-
duction to Bayesian MAP estimation approaches for RI imaging is
presented, which may be solved by efficient convex optimisation
strategies.

2.1 Radio interferometry

Here, we concisely recall the inverse problem of RI imaging (for
further details see Cai et al. 2017a and references therein).

In the discretised setting, let x ∈ RN represent the sampled
intensity signal (the sky brightness distribution). In particular, x
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can be represented by

x = Ψa =
∑
i

Ψiai, (1)

where Ψ ∈ CN×L is a basis or dictionary (e.g., a wavelet basis or
an over-complete frame) and vector a = (a1, · · · , aL)> represents
the synthesis coefficients of x under Ψ. In particular, x is said to
be sparse if a contains only K non-zero coefficients, K � N , or
compressible if many coefficients of a are nearly zero. In practice,
it is ubiquitous that natural images are sparse or compressible for
approriate choices of Ψ. Refer to Cai et al. (2017a) for more details
about sparse representation.

Let y ∈ CM be the M visibilities acquired by a radio inter-
ferometric telescope observed under a linear measurement operator
Φ ∈ CM×N modelling the acquisition of the sky brightness distri-
bution. Then, we have

y = Φx+ n, (2)

where n ∈ CM is the instrumental noise. Without loss of gen-
erality, we subsequently consider independent and identically dis-
tributed (i.i.d.) Gaussian noise. In practice, y is only observed par-
tially or with limited resolution. Recovering the sky intensity signal
x from the measured visibilities y acquired according to equation
(2) then amounts to solving a linear inverse problem (Rau et al.
2009).

2.2 Bayesian inference

The RI inverse problem (2) can be solved elegantly in the Bayesian
statistical framework, which provides tools to estimate x (or a)
as well as to quantify the uncertainty in the estimated solutions.
After combining the observed and prior information, the posterior
distribution p(x|y) (or p(a|y) ) can be obtained by using Bayes’
theorem. Refer to Cai et al. (2017a) for more detailed discussion
about Bayesian inference in the context of RI imaging.

2.3 Proximal MCMC methods

To solve the ill-posed inverse problem in (2) with sparsity-
promoting priors, which have been shown in practice to be highly
effective (Pratley et al. 2018), while also performing uncertainty
quantification, two proximal MCMC methods to perform Bayesian
inference for RI imaging were developed in the companion article
(Cai et al. 2017a). These proximal MCMC methods seek to sample
the full posterior density p(x|y) that models our understanding of
the image x given data y, in the context of prior information. From
the full posterior, summary estimators of x and other quantities of
interest can be computed. In particular, in Cai et al. (2017a) these
methods are used to perform a range of uncertainty quantification
analysis for RI images.

One of the proximal MCMC methods presented in Cai et al.
(2017a), MYULA, scales efficiently to high dimensions but suffers
from some estimation bias (Durmus et al. 2016). The other, Px-
MALA, corrects this bias by using a Metropolis-Hastings correc-
tion step, at the expense of a higher computational cost and slower
convergence (Pereyra 2016b). Since Px-MALA can provide results
with corrected bias and thus is more accurate, we use it as a bench-
mark in the subsequent numerical tests presented in this work. Nev-
ertheless, the MCMC methods discussed in Cai et al. (2017a) will
suffer when scaling to big-data (as will any MCMC method), which
motives us to explore alternative faster methods that can scale to
big-data.

In this article we develop methods for uncertainty quantifica-
tion based on MAP estimation. We emphasise that while MCMC
methods such as Px-MALA are not as efficient as MAP estimation
(the main focus in this article), and do not scale to large RI datasets,
they are useful for smaller datasets and as a benchmark for the effi-
cient alternative methods that we propose in Section 4.

2.4 Maximum a posteriori (MAP) estimation

As discussed in the previous sections, sampling the full poste-
rior p(x|y) or p(a|y) by MCMC methods is difficult because of
the high dimensionality involved. Instead, Bayesian estimators that
summarise p(x|y) or p(a|y) are often computed. In particular, one
common approach is to compute MAP (maximum-a-posteriori) es-
timators given by

xmap = argmin
x

{
µ‖Ψ†x‖1 + ‖y −Φx‖22/2σ2

}
, (3)

for the analysis model, and for the synthesis model by

xmap = Ψ× argmin
a

{
µ‖a‖1 + ‖y −ΦΨa‖22/2σ2

}
, (4)

where the first term is a prior distribution to regularise the problem,
reduce uncertainty, and improve estimation results, and the second
term is associated with the likelihood function of the model associ-
ated with (2).

As we discuss below, a main computational advantage of the
MAP estimators (3) and (4) is that they can be computed very ef-
ficiently, even in high dimensions, by using convex optimisation
algorithms (e.g. Combettes & Pesquet 2010; Green et al. 2015).
There is also abundant empirical evidence suggesting that these es-
timators deliver accurate reconstruction results (see Pereyra 2016a
also for a theoretical analysis of MAP estimation). However, since
MAP estimation results in a single point estimator, we typical lose
uncertainty information that MCMC methods can provide (Cai
et al. 2017a). On the contrary, however, as we show in this article
it is possible to approximately quantify the uncertainties associated
with MAP estimators by leveraging recent results in the theory of
probability concentration (Pereyra 2017). Consequently, using the
techniques presented later in this article MAP estimation can pro-
vide fast methods that scale to big-data and that quantify uncertain-
ties.

2.5 Convex optimisation methods for MAP estimation

There are several convex optimisation methods that can be used to
solve the MAP estimation problems (3) and (4) efficiently, such as
forward-backward splitting, Douglas-Rachford splitting, or alter-
nating direction method of multipliers (ADMM) (see Combettes &
Pesquet 2010). In our experiments (3) and (4) are solved by adopt-
ing the simple forward-backward algorithm, which we detail in Ap-
pendix A.

3 SPARSE MAP ESTIMATION FOR RI IMAGING

In this section we present the algorithmic details of implementing
the forward-backward splitting algorithm to solve the sparse MAP
estimation problems for both the analysis setting (3) and synthe-
sis setting (4). For the sake of brevity, henceforth the labels ¯ and
ˆ denote symbols related to the analysis and synthesis models, re-
spectively.
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3.1 Analysis

For the analysis setting (3), set f̄(x) = µ‖Ψ†x‖1 and ḡ(x) =
‖y −Φx‖22/2σ2. Then

argmin
x

{
f̄(x) + ḡ(x)

}
(5)

can be solved using the forward-backward iteration formula (shown
in Appendix A), leading to the iterations

x(i+1) = proxλ(i)f̄ (x(i) − λ(i)∇ḡ(x(i))). (6)

Assume for now Ψ†Ψ = I, where I is identity matrix (although this
assumption is not essential and relaxed later). We have, ∀z̄ ∈ RN ,

proxλf̄ (z̄) = z̄ + Ψ
(

softλµ(Ψ†z̄)−Ψ†z̄
)
, (7)

and

∇ḡ(x) = Φ†(Φx− y)/σ2, (8)

where softλµ(z) is the pointwise soft-thresholding operator of vec-
tor z defined in (A5). See Remark 4.1 in Cai et al. (2017a) when
Ψ†Ψ 6= I for computing proxλf̄ (z̄). Substituting (7) and (8) into
(6), the analysis problem (3) can be solved iteratively by

v(i+1) = x(i) − λ(i)Φ†(Φx(i) − y)/σ2, (9)

x(i+1) = v(i+1)+Ψ
(

softλ(i)µ(Ψ†v(i+1))−Ψ†v(i+1)
)
. (10)

As initialisation use, e.g., x(0) = Φ†y, i.e. the dirty image.

3.2 Synthesis

For the synthesis setting (4), set f̂(a) = µ‖a‖1 and ĝ(a) = ‖y −
ΦΨa‖22/2σ2. Then

argmin
x

{
f̂(a) + ĝ(a)

}
(11)

can be solved using the forward-backward iteration formula (shown
in Appendix A), leading to the iterations

a(i+1) = proxλ(i)f̂ (a(i) − λ(i)∇ĝ(a(i))). (12)

We have, ∀ẑ = (ẑ1, · · · , ẑL) ∈ RL,

proxλf̂ (ẑ) = argmin
u∈RL

λµ‖u‖1 + ‖u− ẑ‖2/2

= softλµ(ẑ)
(13)

and

∇ĝ(a) = Ψ†Φ†(ΦΨa− y)/σ2. (14)

Finally, substituting (13) and (14) into (12), the synthesis problem
(4) can be solved iteratively by

a(i+1) = softλ(i)µ

(
a(i) − λ(i)Ψ†Φ†(ΦΨa(i) − y)/σ2

)
. (15)

Remark 3.1. Note that in both the analysis and synthesis settings
various terms can be precomputed. For example, in (9) and (14) the
operators Φ†Φ and Ψ†Φ†ΦΨ can be precomputed offline. Sim-
ilarly, the terms of Φ†y (the so-called dirty map) and Ψ†Φ†y re-
spectively in (9) and (14) can also be precomputed to improve com-
putation efficiency.

We summarise the forward-backward splitting algorithms

for the analysis and synthesis reconstruction forms in Algo-
rithms 1 and 2. We consider stopping criteria based on a max-
imum iteration number and when the relative difference be-
tween solutions at two consecutive iterations is within some tol-
erance, i.e., ‖x(i+1) − x(i)‖2/‖x(i)‖2 (for Algorithm 1) and
‖Ψa(i+1) −Ψa(i)‖2/‖Ψa(i)‖2 (for Algorithm 2). The iteration
is terminated when either of the stopping criteria are reached. The
complexity of the algorithms is simply given by the complexity of
application of the measurement operator Φ. However, the measure-
ment operator (and its adjoint) needs to be applied multiple times,
hence the pre-factor associated with the complexity is significant.
In general fast, optimised algorithms are applied for realistic mea-
surement operators (essentially based on non-uniform fast Fourier
transforms), resulting in a complexity ofO(MJ+N logN), where
J denotes the support of the kernel used to perform convolutional
degridding (see, e.g., Pratley et al. 2018 for further details).

Algorithm 1: Forward-backward algorithm for analysis

1 Input: y ∈ RM , x(0) ∈ RN , σ and λ(i) ∈ (0,∞)
2 Output: x′

3 do
4 update v(i+1) = x(i) − λ(i)Φ†(Φx(i) − y)/σ2

5 compute u = Ψ†v(i+1)

6 update x(i+1) = v(i+1) + Ψ
(
softλ(i)µ(u)− u

)
7 i = i+ 1

8 while Stopping criterion is not reached;

9 set x′ = x(i)

Algorithm 2: Forward-backward algorithm for synthe-
sis
1 Input: y ∈ RM , a(0) ∈ RL, σ and λ(i) ∈ (0,∞)
2 Output: a′

3 do
4 compute u = a(i) − λ(i)Ψ†Φ†(ΦΨa(i) − y)/σ2

5 update a(i+1) = softλ(i)µ(u)

6 i = i+ 1

7 while Stopping criterion is not reached;

8 set a′ = a(i)

4 BAYESIAN UNCERTAINTY QUANTIFICATION:
MAP ESTIMATION

The analysis and synthesis reconstruction models address inverse
problems which are generally ill-conditioned or ill-posed (espe-
cially when the measurements are only observed partially or with
limited resolution). Consequently, the corresponding estimators
have significant intrinsic uncertainty that is very challenging to
analyse and quantify. In Pereyra (2017) a general methodology
was proposed to use MAP estimators to accurately approximate
Bayesian credible regions for p(x|y). These credible regions indi-
cate the regions of the parameter space where most of the posterior
probability mass lies. A remarkable property of the approximation
is that it only requires knowledge of xmap and therefore it can be
computed very efficiently, even in very large-scale problems.

MNRAS 000, 1–13 (2017)
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Observed visibilities in RI imaging: y

MAP image
estimation: xmap

Approximate HPD
credible regions: C′α

Approximate local cred-
ible intervals: (ξ−, ξ+)

Hypothesis testing

Figure 1. Our proposed uncertainty quantification procedure for RI imaging
based on MAP estimation. The light green areas on the right show the types
of uncertainty quantification developed. Firstly, an image is reconstructed
by MAP estimation using convex optimisation techniques, which scale to
big-data. Then, various forms of uncertainty quantification are performed.
Global approximate Bayesian credible regions are computed. These are then
used to compute local credible intervals (cf. error bars) corresponding to
individual pixels and superpixels and to perform hypothesis testing of image
structure to test whether a structure is physical or an artefact.

The diagram in Figure 1 shows the main components of our
proposed uncertainty quantification methodology based on MAP
estimation. As is shown, firstly, an image is reconstructed by MAP
estimation. MAP estimation can be computed extremely rapidly
and is therefore ideal for application to big-data. Then, various
forms of uncertainty quantification are performed. Firstly, global
approximate Bayesian credible regions are computed. These are
then used to compute local credible intervals (cf. error bars) cor-
responding to individual pixels and superpixels. Finally, again us-
ing the global approximate Bayesian credible regions, hypothesis
testing of image structure can be performed to test whether a struc-
ture is physical or an artefact. For consistency, we adopt the same
notation as in the companion article (Cai et al. 2017a).

4.1 Approximate highest posterior density (HPD) credible
regions

The first step in our uncertainty quantification methodology is to
compute a credible region for p(x|y). A posterior credible region
with credible level 100(1− α)% is a set Cα ∈ RN that satisfies

p(x ∈ Cα|y) =

∫
x∈RN

p(x|y)1Cαdx = 1− α, (16)

where 1Cα is the indicator function for Cα, defined by
1Cα(u) = 1 if u ∈ Cα and 0 otherwise. Many regions satisfy the
above property. We focus on the HPD (Highest Posterior Density)
region defined by

Cα := {x : f(x) + g(x) ≤ γα}, (17)

where the threshold γα which defines an isocontour or level-set
of the log-posterior is set such that (16) holds, and we recall
that p(x| y) ∝ exp{−f(x) − g(x)}. This region is decision-
theoretically optimal in the sense of minimum volume (Robert
2007).

Computing HPD credible regions in (17) is difficult because
of the high-dimensional integral in (16). For RI models that are
not too high dimensional, Cα can be computed efficiently by using
proximal MCMC method as described in Cai et al. 2017a. However,
this is not possible in big-data settings.

Here we use an approximation of Cα proposed recently in
Pereyra (2017) for convex inverse problems solved by MAP esti-
mation. The approximation is given by

C′α := {x : f(x) + g(x) ≤ γ′α}, (18)

where γ′α is an approximation of the HPD threshold γα given by

γ′α = f(xmap) + g(xmap) + τα
√
N +N, (19)

with universal constant τα =
√

16 log(3/α). Recall that N is the
dimension of x and 100(1 − α)% the credible level considered.
After computing xmap by using modern convex optimisation algo-
rithms, γ′α can be calculated straightforwardly using (19), even in
very high dimensions. The approximation given in (19) was moti-
vated from recent results in information theory in terms of a prob-
ability concentration inequality (refer to Pereyra 2017 for more de-
tails).

For any α ∈ (4exp(−N/3), 1), the error between γ′α and γα
is bounded by the following inequality

0 ≤ γ′α − γα ≤ ηα
√
N +N, (20)

where ηα =
√

16 log(3/α) +
√

1/α. Since the error γ′α − γα
grows at most linearly with respect toN whenN is large, the cred-
ible region C′α associated with γ′α is a stable approximation of Cα.
Moreover, since γ′α − γα ≥ 0 the approximation is theoretically
conservative in the sense that C′α overestimates Cα. Precisely, in
the analysis formulation, we first compute the reconstructed image
xmap by using Algorithm 1, and then obtain an approximate HPD
credible region

C̄′,map
α := {x : f̄(x) + ḡ(x) ≤ γ̄′α} (21)

with

γ̄′α = f̄(xmap) + ḡ(xmap) + τα
√
N +N. (22)

Similarly, in the synthesis setting we compute amap via Algorithm
2, and then construct

Ĉ′,map
α := {Ψa : f̂(a) + ĝ(a) ≤ γ̂′α} (23)

with

γ̂′α = f̂(amap) + ĝ(amap) + τα
√
N +N. (24)

Note that γ̄′α and γ̂′α define the HPD credible regions implicitly.
The HPD credible regions can be used to quantify uncertain-

ties in a variety of manners. In the reminder of this section we de-
scribe two such strategies.

4.2 Local credible intervals

The first strategy we propose is a novel approach to compute lo-
cal credible intervals corresponding to pixels and superpixels, as a
means for quantifying uncertainty spatially at different scales. This
presents a new form of Bayesian uncertainty quantification tailored
for image data and is easy to visualise and interpret. The method
is based on the HPD credible regions discussed above and is appli-
cable for any method for which HPD credible regions can be com-
puted. Here we promote the MAP-based approach, based on the
approximations (22) and (24), and benchmark our results against
the MCMC approach Px-MALA, introduced in Cai et al. (2017a).

Let Ω = ∪iΩi be a partition of the image domain Ω into sub-
sets or superpixels Ωi such that Ωi ∩ Ωj = ∅, i 6= j. The image
domain can be partitioned at different scales, from a single pixel to
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larger scales involving blocks of several pixels. To index superpix-
els we define the index operator ζΩi = (ζ1, · · · , ζN ) ∈ RN on Ωi,
which satisfies

ζk =

{
1, if k ∈ Ωi,

0, otherwise.
(25)

To quantify the uncertainty associated with the region Ωi we cal-
culate the points ξ−,Ωi and ξ+,Ωi that saturate the HPD credible
region C′,map

α from above and from below at Ωi, given by

ξ−,Ωi = min
ξ

{
ξ|f(xi,ξ) + g(xi,ξ) ≤ γ′α, ∀ξ ∈ [0,+∞)

}
, (26)

ξ+,Ωi = max
ξ

{
ξ|f(xi,ξ) + g(xi,ξ) ≤ γ′α,∀ξ ∈ [0,+∞)

}
, (27)

where xi,ξ = x∗(I − ζΩi) + ξζΩi represents a point estimator
generated by replacing the intensity of x∗ in Ωi by ξ. We recall
that γ′α is the threshold or isocontour level defining C′,map

α . We
then construct the interval (ξ−,Ωi , ξ+,Ωi) that represents the range
of intensity values ξ of Ωi for which xi,ξ ∈ C′,map

α .
Finally, for visualisation, we gather all the lower and upper

bounds ξ−,Ωi , ξ+,Ωi , ∀i, into the following two images:

ξ− =
∑
i

ξ−,ΩiζΩi , ξ+ =
∑
i

ξ+,ΩiζΩi . (28)

We typically consider the difference image (ξ+ − ξ−) that shows
the length of the local credible intervals (cf. error bars). These im-
ages can be constructed at different scales to analyse structure of
different sizes. In our experiments, as examples, we consider su-
perpixels of sizes 10× 10, 20× 20, and 30× 30 pixels.

To conclude, notice that visualising uncertainty in high dimen-
sional problems is fundamentally difficult. For example, even the
simple case of N -dimensional Gaussian models involves covari-
ance matrices of size N × N ; the models considered here are sig-
nificantly more complex. As a result, uncertainty information could
potentially structure along directions of the parameter space that the
visual uncertainty plots described above fail to capture. However,
we believe that correlations in images are predominantly local, al-
beit at potentially different scales. What our analyses seek to cap-
ture and visually display are precisely these local correlations at
superpixel scales of different levels.

4.3 Hypothesis testing of image structure

In a manner akin to the companion article Cai et al. (2017a), we
use knock-out posterior tests to assess specific areas or structures
of interest in the reconstructed images. These tests proceed by con-
structing a surrogate test image x∗,sgt by carefully replacing the
structure of interest in an point estimator x∗ (or Ψa∗) with back-
ground information. If removing the structure has pushed x∗,sgt

outside of the HPD credible region (i.e. x∗,sgt /∈ C′,map
α ), this in-

dicates that the data strongly supports the structure under consid-
eration. Conversely, if x∗,sgt remains inside of the HPD credible
region (i.e. x∗,sgt ∈ C′,map

α ), then the likelihood is insensitive to
the modification, indicating lack of strong evidence for the scruti-
nised structure.

Algorithmically, a surrogate x∗,sgt for a test area ΩD ⊂ Ω is
generated by performing segmentation-inpainting of x∗, for exam-
ple by applying a wavelet filter Λ iteratively by using

x(m+1),sgt = x∗1Ω−ΩD + Λ†softλthd(Λx(m),sgt)1ΩD , (29)

with x(0),sgt = x∗ or x(0),sgt = Ψa∗ for the synthesis formula-

tion (usually 100 iterations are sufficient for convergence). To de-
termine if x∗,sgt ∈ C′,map

α , it suffices to check if

f(x∗,sgt) + g(x∗,sgt) ≤ γ′α. (30)

In addition to the approach presented above to assess the exis-
tence of specific areas or structures of interest, we also propose the
following approach to focus on assessing sub-structure within areas
of interest. Briefly speaking, we create surrogate test images with
the sub-structure in question effectively removed by smoothing the
corresponding region. Algorithmically, a surrogate x∗,sgt for a test
area ΩD ⊂ Ω is then generated by

x∗,sgt = x∗1Ω−ΩD + (Sx∗)1ΩD , (31)

where S is a smoothing operator applied to remove sub-structure
within the test area ΩD .

5 EXPERIMENTAL RESULTS

We now investigate the performance of the proposed uncertainty
quantification methodology for the three strategies discussed in
Section 4. We also report a detailed comparison with the proxi-
mal MCMC method Px-MALA, which is one of the MCMC meth-
ods introduced in the companion article (Cai et al. 2017a) and that
can also support sparsity-promoting priors. Px-MALA produces
(asymptotically) exact inferences and therefore we use it here as
an accurate benchmark for the methods proposed in this article.

5.1 Simulations

In a manner akin to Cai et al. (2017a), we perform our experiments
with the following four RI images: M31 galaxy (size 256 × 256),
Cygnus A galaxy (size 256 × 512), W28 supernova remnant (size
256×256), and 3C288 (size 256×256). These images are depicted
in Figure 2 (a) and Figure 3 (a). Radio interferometric observations
are simulated for these ground truth images in a similar manner as
in Cai et al. (2017a).

The numerical experiments performed in this article for MAP
estimation were run on a Macbook laptop with an i7 Intel CPU and
memory of 16 GB, running MATLAB R2015b. The Px-MALA al-
gorithm used as a benchmark is significantly more computationally
expensive and required a high-performance workstation (see Cai
et al. 2017a). For further details about the experiment setup and the
implementation of Px-MALA please see Cai et al. (2017a).

Regarding the models used for the experiments, the `1 regu-
larisation parameter µ in the analysis and synthesis models is set
to 104 and the dictionary Ψ in the analysis and synthesis models
is set to Daubechies 8 wavelets. In Algorithms 1 and 2, we use
λ(i) = 0.5, with stopping criteria set by a maximum iteration num-
ber of 500 or relative difference between solutions of 10−4. In for-
mulas (22) and (24), the range of values for α is [0.01, 0.99]. In
particular, credible regions and intervals are reported at α = 0.01,
corresponding to the 99% credible level. The maximum number of
iterations for segmented-inpainting in (29) is set to 200.

5.2 Image reconstruction

As the first step in our analysis we perform Bayesian image re-
construction for the four images considered. Precisely, for each
image we compute two Bayesian estimators, the MAP estimator
computed by convex optimisation and the sample mean estimator
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(a) ground truth (b) dirty map (c) Px-MALA for analysis model (d) MAP for analysis model

(e) Px-MALA for synthesis model (f) MAP for synthesis model

Figure 2. Image reconstructions for M31 (size 256× 256). All images are shown in log10 scale (i.e. the numeric labels on the colour bar are the logarithms
of the image intensity).. (a): ground truth; (b): dirty image (reconstructed by inverse Fourier transform); (c) and (d): point estimators for the analysis model
(3) computed by Px-MALA and MAP estimation, respectively; (e) and (f): the same as (c) and (d) but for the synthesis model (4). In particular, the point
estimators of Px-MALA are the sample mean. Clearly, consistent results between Px-MALA and MAP estimation and between the analysis and synthesis
models are obtained.

(a) ground truth (b) dirty map (c) Px-MALA for analysis model (d) MAP for analysis model

Figure 3. Image reconstructions for Cygnus A (size 256× 512), W28 (size 256× 256), and 3C288 (size 256× 256) radio galaxies (first to third rows). All
images are shown in log10 scale. First column: (a) ground truth. Second to forth columns: (b) dirty images; (c) and (d) point estimators for the analysis model
(3) computed by Px-MALA and MAP estimation, respectively. Clearly, consistent results between Px-MALA and MAP estimation are obtained.
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8 Cai, Pereyra and McEwen

Table 1. CPU time in minutes for the proximal MCMC method Px-MALA
(generating full posterior samples) and MAP-based methods (computing a
point estimator), for the analysis and synthesis models and for test images
of M31, Cygnus A, W28 and 3C288. MAP estimation is approximately 105

times faster than Px-MALA and can be scaled to big-data.

Images Methods
CPU time (min)

Analysis Synthesis

M31 (Fig. 2 )
Px-MALA 1307 944

MAP .03 .02

Cygnus A (Fig. 3 )
Px-MALA 2274 1762

MAP .07 .04

W28 (Fig. 3 )
Px-MALA 1122 879

MAP .06 .04

3C288 (Fig. 3 )
Px-MALA 1144 881

MAP .03 .02

computed with Px-MALA. For completeness, we consider both the
analysis and the synthesis models (3) and (4).

The Bayesian estimators related to the analysis model are
shown in Figures 2 and 3. Observe that both estimators pro-
duce similar, excellent reconstruction results. For comparison, dirty
maps (reconstructed by applying the inverse Fourier transform di-
rectly to the visibilities) of the test images are shown in Figure 2 (b)
and Figure 3 (b). As expected, the results of the analysis and syn-
thesis models (3) and (4) under an orthogonal basis Ψ are nearly
undistinguishable6 (see results for M31 in Figure 2; to avoid re-
dundancy the results for the other images are not reported here).
For this reason, in the reminder of this article only the results for
the analysis model are presented.

We emphasise again that MAP estimators computed by con-
vex optimisation are significantly faster to compute than the estima-
tors that require MCMC methods. In particular, in our experiments
there is a gain of order 105 in terms of computation time (see Ta-
ble 1 for the computation time comparisons with Px-MALA). Fur-
thermore, MAP estimation based on convex optimisation supports
algorithmic structures that can be highly distributed (e.g. Carrillo
et al. 2014; Onose et al. 2016) to further assist in scaling to big-
data. MCMC algorithms cannot typically be distributed to such a
high degree. We have not yet considered distributed MAP algo-
rithms here; our MAP-based methods therefore provide additional
performance improvements over MCMC beyond the already dra-
matic improvements shown in Table 1.

5.3 Approximate HPD credible regions

We compute the HPD credible regions for the four images consid-
ered. Precisely, we use formulas (22) and (24) to approximate the
threshold or isocontour value γ′α defining the HPD regions for the
analysis and synthesis models (recall that these are highly efficient
approximations derived from the MAP estimates xmap and amap).
Figure 4 shows the threshold values obtained for each image and
model, for α ∈ [0.01, 0.99]; observe again that the results of the
analysis and synthesis models are consistent with each other, as ex-
pected.

6 Note that, when Ψ†Ψ = I, as considered here, the analysis and synthesis
models are identical. However, when Ψ†Ψ 6= I, they are very different and
we expect different reconstructed images.

To assess the approximation error involved in using the ap-
proximations (22) and (24), we also computed the exact HPD
threshold values by using the Px-MALA MCMC algorithm (cf. Cai
et al. 2017a, Figure 6). Recall than Px-MALA is several orders of
magnitude more computationally expensive than MAP estimation
(see Table 1). This comparison revealed approximation errors of be-
tween 1% and 5% over all cases, which is in close agreement with
the results reported in Pereyra (2017). These experiments confirm
that the MAP-based approximations (22) and (24) deliver accurate
estimates of the HPD credible regions with a dramatically lower
computational cost.

5.4 Approximate local credible intervals

We use the approximate HPD regions to calculate local credible
intervals for image superpixels. Precisely, Figures 5–8 report the
length of local credible intervals for the four test images for super-
pixel grid sizes of 10 × 10, 20 × 20, and 30 × 30 pixels, com-
puted w.r.t. the analysis model (the results for the synthesis model
are very similar). For comparison, Figures 5–8 also show the exact
local credible estimates obtained by using the Px-MALA MCMC
algorithm, which does not rely on the approximations (22) and (24).

We conclude the main observations as follows. Firstly, the re-
sults obtained with both approaches are extremely consistent with
each other, indicating that the approximate credible intervals de-
rived from the MAP estimation are very accurate. Secondly, the
length of the approximate local credible intervals computed by
MAP estimation are theoretically conservative and can be seen to
slightly overestimate the lengths computed by MCMC sampling,
and so are trustworthy. Thirdly, note that (i) coarser scales have
shorter credible intervals than narrower scales, and (ii) superpix-
els at object boundaries generally have longer credible intervals
than superpixels in homogenous regions. These two observations
are related to the fact that narrow scales are mainly sensitive to
high spatial frequency information such as fine details and object
boundaries that are difficult to accurately estimate, whereas coarser
scales are also sensitive to lower frequencies and larger structures
that are easier to estimate. More precisely, these two observations
are a direct consequence of the fact that the sampling profile as-
sociated with the measurement operator Φ mainly covers low fre-
quencies and has very few high-frequency measurements (see Cai
et al. 2017a, Figure 2). As a result, the likelihood p(y|x) has signif-
icantly less information about high-frequency image components,
and this leads to higher uncertainty (i.e., longer credible intervals)
at fine scales, sharp details, and object boundaries.

5.5 Hypothesis testing of image structure

We conclude our experimental results by demonstrating our
methodology for testing structure in reconstructed images. We con-
sider the same images and structures of interest as in Cai et al.
(2017a), shown in the yellow rectangular areas in the first column
of Figure 9. All of these structures are physical (i.e. present in the
ground truth images), except for structure 2 in 3C288 which is a
reconstruction artefact.

Recall that the methodology proceeds as follows. First, we
construct a carefully designed surrogate image x∗,sgt by modify-
ing the MAP estimator xmap to remove the structure of interest via
segmentation-inpaiting, computed using formula (29) (notice that
this modification produces a surrogate that is in agreement with the
prior distribution). Each structure is assessed individually. Second,
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1 − α 1 − α 1 − α 1 − α

(a) M31 (b) Cygnus A (c) W28 (d) 3C288

Figure 4. HPD credible region isocontour levels γ̄′α and γ̂′α computed using MAP-based methods, for test images (a) M31, (b) Cygnus A, (c) W28, and (d)
3C288. In particular, MAP-ana (resp. MAP-syn) represents the results by MAP estimation for the analysis (resp. synthesis) model. Note that the red line in
plot (d) is overlaid by the blue line and thus may not be visible, due to the high degree of similarity between the two results. In all cases the results of the
analysis and synthesis models are in close agreement.

Px
-M

A
L

A
M

A
P

(a) point estimators
(b) local credible interval length (c) local credible interval length (d) local credible interval length

grid size 10× 10 pixels grid size 20× 20 pixels grid size 30× 30 pixels

Figure 5. Length of local credible intervals (99% credible level), cf. error bars, computed for M31 for the analysis model (3). First column: (a) point estimators.
Second to fourth columns: (b)–(d) local credible intervals at grid sizes of 10× 10, 20× 20, and 30× 30 pixels, respectively. First row gives exact inferences
computed with the MCMC method Px-MALA (Cai et al. 2017a). Second row gives MAP-based approximate inferences computed by convex optimisation.
Clearly, MAP-based approximations provide estimates of the length of local credible intervals (cf. error bars) that are extremely consistent with the ones
obtained by Px-MALA, while the MAP estimates can be computed several orders of magnitude more rapidly (Table 1). Moreover, the length of the approximate
credible intervals computed by the MAP-based approach are theoretically conservative and can be seen to slightly overestimate the lengths computed by
MCMC sampling.

Px
-M

A
L

A
M

A
P

(a) point estimators
(b) local credible interval length (c) local credible interval length (d) local credible interval length

grid size 10× 10 pixels grid size 20× 20 pixels grid size 30× 30 pixels

Figure 6. Same as Figure 5 but for Cygnus A.
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(a) point estimators
(b) local credible interval length (c) local credible interval length (d) local credible interval length

grid size 10× 10 pixels grid size 20× 20 pixels grid size 30× 30 pixels

Figure 7. Same as Figure 5 but for W28.
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(a) point estimators
(b) local credible interval length (c) local credible interval length (d) local credible interval length

grid size 10× 10 pixels grid size 20× 20 pixels grid size 30× 30 pixels

Figure 8. Same as Figure 5 but for 3C288.

we check if x∗,sgt /∈ C′,map
α (i.e. if f(x∗,sgt)+g(x∗,sgt) > γ′α) to

determine whether the surrogate falls within the conservative HPD
credible region or not. The resulting surrogate images are displayed
in the second column of Figure 9. If the fact of removing the struc-
ture from xmap, which is at the centre of C′,map

α , produces a sur-
rogate that is outside C′,map

α , this indicates that the likelihood is in
clear disagreement with that modification. In that case we conclude
that there exists significant evidence in the observed data in favour
of the structure considered. Otherwise, we conclude that we fail to
establish that there is significant evidence in favour of that struc-
ture. We emphasise at this point that conclusions are generally not
highly sensitive to the exact value of α; here we report results for
α = 0.01 related to a 99% credible level.

The results of these tests are shown in Table 2. For compari-
son, we also include the results obtained with the reference method
Px-MALA (Cai et al. 2017a). Again, the two methods produce ex-
cellent results that are consistent with each other. From Table 2, we
observe that the methods have correctly classified the three main
physical structures of M31, W28, and 3C288, and correctly iden-
tified the minor structure of 3C288 as a potential reconstruction
artefact. Moreover, the methods have found that it is not possible to
make a strong statistical statement about the small physical struc-
ture in image Cygnus A, which is difficult because it is only a few
pixels in size, isolated, and significantly weaker in intensity than
the other structures in the image.

To test the performance of hypothesis testing in terms of as-
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Table 2. Hypothesis test results for test structures shown in Figure 9 for M31, Cygnus A, W28, and 3C288. Note that γα represents the isocontour defining
the HPD credible region at credible level (1− α), where here α = 0.01, x∗,sgt represents the surrogate generated from point estimator x∗ (in particular, for
Px-MALA x∗ is the sample mean of the MCMC samples), and (f + g)(·) represents the objective function; symbols with labels ¯ and ˆ are related to the
analysis model (3) and the synthesis model (4), respectively. Symbol 7 indicates that the test area is artificial (and no strong statistical statement can be made
as to the area), while 3 indicates that the test area is physical. All values are in units 106. Clearly, both Px-MALA and MAP estimation give convincing and
consistent hypothesis test results. Note that MAP estimation is dramatically more computationally efficient that Px-MALA (Table 1).

Images
Test Ground

Method (f̄ + ḡ)(x̄∗,sgt)
Isocontour

(f̂ + ĝ)(Ψ†x̂∗,sgt)
Isocontour Hypothesis

areas truth γ̄0.01 γ̂0.01 test

M31 (Fig. 9 ) 1 3
Px-MALA 2.44 2.34 2.43 2.34 3

MAP 2.29 2.26 2.29 2.26 3

Cygnus A (Fig. 9 ) 1 3
Px-MALA 1.17 1.26 1.18 1.27 7

MAP 1.02 1.14 1.02 1.14 7

W28 (Fig. 9 ) 1 3
Px-MALA 3.38 1.84 3.37 1.85 3

MAP 3.47 1.89 3.47 1.89 3

3C288 (Fig. 9 )
1 3

Px-MALA 3.27 2.02 3.25 2.01 3

MAP 3.11 1.91 3.11 1.91 3

2 7
Px-MALA 1.971 2.027 1.954 2.010 7

MAP 1.844 1.912 1.844 1.912 7

sessing sub-structure within areas of interest, we consider sub-
structure in an area in M31 (see Figure 10). We find that the sur-
rogate test image shown in Figure 10 (b) falls outside of the HPD
credible region (the objective of the surrogate is 2.38× 106, which
is larger than the HPD isocontour of γ̄0.01 = 2.26 × 106) accord-
ing to the analysis model (the hypothesis testing result regarding the
synthesis model is the same). Therefore, the sub-structure shown in
the specified area in Figure 10 (a) is correctly classified as physical
at a high credible level.

Before closing this section, we emphasise again that the meth-
ods presented in this article deliver a variety of forms of uncertainty
quantification with a very low computational cost. While these new
forms of uncertainty quantification can also be achieved by using
state-of-the-art proximal MCMC methods, such as Px-MALA and
MYULA, as presented in the companion article Cai et al. (2017a),
MCMC techniques cannot scale to massive data sizes. Neverthe-
less, they are useful for medium-scale problems and provide accu-
rate benchmarks for the highly efficient methods presented herein,
which will scale very well to the emerging big-data era of radio
astronomy.

6 CONCLUSIONS

Uncertainty quantification is an important missing component in RI
imaging that will only become increasingly important as the big-
data era of radio interferometry emerges. No existing RI imaging
techniques that are used in practice (e.g. CLEAN, MEM or CS ap-
proaches) provide uncertainty quantification. In this article, as an
alternative to MCMC methods, such as Px-MALA and MYULA
that were presented in Cai et al. (2017a), we present new uncer-
tainty quantification methods MAP estimation by convex optimisa-
tion. The proposed uncertainty quantification methods exhibit ex-
tremely fast computation speeds and allow uncertainty quantifica-
tion to be performed practically and in a manner that will scale to
the emerging big-data era of RI imaging.

Our proposed methods, which inherit the advantages of con-
vex optimisation methods, are much more efficient than proximal
MCMC methods that explore the entire posterior distribution of the
image. Note, however, that the methods proposed here give an ap-
proximation of HPD credible regions and, consequently, the addi-

tional forms of uncertainty quantification that are built on the ap-
proximate HPD credible regions are also approximate. Neverthe-
less, we show these approximations are very accurate. Moreover,
the approximations are conservative so that uncertainties are not
underestimated. In contrast, proximal MCMC methods can theoret-
ically provide HPD credible regions and other forms of uncertainty
quantification that are more accurate. Therefore, the proposed fast
MAP-based methods and the proximal MCMC methods comple-
ment each other, rather than being mutually exclusive. We antici-
pate that when it comes to the big-data era, we will use predomi-
nantly fast uncertainty quantification methods such as those based
on MAP estimation, and reserve MCMC methods for benchmark-
ing and detailed comparison.

A variety of forms of uncertainty quantification for MAP es-
timation were constructed, including HPD credible regions, local
credible intervals (cf. error bars) for individual pixels and superpix-
els, and tests for image structure. Our methods were evaluated on
four test images that are representative in RI imaging. These ex-
periments demonstrated that our MAP-based methods exhibit ex-
cellent performance and can reconstruct images with sharp detail.
Moreover, they simultaneously underpin highly accurate approxi-
mate techniques to quantify uncertainties. In terms of computation
time, MAP techniques were found to be approximately 105 times
faster than state-of-the-art proximal MCMC methods, even when
MAP estimation is run on a standard laptop and proximal MCMC
methods on a high-performance workstation. Moreover, they lead
to algorithmic structures that can be highly distributed and paral-
lelised.

In the near future, we plan to apply the uncertainty quantifica-
tion techniques presented in this article to RI observations acquired
by a variety of different telescopes and to make the methods pub-
licly available. The methods will be implemented in the existing
PURIFY7 package for RI imaging. Furthermore, novel algorithms
will be developed to implement our methods with improved com-
putational efficiency and to highly distribute and parallelise compu-
tations and data. We will also investigate optimal techniques for set-
ting the regularisation parameter in a hierarchical Bayesian frame-
work, applying the strategies developed by Pereyra et al. (2015).

7 https://github.com/basp-group/purify
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(a) MAP point estimators (b) inpainted surrogate

Figure 9. Hypothesis testing of image structure for M31, Cygnus A, W28,
and 3C288. The five structures depicted in yellow are considered, all of
which are physical (i.e. present in the ground truth images), except for struc-
ture 2 in 3C288, which is a reconstruction artefact. First column (a): point
estimators obtained by MAP estimation for the analysis model (3) (shown
in log10 scale). Second column (b): segmented-inpainted surrogate test im-
ages with information in the yellow rectangular areas removed and replaced
by inpainted background (shown in log10 scale). Hypothesis testing is then
performed to test whether the structure considered is physical by checking
whether the surrogate test images shown in (b) fall outside of the HPD cred-
ible regions. Results of these hypothesis tests are specified in Table 2. Note
that for the case shown in the last row the structures within areas 1 and 2
are tested independently.

It is our hope that uncertainty quantification, e.g. in the form of
recovering error bars (Bayesian credible intervals) and hypothesis
testing of image structure and sub-structure, will become an impor-
tant standard component in RI imaging for statistically principled
and robust scientific inquiry. For the first time, we propose tech-
niques for the practical quantification of uncertainties in RI imag-
ing. These techniques can be applied not only to observations made
by existing telescopes but also to the emerging big-data era of radio
astronomy.

(a) MAP point estimator (b) smoothed surrogate

Figure 10. Hypothesis testing of image sub-structure for M31 (both im-
ages are shown in log10 scale). The area depicted in yellow is considered,
where the sub-structure presented in it is physical in the ground truth im-
age. First column (a): point estimator obtained by MAP estimation for the
analysis model (3). Second column (b): smoothed surrogate test image with
information in the yellow rectangular area smoothed (a MATLAB built-in
function imgaussfilt using Gaussian filtering with standard deviation
6 is applied). Hypothesis testing is then performed to test whether the sub-
structure in the area considered is physical by checking whether the surro-
gate test image shown in (b) falls outside of the HPD credible regions. The
null hypothesis is rejected and the sub-structure of interested is correctly
classified as physical and not a reconstruction artefact.
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APPENDIX A: CONVEX OPTIMISATION METHODS
FOR MAP ESTIMATION

Forward-backward splitting algorithms solve optimisation prob-
lems of the form

argmin
x∈RN

(f + g)(x), (A1)

by using a splitting of (f + g)(x). We consider the setting where
f /∈ C1 is proper, convex and lower semi-continuous (l.s.c.) and
g ∈ C1 is l.s.c. convex and βLip-Lipchitz differentiable, i.e.,

‖∇g(ẑ)−∇g(z̄)‖ ≤ βLip‖ẑ − z̄‖, ∀(ẑ, z̄) ∈ CN × CN . (A2)

Precisely, forward-backward algorithms solve (A1) by using the
iteration

x(i+1) = proxλ(i)f (x(i) − λ(i)∇g(x(i))), (A3)

where λ(i) is the step size in a suitable bounded interval (see, e.g.,
Combettes & Pesquet 2010). The proximity operator of λf is de-
fined as (Moreau 1965)

proxλf (z) ≡ argmin
u∈RN

{
f(u) + ‖u− z‖2/2λ

}
. (A4)

It is worth mentioning that when f is associated with the `1
norm, then computing (A4) goes to the so-called pointwise soft-
thresholding of z, i.e., softλ(z) =

(
softλ(z1), softλ(z2), · · ·

)
de-

fined by

softλ(zj) =

{
zj(|zj | − λ)/|zj | if |zj | > λ,

0 otherwise,
(A5)
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for every component zj .
There are several refinements of (A3) with better convergence

properties. For example, using relaxation leads to the iteration

x(i+1) = (1− β(i))x(i) + β(i)x̃(i+1), (A6)

where x̃(i+1) is computed by (A3), β(i) is a sequence of relax-
ation parameters, λ(i) ∈ (ε, 2/βLip − ε), β(i) ∈ (ε, 1), and
ε ∈ (0,min{1, 1/βLip}) (Combettes & Wajs 2005); or with
λ(i) = 1/βLip, β(i) ∈ (ε, 3/2 − ε), and ε ∈ (0, 3/4) (Bauschke
& Combettes 2011). Furthermore, algorithmic structures that allow
computations to be highly distributed and parallelised (e.g. Carrillo
et al. 2014; Onose et al. 2016) and computed in an online man-
ner (Cai et al. 2017b) can also be developed to assist in scaling to
big-data.
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