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Abstract—Mass-mapping via weak gravitational lensing has until
recently lacked principled statistical consideration of uncertainties intro-
duced during the reconstruction process – solving of an often seriously
ill-posed inverse problem. In recent work we posed the mass-mapping
inverse problem as an unconstrained Bayesian inference problem with
Laplace-type `1-norm sparsity-promoting prior, which we solve via
convex optimization. Formulating the problem in this way allows us
to exploit recent developments in probability concentration theory to
infer tightly bound, theoretically conservative uncertainties O(106) times
faster than traditional MCMC techniques. Building on these new fast
Bayesian inference techniques we have developed several uncertainty
quantification techniques primarily aimed towards the gravitational lens-
ing paradigm, though entirely generalizable to other settings. The uncer-
tainty quantification techniques reviewed here are: knock-out hypothesis
testing of structure, local credible regions (cf. pixel-level Bayesian error
bars), and Bayesian locational uncertainty of structure. Additionally,
these conservative Bayesian inferences can be leveraged to aggregate
uncertainties which are often computed by the weak lensing community
(e.g. peak statistics).

I. FORWARD MODEL

A mapping relation can be drawn between the two first order
lensing fields κ and γ giving the planar forward model in Fourier
space,

γ̂(kx, ky) = Dkx,ky κ̂(kx, ky), (1)

for Fourier space mapping Dkx,ky = (k2x−k2y+2ikxky)/(k
2
x+k

2
y).

Due to the so called mass-sheet degeneracy the convergence κ is
not observable and so typically measurements of the shearing field γ
are taken and inverted to form estimators for κ.

II. SPARSE HIERACHICAL BAYESIAN INFERENCE

We formulate this lensing inversion as a hierachical Bayesian
inference problem. Bayes’ theorem for the posterior distribution is
given by p(κ|γ) ∝ p(γ|κ)p(κ), where p(γ|κ) is the likelihood
function representing data fidelity and p(κ) is a prior on the statistical
nature of κ. Suppose the pixel-level noise n on the shear field γ is
i.i.d. Gaussian noise, such that measurements of γ are obtained by
γ = Φκ + n, where the measurement operator Φ = F−1DF for
forward (inverse) Fourier transforms F(F−1). Then our likelihood
term p(γ|κ) is given by p(γ|κ) ∝ exp

(
(−‖Φκ − γ‖22)/(2σ

2
n)
)

which we choose to regularize with a sparsity promoting Laplace
type `1-norm wavelet prior p(κ) ∝ exp

(
− µ‖Ψ†κ‖1

)
, where Ψ is

a wavelet dictionary and the regularization parameter µ is drawn from
a gamma-type hyper-prior distribution [1]. Due to the monotonicity
of the logarithm function, maximizing the posterior is equivalent to
minimizing the log-posterior, thus the problem may be recast as a
convex optimization problem,

κmap = argmin
κ

{
µ‖Ψ†κ‖1 +

‖Φκ− γ‖22
2σ2

n

}
, (2)

where κmap is the maximum a posteriori (MAP) convergence field.
Exploiting recent developments in probability concentration theory,

a conservative approximation of the highest posterior density (HPD)

credible region has been proposed [2] such that the approximate
credible set is given by C′α := {κ : f(κ) + g(κ) ≤ ε′α} where
the approximate isocontour ε′α is given by ε′α = f(κmap)+g(κmap)+
τα
√
N +N , with constant τα =

√
16 log(3/α) and dimensionality

N .
Crucially, this approximate credible region of the posterior can be

readily computed from the MAP solution alone, and so avoids the
high dimensional computationally taxing integrals present in the true
HPD credible region.

III. HYPOTHESIS TESTING OF STRUCTURE

Mechanically, one first removes a feature of interest to create a
surrogate convergence field κsgt. If κsgt 6∈ C′α then the data (noisy
measurements of γ) is sufficient to reject the null hypothesis which
implies that the feautre is physical at 100(1 − α)% confidence. If
κsgt ∈ C′α then the null hypothesis cannot be rejected by the data
and so the physicality is inconclusive [1], [3].

IV. LOCAL CREDIBLE INTERVALS

Suppose the ith pixel is selected within the MAP convergence field
κMAP and has intensity j. Let us iteratively increase (decrease) the
intensity j → j+δj at each step creating a new surrogate solution κsgt

until κsgt 6∈ C′α. At this point the local pixel (or in practise group of
pixels – ’super-pixel’) has reached the highest (lowest) intensity value
which is supported by the data at some confidence level 100(1−α)%.
One can therefore imagine constructing a complete map of Bayesian
pixel-level error bars for a given reconstruction [3], [4].

V. BAYESIAN LOCATIONAL UNCERTAINTY

Suppose one iteratively perturbs the location of a feature of interest
within the convergence domain, creating surrogate images κsgt, for
each determining whether κsgt ∈ C′α. If κsgt ∈ C′α then the data
cannot reject the hypothesis that the feature was located at a given
location and so the location is accepted. If κsgt 6∈ C′α then the data
rejects the hypothesis that the feature could have been observed at
this location and so the location is rejected. One can then create a
convex set of accepted positions which we take to be the Bayesian
locational uncertainty [5].
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