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ABSTRACT
Understanding the nature of dark matter in the Universe is an important goal of modern cosmology. A key method for probing
this distribution is via weak gravitational lensing mass-mapping—a challenging ill-posed inverse problem where one infers
the convergence field from observed shear measurements. Upcoming stage IV surveys, such as those made by the Vera C.
Rubin Observatory and Euclid satellite, will provide a greater quantity and precision of data for lensing analyses, necessitating
high-fidelity mass-mapping methods that are computationally efficient and that also provide uncertainties for integration into
downstream cosmological analyses. In this work we introduce MMGAN, a novel mass-mapping method based on a regularised
conditional generative adversarial network (GAN) framework, which generates approximate posterior samples of the convergence
field given shear data. We adopt Wasserstein GANs to improve training stability and apply regularisation techniques to overcome
mode collapse, issues that otherwise are particularly acute for conditional GANs. We train and validate our model on a mock
COSMOS-style dataset before applying it to true COSMOS survey data. Our approach significantly outperforms the Kaiser-
Squires technique and achieves similar reconstruction fidelity as alternative state-of-the-art deep learning approaches. Notably,
while alternative approaches for generating samples from a learned posterior are slow (e.g. requiring ∼10 GPU minutes per
posterior sample), MMGAN can produce a high-quality convergence sample in less than a second.
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1 INTRODUCTION

The shape and magnitude of distant galaxies appear distorted under
observation due to gravitational lensing, wherein the path of the
photons emitted by these galaxies is bent by the gravitational field
of intervening matter. This distortion can be used to infer large-
scale cosmological structure, in particular the distribution of said
intervening matter—both visible matter and dark matter. Stage IV
surveys, such as the Vera C. Rubin Observatory (Ivezić et al. 2019)
and Euclid (Laureĳs et al. 2011), will provide an abundance of new
data for lensing analyses.

Weak lensing has two effects to first order: convergence, 𝜅, and
shear, 𝛾. Mass-mapping is the process of approximating the con-
vergence from the shear and is an ill-posed inverse problem due
to instrumental and noise effects. Mass-maps are incredibly useful
for calculating higher-order statistics—such as Minkowski functions
and bispectrum (Munshi & Coles 2017), peak count statistics (Liu
et al. 2015a,b; Martinet et al. 2018; Harnois-Déraps et al. 2021) and
scattering transform statistics (Cheng et al. 2020)—which can be
compared against predictions for different cosmological models to
constrain parameters and refine our understanding of the true under-
lying nature of the Universe.

Given the advances in observational technology, we are now in
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the era of precision cosmology, where weak lensing measurements
can provide unprecedented insights into the large-scale structure of
the Universe (Mandelbaum 2018). Mass-mapping techniques must
advance to accommodate the increasing precision of these mea-
surements. The seminal, and still most widely-used mass-mapping
method is the Kaiser-Squires technique (Kaiser & Squires 1993),
which directly inverts the noisy shear field. Although popular for its
speed and computational efficiency, this method does not account
for instrumental effects and noise, resulting in reconstructions that
are noisy to the point of requiring mandatory post-processing. This
post-processing typically involves a Gaussian smoothing of the con-
vergence map, which leads to a loss of small-scale structure in the
map. The Wiener filter (Wiener 1949), a more sophisticated linear
method, assumes a Gaussian prior on the convergence and serves as
the maximum-a-posteriori (MAP) estimator of the problem, though
it typically requires selecting a fiducial cosmology. Wavelet-based
methods (Lanusse et al. 2016; Price et al. 2019, 2020, 2021a,b;
Starck et al. 2021) aim to retain small-scale structure through the use
of wavelet-based priors. These priors have led to increased perfor-
mance, however, the lack of flexibility with hand-crafted priors has
led to growing interest in deep learning methods, which can learn
the priors from data itself.

Recent deep learning approaches for mass-mapping fall into two
main categories. The first involves using deep learning for post-
processing. For example Jeffrey et al. (2020) introduce a technique
to post-process a reconstructed convergence field using a convolu-
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tional U-Net (Ronneberger et al. 2015). This approach is very fast
but does not provide any uncertainty quantification. Conversely, Shi-
rasaki et al. (2021) use conditional generative adversarial networks
(GANs) to learn noise maps which can then be used to denoise con-
vergence maps. Again, uncertainties are not provided. The second
general category seeks to directly learn the posterior distribution
of the data using deep learning. For example, Remy et al. (2023)
introduce a technique that generates samples from a learned ap-
proximate posterior distribution, using data-driven priors learned by
neural score estimation. These approximate posterior samples can
then be used to construct a point-estimate reconstruction and to es-
timate uncertainties. However, it comes at the cost of being very
slow, requiring 10 GPU minutes to generate a single independent
approximate posterior sample. For both general categories genera-
tive modelling techniques in particular have proven highly effective
due to the rich data-driven prior information that they are able to
capture (Shirasaki et al. 2021; Remy et al. 2023). While all of these
deep learning methods have provided promising results, particularly
in recovering both large and small-scale structure in convergence
maps, there is still work to be done to develop methods that pro-
vide high fidelity reconstructions, are computationally efficient, and
also provide uncertainty estimates. Fast generation of approximate
posterior samples is necessary for integration into downstream cos-
mological parameter estimation and model comparison pipelines so
that uncertainties in the mass-mapping process are captured.

To address these challenges we propose a novel mass-mapping
method named MMGAN that is based on a regularised conditional
GAN framework that generates approximate posterior samples of
the mass-mapping inverse problem. Unlike Shirasaki et al. (2021),
which uses conditional GANs to learn noise maps, our method at-
tempts to learn the posterior distribution of the convergence field di-
rectly and sample from it. Furthermore, we adopt Wasserstein GANs
(Arjovsky et al. 2017) to improve training stability and apply regular-
isation techniques (Bendel et al. 2024) to overcome mode collapse,
issues that otherwise are particularly acute for conditional GANs. We
show that MMGAN produces high-quality convergence samples, is
highly computationally efficient, and provides accurate uncertainty
estimates. We apply our model to both simulations and COSMOS
survey data (Scoville et al. 2007), and compare our results to the
Kaiser-Squires method and Remy et al. (2023) to demonstrate its
effectiveness.

The structure of this paper is as follows. In Section 2 we provide an
overview of weak gravitational lensing and mass-mapping, as well
as an overview of GANs. In Section 3 we introduce our MMGAN
approach. In Section 4 we describe how we constructed our training
dataset, outline our approach to model training, and describe our val-
idation and model selection methods. Then, in Section 5 we present
our results, and in Section 6 we discuss our conclusions.

2 BACKGROUND

In this section we provide an overview of weak gravitational lensing
and mass-mapping. For a more detailed review of weak lensing we
refer the reader to Bartelmann & Schneider (2001). For a current
review of the adoption of machine learning for astrophysics we refer
the reader to Lanusse et al. (2023). We also provide a brief overview of
GANs, specifically conditional GANs. Further discussion on GANs
can be found in related articles (Goodfellow et al. 2014; Mirza &
Osindero 2014; Goodfellow et al. 2020; Creswell et al. 2018).

2.1 Weak Gravitational Lensing

Distant sources emit photons which travel along space-time
geodesics. In an empty universe, or one with uniformly distributed
matter, these geodesics are simply straight lines, however this is not
generally the case. Distributions of matter in the Universe, both visi-
ble and dark, induce local Newtonian potentials which result in per-
turbed geodesics, lensing the natural path of photons under gravity.
When such perturbations are considered in aggregate our perception
of distant objects is distorted. As these observable distortions are
sensitive to all matter they are a natural cosmological probe for dark
matter, dark energy, and the nature of gravity. Such distortions affect
both the shape and apparent magnitude of the object, and the distant
object is said to have been gravitationally lensed.

Suppose we consider photons which have an angular position
on their source plane 𝛽, relative to the line-of-sight from observer
through the primary lensing mass, greater than one Einstein radius
𝜔𝐸 from intervening matter, the lensing is said to be in the weak
lensing regime. This ensures that the lensing effects are small, that
the lensing equation

𝛽 = 𝜔 − 𝜔𝐸
𝜔

|𝜔|2
where 𝜔𝐸 =

4𝐺𝑀
𝑐2

𝑓𝐾 (𝑟 − 𝑟′)
𝑓𝐾 (𝑟) 𝑓𝐾 (𝑟′) , (1)

is singular, and that distant objects cannot be multiply imaged. Here
𝐺 is the gravitational constant, 𝑀 is the lensing mass, 𝑐 is the speed
of light, and 𝑓𝐾 denotes the angular diameter distance in the usual
sense, which is dependent on the curvature 𝐾 of the Universe. The
Universe has been observed to be essentially flat (Aghanim et al.
2020). Consequently, it is often reasonable to approximate 𝐾 ≈ 0 ⇒
𝑓𝐾 (𝑟) ≈ 𝑟 , where 𝑟 is the comoving distance.

Consider now the local Newtonian potential Φ(𝑟, 𝜔) induced by
the matter distribution in the Universe, where 𝜔 = (𝜑, 𝜗) are spher-
ical polar co-ordinates on the sky. Such physical potentials must
necessarily satisfy Poisson’s equation given by

∇2Φ(𝑟, 𝜔) =
3Ω𝑀𝐻2

0
2𝑎(𝑟) 𝛿(𝑟, 𝜔), (2)

where 𝛿(𝑟, 𝜔) denotes the fractional overdensity, 𝐻0 is the Hubble
constant, 𝑎(𝑟) is the scale-parameter, andΩ𝑀 is the density of matter
in the Universe. Integrating this potential along the line of sight
produces the lensing potential

𝜙(𝑟, 𝜔) = 2
𝑐2

∫ 𝑟

0
𝑑𝑟′

𝑓𝐾 (𝑟 − 𝑟′)
𝑓𝐾 (𝑟) 𝑓𝐾 (𝑟′)Φ(𝑟′, 𝜔), (3)

which conceptually aggregates the effect of Φ(𝑟, 𝜔) over 𝑟 , i.e. the
potential of this collective mass to induce lensing effects. These
equations are straightforwardly connected through Laplacian

∇2𝜙(𝑟, 𝜔) =
3Ω𝑀𝐻2

0
𝑐2

∫ 𝑟

0
𝑑𝑟′

𝑓𝐾 (𝑟 − 𝑟′)
𝑓𝐾 (𝑟) 𝑓𝐾 (𝑟′)

𝛿(𝑟, 𝜔)
𝑎(𝑟) . (4)

At linear order such a lensing induces two distortions. Images are
magnified by a convergence field 𝜅 and their ellipticity is anisotropi-
cally stretched by a shear field 𝛾. Both the convergence 𝜅 and shear
𝛾 fields can be related to the lensing potential 𝜙 by the following
expressions (e.g. Wallis et al. 2022)

𝜅(𝑟, 𝜔) = 1
4
(ðð̄ + ð̄ð)𝜙(𝑟, 𝜔) and 𝛾(𝑟, 𝜔) = 1

2
ðð𝜙(𝑟, 𝜔), (5)

where ð denotes the spin-𝑠 raising operator,

ð = − sin𝑠 𝜗
(
𝜕𝜗 +

𝑖𝜕𝜑

sin 𝜃
)

sin−𝑠 𝜗 ≈ −(𝜕𝑥 + 𝑖𝜕𝑦) (6)
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and where ð̄ denotes the spin-𝑠 lowering operator (Newman & Pen-
rose 1966; Goldberg et al. 1967),

ð̄ = − sin−𝑠 𝜗
(
𝜕𝜗 −

𝑖𝜕𝜑

sin 𝜃
)

sin𝑠 𝜗 ≈ −(𝜕𝑥 − 𝑖𝜕𝑦). (7)

In both cases the final inequality represents the appropriate approx-
imation when one considers a field of view small enough to sat-
isfy the flat-sky approximation, in which the sky may reasonably be
parametrised through cartesian co-ordinates 𝑥, 𝑦 in the tangent plane.

Substituting the flat-sky approximation of the ð and ð̄ into the
expression for the shear and convergence one finds that

𝜅 =
1
2
(𝜕𝑥𝑥 + 𝜕𝑦𝑦)𝜙 and 𝛾 =

1
2
(𝜕𝑥𝑥 − 𝜕𝑦𝑦 + 2𝑖𝜕𝑥𝑦)𝜙, (8)

where 𝜕𝑥𝑥 is shorthand for 𝜕𝑥𝜕𝑥 , and where we have dropped the
function arguments for notational brevity. Next we take the Fourier
transform of these differential equations to find

𝜅 =
1
2
(𝑘2
𝑥 + 𝑘2

𝑦)𝜙 and �̃� =
1
2
(𝑘2
𝑥 − 𝑘2

𝑦 + 2𝑖𝑘𝑥 𝑘𝑦)𝜙, (9)

from which we can straightforwardly eliminate 𝜙 to find

�̃� =
𝑘2
𝑥 − 𝑘2

𝑦 + 2𝑖𝑘𝑥 𝑘𝑦
𝑘2
𝑥 + 𝑘2

𝑦

𝜅 = D𝜅 ⇒ 𝛾 = F−1DF𝜅 (10)

where D represents the Fourier mapping and F represents the Fourier
transform. This expression is called the lensing forward model and
determines how one may map between convergence and shear fields.

Ideally one would observe both the shear and convergence, each
of which encodes subtly different and complementary cosmological
information. Unfortunately, the brightness of a distant object is a pri-
ori unknownable and therefore it is impossible to observe 𝜅 directly.
Importantly, the distribution of intrinsic galaxy ellipticities has zero
mean ⟨𝜖𝑠⟩ whilst the shear field has non-zero mean ⟨𝛾⟩ ≠ 0. There-
fore by aggregating many ellipticity observations the net lensing
effect may be distilled ⟨𝜖𝑠 + 𝛾⟩ = ⟨𝜖𝑠⟩ + ⟨𝛾⟩ ≈ ⟨𝛾⟩.

The accuracy of this approximation is determined by the number of
objects 𝑁g over which one averages. Making a central limit theorem
argument the variance of the residual intrinsic shear component,
colloquially referred to as the shape noise, is approximately given
by 𝑣𝑎𝑟 (𝜖𝑠) ≈ 𝜎2

𝜖 /𝑁g, where 𝜎𝜖 is the intrinsic ellipticity dispersion
which is typically ∼ 0.37. Given the typical magnitude of 𝛾 ∼ 0.05
one need only average over 𝑁g ≈ 30 observations to recover a fair
estimate of the shear.

2.2 Lensing Inverse Problem

With observations of 𝛾 to hand one may attempt to infer 𝜅 by ex-
ploiting their Fourier space relationship. The most naïve algorithm by
which 𝜅may be recovered given observations of 𝛾 is by simply invert-
ing this relation 𝜅KS = D−1�̃�, which is the original method developed
by Kaiser & Squires (1993). In the absence of observation noise and
masking effects 𝜅KS is equivalent to the maximum-likelihood esti-
mator 𝜅MLE. However, in realistic scenarios noise contributions are
overwhelmingly dominant and complex masking is present, hence
the two estimators are by no means equivalent.

The Kaiser-Squires estimator is known for its computational ef-
ficiency and simplicity, however, it comes with several major draw-
backs. First and foremost, it does not account for the observational
noise, which consequently propagates directly to the reconstruc-
tion, thereby making post-processing virtually mandatory to facilitate
downstream analysis. This post-processing typically takes the form of
Gaussian smoothing, which leads to the loss of non-Gaussian features

in the convergence map. In particular, this results in a suppression of
peaks in the reconstruction, and loss of small-scale structure—both
of which are critical information for contemporary cosmology. Sec-
ond, it does not provide any measure of the uncertainties associated
with the reconstruction.

Since the Kaiser-Squires method was proposed there have been
many other methods developed for mass-mapping, such as sparsity-
based wavelet methods (Lanusse et al. 2016; Price et al. 2019, 2020,
2021b; Starck et al. 2021) and deep learning architectures (Jeffrey
et al. 2020; Shirasaki et al. 2021; Remy et al. 2023). Several of these
methods have further been extended from the flat-sky to the sphere
for wide-field mass-mapping (Wallis et al. 2022; Chang et al. 2018;
Price et al. 2021a). Nevertheless, it is fair to say mass-mapping is by
no means a solved problem.

The original Kaiser-Squires method is quick and computationally
efficient at the cost of loss of information. Deep learning techniques,
which are data-driven, have shown promise in capturing the complex-
ities of features in the data, but each approach has its own drawbacks.
Post-processing learned denoising methods such as those by Jeffrey
et al. (2020) and Shirasaki et al. (2021) are fast but lack principled
uncertainty quantification. Neural score estimation methods such as
those by Remy et al. (2023) provide uncertainty estimates but are
slow at run-time. An additional question that warrants further study
is the accuracy of machine learning methods when the only available
training data is simulated, often for a single fiducial cosmology.

Overall, deep learning methods show great promise for ill-posed
inverse problems such as mass-mapping, however, there is still need
for deep learning methods which are fast, that produce high-fidelity
reconstructions, and provide uncertainty quantification. We address
this need with our proposed method, MMGAN.

2.3 Generative Adversarial Networks

We will now briefly review the GAN framework (Goodfellow et al.
2014). GANs are comprised of two models: a generator, 𝐺 𝜃 , with
parameters 𝜃 and a discriminator, 𝐷𝜙 , with parameters 𝜙. During
training, examples 𝑥 are drawn from the real data distribution 𝑝r (𝑥),
which is unknown to the model. The generator learns a distribution
𝑝𝑔 (𝑥), from which it will output samples, 𝑥. The aim of the generator
is to match 𝑝𝑔 (𝑥) as closely as possible to 𝑝r (𝑥). The discriminator’s
role is to assess incoming data (which is a mix of real and generated
samples), and decide whether it belongs to 𝑝r or 𝑝𝑔. In other words
it aims to distinguish true samples from samples produced by the
generator.

Both 𝐺 𝜃 and 𝐷𝜙 are trained simultaneously to solve a two-player
minimax game

min
𝐺𝜃

imax
𝐷𝜙

𝑉 (𝐺 𝜃 , 𝐷𝜙) =E𝑥∼𝑝r (𝑥 ) [log𝐷𝜙 (𝑥)]

+ E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷𝜙 (𝐺 𝜃 (𝑧)))] .
(11)

for a value function 𝑉 (see Goodfellow et al. 2014), where 𝑧 is a
latent variable drawn from a distribution 𝑝𝑧 (𝑧) ∼ N (0, 1). Through
training the generator will learn how to construct better samples,
leading to a drop in performance of the discriminator. Consequently,
this motivates the discriminator to once again learn how to differ-
entiate the true data from the generated data, which will incentivize
the generator to learn richer features of the data, in order to produce
more convincing samples (Saxena & Cao 2021). It is this adver-
sarial framework which allows GANs to produce such high-quality
realisations after training.

GANs famously suffer from two main challenges during training:
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(i) difficulty in converging;
(ii) mode collapse.

The generator and discriminator are both playing a minimax game,
however, the game is a non-cooperative one; the optimal solution to
such games is the Nash equilibrium. For GANs, this is equivalent
to a discriminator which outputs a score 𝐷𝜙 = 0.5 for all inputs,
indicating it is unable to distinguish between real and generated
samples.

In practice, it is difficult to reach Nash equilibrium, and the dis-
criminator may become too good at distinguishing between real and
generated samples. One may think this is a good thing that will lead
to an improved rate of training, however, to those versed in game
theory it will come as no surprise that it in fact leads to the opposite.
This is because in non-cooperative games, an improvement for one
player inherently causes a loss in performance for the other, as such
a strong player will dominate the game. A perfect discriminator will
output 𝐷𝜙 (𝑥) = 1,∀ 𝑥 ∈ 𝑝𝑟 and 𝐷𝜙 (𝑥) = 0,∀ 𝑥 ∈ 𝑝𝑔. When this
happens, log(1 − 𝐷𝜙 (𝐺 𝜃 (𝑧))) = 0, and the generator’s influence on
the value function is lost. This can lead to the generator struggling,
or failing entirely (Arjovsky & Bottou 2017).

Conversely, during training the generator may reach a local min-
imum in the learned probability space—this translates to a sample
which is particularly good at fooling the discriminator, especially
in relation to other nearby samples in the generator’s distribution.
In such cases, there is little inherent incentive for the generator to
further explore the target probability distribution when called to gen-
erate samples. This is a problem known as mode collapse. In the
most extreme scenario this can lead to the generator producing the
exact same output each time it is called—this is known as total mode
collapse (Metz et al. 2016). Mode collapse is also a problem when
calculating uncertainties, as the loss of diversity in the generated
samples leads to severe bias in the uncertainty estimates.

In short, regardless of whether the discriminator performs badly or
well, the generator does not receive rich enough feedback to wholly
represent the true data distribution.

2.3.1 Wasserstein GANs

Wasserstein GANs were developed by Arjovsky et al. (2017) in order
to tackle the difficulty in GAN training mentioned in the previous
section. The overall idea is to use a new distance metric for the loss
function, in order to provide a gradient which was more meaningful
to the generator.

The Wasserstein-1 distance (also know as Earth Mover’s distance)
(Peyré et al. 2019) between two continuous distributions 𝑝𝑟 and
𝑝𝑔 may be expressed using the dual formation of the Wasserstein-1
distance,

𝑊1 (𝑝𝑟 , 𝑝𝑔) = sup
∥ 𝑓 ∥𝐿≤1

E𝑥∼𝑝𝑟 [ 𝑓 (𝑥)] − E�̂�∼𝑝𝑔 [ 𝑓 (𝑥)], (12)

where 𝑓 is a 1-Lipschitz continuous function satisfying the constraint
∥ 𝑓 ∥𝐿 ≤ 1 and ∥·∥𝐿 represents the Lipschitz norm.

To provide an intuition for what this distance represents, imagine
two separate piles of dirt whose shapes may be described by distri-
butions 𝑝𝑟 and 𝑝𝑔 respectively. The Wasserstein-1 distance between
these two distributions is the minimum energy cost of moving the
dirt in the second pile such that it is transformed from shape 𝑝𝑔 to
shape 𝑝𝑟 . This cost is proportional to the amount of units of dirt
moved multiplied by how far each unit has been moved. A lower
value of 𝑊1 indicates a higher level of similarity between the two
distributions (Rubner et al. 2000). The Wasserstein-1 distance is a
more generalisable metric than the Jensen-Shannon (JS) divergence

used in traditional GANs, as rather than measuring the point-wise
similarity between two distributions, it measures the cost of trans-
porting one distribution to another. This means the Wasserstein-1
distance can be used to compare distributions with disjoint support,
which is a problematic area for the JS divergence that often leads to
vanishing gradients. These disjoint distributions are especially com-
mon in higher-dimensional data spaces, such as images, making the
Wasserstein-1 distance a more suitable choice for GANs.

Returning to Equation (12), assume 𝑓 is drawn from a family of
1-Lipschitz continuous functions, { 𝑓𝑤}𝑤∈W where W is the set
of all possible functions 𝑓𝑤 . Unlike in traditional GANs, where the
discriminator is a direct critic of the samples, in a Wasserstein GAN,
the discriminator is trained to learn the optimal function 𝑓𝑤 to help
estimate 𝑊1 (𝑝𝑟 , 𝑝𝑔). As the loss of the discriminator decreases,
so does the Wasserstein-1 distance between the two distributions,
implying that the generator’s distribution 𝑝𝑔 is approaching the true
distribution 𝑝𝑟 (Weng 2019).

One key difference between Wasserstein GANs and standard
GANs is that where a perfect discriminator causes the generator
in a standard GAN to fail, Wasserstein GANs actually rely on train-
ing the discriminator to convergence. For this reason, typically the
gradients of the discriminator are updated more frequently than the
generator, which also leads to improved stability during training.

3 METHODOLOGY

In this section we describe our methodology for building and training
our mass-mapping GAN, coined MMGAN, a regularised conditional
GAN. We begin by introducing conditional GANs, and highlight
how they differ to standard GANs. We then introduce regularisation
techniques utilised to overcome training issues, such as mode collapse
and lack of convergence, traditionally faced by conditional GANs,
before describing how these techniques are utilised to also provide
uncertainty quantification.

3.1 Conditional GANs

Conditional GANs (Adler & Öktem 2018) differ from standard GANs
in that they are conditioned on auxiliary input data, 𝑦, typically some
kind of class or observational data, to which both the generator and
discriminator have access. This additional information allows for
greater control over the generated output, as the model is conditioned
to provide targeted samples for a given input.

Consider the sets of data and observations X and Y respectively.
The goal of the generator is to learn a generating function 𝐺 𝜃 :
Z × Y → X, where 𝜃 are the parameters of the generator, and Z
is the set latent variables 𝑧 ∼ 𝑝𝑧 = N(0, 𝐼). This function takes
observations 𝑦 ∈ Y as input, as well as some independently drawn 𝑧,
and produces samples 𝑥 = 𝐺 𝜃 (𝑧, 𝑦). The role of the latent variable
is to provide a source of randomness to the generator, such that
even for fixed 𝑦, the generator can produce a variety of samples.
Within a conditional GAN, the discriminator’s function is of form
𝐷𝜙 : X × Y → [0, 1], with parameters 𝜙. The discriminator’s role
is still to determine whether a given samples is real or generated,
however, it also has access to the observation 𝑦.

Each {𝑥, 𝑦} pair is unique, meaning there is only a single data
instance, 𝑥, corresponding to data 𝑦. This can become a challenge
when training conditional GANs and can lead to more acute mode
collapse. Additionally, solutions to mode collapse in unconditional
GANs (Schonfeld et al. 2020; Karras et al. 2020; Zhao et al. 2021)
are often ill-suited to conditional GANs because of the presence of
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a conditioning variable. This means, that while Wasserstein GANs
were sufficient to effectively solve both issues of unstable training
and mode collapse for standard GANs, in conditional GANs these
challenges require distinct solutions.

3.2 Conditional Wasserstein GANs

One can still use the notion of Wasserstein-1 distance, and adapt it
for conditional data as follows

𝑊1 (𝑝𝑟 (·|𝑦), 𝑝𝑔 (·|𝑦)) = sup
𝐷𝜙∈𝐿1

{E𝑥∼𝑝𝑟 {𝐷𝜙 (𝑥 |𝑦)}−E�̂�∼𝑝𝑔 {𝐷𝜙 (𝑥 |𝑦)}},

(13)

where 𝑥 is a true sample, with observation 𝑦, 𝐿1 is the set of 1-
Lipschitz continuous functions, and 𝑥 is a generated sample for
that observation. Through using the discriminator to estimate this
Wasserstein-1 distance, the resulting conditional GAN still benefits
from increased training stability, while avoiding the vanishing gradi-
ent problem.

3.3 Regularised conditional GANs

Regularised conditional GANs (Bendel et al. 2024) are a recent
development, designed to overcome mode collapse in conditional
GANs—which as previously mentioned is a more acute problem
than with traditional GANs, and also harder to solve due to the one-
to-one 𝑥, 𝑦 pairing of data. Within this framework, the generator aims
to solve the following minimisation problem

arg min𝜃 {𝛽advLadv (𝜃, 𝜙) + L1,SD,𝑁train (𝜃, 𝛽SD)}, (14)

where 𝑁train ≥ 2 represents the number of samples made by the
generator, and 𝛽adv and 𝛽SD are hyperparameters which control the
relative importance of the adversarial loss term Ladv and the reg-
ulariser L1,SD,𝑁train , respectively. They themselves are defined as

Ladv (𝜃, 𝜙) := E𝑥,𝑧,𝑦{𝐷𝜙 (𝑥 |𝑦) − 𝐷𝜙 (𝐺 𝜃 (𝑧 |𝑦) |𝑦)}, (15)

and

L1,SD,𝑁train (𝜃, 𝛽SD) := L1,𝑁train (𝜃) − 𝛽SDLSD,𝑁train (𝜃). (16)

As can be seen in Equation (16), the regulariser is a combination
of two loss functions: the first being the 𝑁train-sample supervised
ℓ1 loss; and the second being the standard deviation reward. These
losses are defined by

L1,𝑁train (𝜃) := E𝑥,𝑧1 ,....,𝑧𝑁 ,𝑦{∥𝑥 − 𝑥 (𝑁train ) ∥1}, (17)

and

LSD,𝑁train (𝜃) :=
√︂

𝜋

2𝑁train (𝑁train − 1)

×
𝑁train∑︁
𝑖=1
E𝑧1 ,...,𝑧𝑁 ,𝑦{∥𝑥𝑖 − 𝑥 (𝑁train ) ∥1} (18)

where {𝑥𝑖} are the generated samples and 𝑥 (𝑁 ) := 1/𝑁 ∑𝑁
𝑖=1 𝑥𝑖 is

the 𝑁-sample average. By including the standard deviation within the
reward function, the model is encouraged to produce samples with
some diversity, which helps to avoid mode collapse.

The choice of ℓ1-loss and standard deviation reward is not an ar-
bitrary one. It can be shown that in the case where the generated
samples 𝑥𝑖 and the true samples 𝑥 are both independent Gaussian

distributions conditioned on 𝑦, the mean and covariance of the gen-
erated samples will match that of the true distribution (Bendel et al.
2024, §Prop. 3.1). That is to say,

E𝑧𝑖∼𝑝𝑧 {𝑥𝑖 (𝜃∗) |𝑦} = E𝑥∼𝑝𝑟 {𝑥 |𝑦} = 𝑥MMSE (19)

where 𝑥MMSE is the minimum mean squared error (MMSE) estimate
of the true posterior, and

Cov𝑧𝑖∼𝑝𝑧 {𝑥𝑖 (𝜃∗) |𝑦} = Cov𝑥∼𝑝𝑟 {𝑥 |𝑦}, (20)

where 𝜃∗ = arg min𝜃L1,SD,𝑁train (𝜃, 𝛽
N
SD) with 𝛽NSD :=√︁

2/(𝜋𝑁train (𝑁train + 1)) being the optimal parameters for the gen-
erator (Bendel et al. 2024).

In practice, the assumptions required for this proposition do not
necessarily hold, therefore automatic tuning of the hyperparameter
𝛽SD is considered, which controls the desired standard deviation be-
tween generated approximate posterior samples. Some level of devi-
ation between samples is necessary to avoid mode collapse, however,
too much deviation among samples can hinder the model’s ability to
learn the true distribution of the data.

In order to constrain the allowed variance of generated samples,
the model auto-tunes 𝛽SD during training. The method utilises an
observation made by Bendel et al. (2024, §Prop. 3.3) that when
𝑥𝑖 ∼ 𝑝𝑟 (·|𝑦) are independent samples of the true posterior, then
the ratio between the ℓ2 error of a single sample and the 𝑁-average
sample is given by
𝜀1
𝜀𝑁

=
2𝑁
𝑁 + 1

, (21)

where 𝜀1 and 𝜀𝑁 are approximated as follows

𝜀1 =
1
𝑁val

𝑁val∑︁
𝑖=1

∥𝑥𝑖 − 𝑥1∥2
2, (22)

and

𝜀𝑁 =
1
𝑁val

𝑁val∑︁
𝑖=1

∥𝑥𝑖 −
𝑉∑︁
𝑗=1

𝑥 𝑗 ∥2
2, (23)

for some validation set {(𝑥𝑣 , 𝑦𝑣)}𝑁val
𝑣=1 . This ratio is calculated during

each training epoch 𝜏. Then, 𝛽SD is updated using gradient descent
according to the following equation

𝛽SD,𝜏+1 = 𝛽SD,𝜏−𝜇SD

(
log10

[
𝜀1,𝜏
𝜀𝑁val ,𝜏

]
− log10

[
2𝑁val
𝑁val + 1

] )
𝛽SD,𝜏=0

(24)

for a learning rate 𝜇SD > 0. For the full details of the above propo-
sition we refer the reader to Bendel et al. (2024).

3.4 MMGAN

With all the necessary components described, we now introduce our
model architecture. Our regularised conditional GAN, MMGAN,
follows the same general structure as Bendel et al. (2024), with
some key changes to tailor the model to mass-mapping. The goal
of our model is to produce approximate posterior samples of the
convergence given a shear map.

Our generator is based on a U-Net architecture (Ronneberger et al.
2015). There are 6 input channels: the shear map; a Kaiser-Squires
reconstruction (made on-the-fly from the shear map) with no added
smoothing; and a random noise vector 𝑧 ∼ 𝑁 (0, 𝐼). Each of these
inputs includes two channels, one for the real component of the input
and another for the imaginary component. We trialled models both

RASTI 000, 1–15 (2024)



6 Jessica J. Whitney et al.

with and without the Kaiser-Squires map as an additional input chan-
nel, and found the addition of it led to improved performance, with
negligible increase in computational cost. In particular we observed
that the shear alone is good for capturing the uncertainties within a
reconstruction, however, the addition of the Kaiser-Squires map leads
to better quality reconstructions. Although we used Kaiser-Squires
here, for its simplicity, it is worth noting that any fast, approximate re-
construction method could be used in its place. Other mass-mapping
methods (Jeffrey et al. 2020; Shirasaki et al. 2021) also take an ap-
proximate reconstruction as input, although they typically do not
condition on the observed shear field as we do here, (e.g. Jeffrey
et al. 2020 post-process a Wiener filter reconstruction).

Our network architecture consists of 4 downsampling blocks, start-
ing with 128 initial channels. Rather than traditional pooling meth-
ods, we downsample through convolutional blocks. Each block con-
sists of a convolutional layer with a kernel of size 3×3 and padding of
1, followed by batch normalisation and a Parametric ReLU (PReLU)
activation function. At this point, we include a residual block, which
consists of two convolutional layers followed by batch normalisation
and a PReLU activation function. This block is our skip connection.
Then, we take a final convolutional layer with a kernel of size 3 × 3,
padding of 1, and stride of 2, which will act as our downsampling
step. The number of channels doubles at each downsampling block,
from 128 to 256, 512, and finally 1024.

In the bottleneck of the U-Net, we include a single residual block
before moving to our upsampling blocks. For upsampling, we rely
on transpose convolutions. The number of channels halves at each
upsampling block; as such, the number of output channels is also
128. Each upsampling layer begins with a transpose convolutional
layer with kernel size 3×3, padding size 1 and stride 2, which acts as
our upsampling mechanism and is followed by batch normalisation
and a PReLU activation function. We then concatenate the output
with the corresponding skip connection and again apply a convo-
lutional layer with kernel size 3 × 3 and padding size 1, followed
by batch normalisation, PReLU activation, and a residual block. As
we move through the upsampling blocks, the number of channels
halves, meaning after 4 layers, the number of channels is once again
128. Finally, after upsampling, we apply two convolutions with 1× 1
kernels. The output of the generator is a single approximate sample
of the convergence field.

Our discriminator is a standard CNN classifier, taking two inputs
𝑥 and 𝑦, with one initial convolutional layer followed by 6 convolu-
tional downsampling layers and one final fully-connected layer. In
the initial layer, we use convolutions with kernels of size 3 × 3 with
1 padding and a leaky ReLU with a negative slope of 0.01. In each
downsampling layer, we reduce spatial resolution with average pool-
ing, using 2 × 2 kernels with a stride of 2, then a convolutional layer
with a 3 × 3 kernel with padding of 1, instance normalisation, and
a leaky ReLU with a negative-slope of 0.2. The final output of the
discriminator is the estimated Wasserstein score for the convergence
map.

3.4.1 Point Image Estimate

In order to create a final convergence map reconstruction we need to
select a suitable point estimate. It is natural to use the posterior mean,
which is also the MMSE, especially given Equation (19), where it is
shown that under certain assumptions a link can be drawn between
the MMSE and the true posterior. Therefore, to build the final con-
vergence map, the shear map is passed through the generator many
times. Each time the generator is called it produces a new approxi-
mate posterior sample. The empirical posterior mean is used as the

MMGAN reconstruction, which is obtained by doing an average of
𝑁 approximate posterior samples.

3.4.2 Uncertainty Quantification

The convergence map reconstruction is the average of 𝑁 approxi-
mate posterior samples. For uncertainty quantification, we calculate
the pixel-wise standard deviation of the samples, in order to build an
uncertainty map. Based on the proposition outlined in Bendel et al.
(2024), the standard deviation of the approximate posterior samples
matches that of the true posterior, under certain assumptions. There-
fore, features that consistently appear across the generated samples
are more likely to be true features of the data, as compared to fea-
tures which appear in one or two samples. For features that appear in
the majority of samples, the standard deviation for those pixels will
be low. Conversely, in areas where the model is less certain about
present features, the generated samples will be more diverse, mean-
ing the standard deviation of that region will be higher. In this way,
by looking at the standard deviation map, one can infer the model’s
confidence in the reconstruction.

4 SIMULATIONS, TRAINING, AND VALIDATION

This section details the simulations and mock dataset used to train
our model. We first discuss the 𝜅TNG simulations, a collection of
convergence maps based on the IllustrisTNG simulations, before
moving on to describe how we used this weak lensing map suite to
build a mock catalog of 10,000 convergence maps in the style of the
COSMOS survey. This catalog was then used to train, validate, and
test our model.

4.1 KappaTNG Simulations

The 𝜅TNG simulations are a suite of 10, 000 mock weak lensing
maps (Osato et al. 2021), based on the IllustrisTNG hydrodynamical
simulations (Springel et al. 2018). All simulations assume the flat
ΛCDM cosmology as in Planck 2015 (Ade et al. 2016), with 𝐻0 =

67.74 kms−1Mpc−1, baryonic density Ω𝑏 = 0.0486, matter density
Ω𝑚 = 0.3089, and spectral index of scalar perturbations 𝑛𝑠 = 0.9667.

The maps were generated by creating light cones with an opening
angle of 5 × 5 deg2, from the IllustrisTNG simulations, made by
stacking TNG snapshots along the line of sight. The mock weak
lensing maps were then created by tracing the light cones from 𝑧 = 0
up to the target redshift, 𝑧𝑠 ∈ [0.00, 2.57]. To create the full suite, a
large number of random flips, rotations, and translations were applied
to the IllustrisTNG snapshots. The subsequent maps were shown to
be statistically independent (Osato et al. 2021). Each map is of size
1024 × 1024 pixels, with a resolution of 0.29 arcmin/pixel.

4.2 COSMOS Data

In the following analysis we make use of data from the COSMOS
survey (Scoville et al. 2007). The COSMOS field is a 1.64 deg2 field
on the sky, images using the advanced camera for surveys (ACS).
Throughout this work, we use the Schrabback et al. (2010) shape
catalog, which is a catalog with two subsets: a bright catalog with
𝑖+ < 25, and a faint catalog with 𝑖+ > 25. Galaxy samples in the
bright catalog can be cross-matched with the COSMOS-30 catalog
(Ilbert et al. 2008), providing individual photometric redshifts. This
is not available for the faint catalog.

In our analysis we use the full catalog, including both the bright
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and faint samples. We cut bright galaxies with 𝑧phot < 0.6 and
𝑖+ > 24, as there are indications these may in fact be galaxies at high
redshifts (Schrabback et al. 2010); see also Remy et al. (2023) for
further discussion on this. After applying these cuts, the total number
of galaxies is 417, 117.

4.3 Mock COSMOS Dataset

In order to create mock COSMOS maps we utilised both the 𝜅TNG
simulations, and the Schrabback et al. (2010) shape catalog. As men-
tioned, this shape catalog is divided into a bright and faint catalog,
which we combined into a full catalog. We discarded galaxies with
photometric redshifts 𝑧phot < 0.6 for reasons specified in Section 4.2.
Then we calculated the redshift distribution, 𝑝(𝑧), of the galaxies in
the full catalog.

Convergence maps for sources with a redshift distribution 𝑝(𝑧)
calculated by

𝜅tot =
𝑖max∑︁
𝑖=𝑖min

𝑤𝑖𝜅𝑖 , (25)

where

𝑤𝑖 =

∫ 𝑧𝑖+Δ𝑧𝑖/2

𝑧𝑖−Δ𝑧𝑖/2
d𝑧𝑝(𝑧), (26)

where 𝜅tot is the convergence map for sources with a redshift distri-
bution 𝑝(𝑧), 𝜅𝑖 is the convergence map for sources at redshift 𝑧𝑖 , Δ𝑧𝑖
is the width of the 𝑖th-redshift bin, and 𝑖min and 𝑖max are the minimum
and maximum redshifts of source galaxies considered, respectively
(Makiya et al. 2021).

The 𝜅TNG maps are sliced at discrete redshifts between 𝑧 ∈
[0, 2.568], leading to 40 evenly-spaced source planes. For our mock
COSMOS maps we required a redshift up to 𝑧 = 5, therefore we
chose redshift values 𝑧𝑖 with spacing equal to the 𝜅TNG slices. This
resulted in 80 redshift values 𝑧𝑖 , leading to 79 redshift bins, centered
on the redshift values of the 𝜅TNG maps. Note that the bin size is
halved for the first and last bins. For 𝑧 > 2.568 we follow Remy
et al. (2023) and reused the highest redshift slice convergence map
(𝑧 = 2.568), while calculating a new weight for each bin.

Finally, we created a mask to represent the COSMOS survey area.
To do this we binned the COSMOS shape catalog into maps of the
shear components, and calculated the number of galaxies per pixel.
We created a binary mask for empty pixels.

In summary, we created 10, 000 convergence maps of size
300 × 300 pixels. In order to convert these to mock shear maps,
we used the forward model described by Equation (10). We added
spatially varying noise to the shear, treating the real and imaginary
components separately by calculating the standard deviation of the
𝛾1 and 𝛾2 estimates in the COSMOS shape catalog respectively.
We then simulated the noise by multiplying the two standard devi-
ations by a random normal distribution, and adding to the real and
imaginary components of the clean mock COSMOS shear maps.

4.4 Training

During each training epoch, for a batch size 𝑁batch = 9 and 𝑁train = 2,
we generated mock shear maps on-the-fly from our convergence maps
(see Section 4.3). Each shear map was paired with two latent vectors,
corresponding to the real and imaginary components, which were
then input to the generator. The generator optimised the following
loss function

L𝐺𝜃
:= 𝛽advLadv (𝜃, 𝜙) + L1,𝑁train (𝜃) − 𝛽SDLSD,𝑁train (𝜃), (27)

where 𝛽adv was initially set to 10−2 for the first 5 epochs, then de-
creased to 10−4 until epoch 23, and finally to 10−5 for the remainder
of training. The value of 𝛽SD was updated according as described
in Section 3.3 using 𝑁val = 8. Following this, the discriminator
performed an optimisation step on its own loss

L𝐷𝜙
:= −Ladv (𝜃, 𝜙) + 𝛼1Lgrad (𝜙) + 𝛼2Ldrift (𝜙), (28)

where Lgrad is a gradient penalty used to encourage that 𝐷𝜙 ∈ 𝐿1
(Gulrajani et al. 2017), with 𝛼1 = 10 the gradient penalty weight. We
follow Karras et al. (2018) and add the term Ldrift, which penalises
the discriminator’s output from drifting too far away from zero, as it
can make the training unstable. More precisely, the drift penalty is
defined as Ldrift (𝜙) := E𝑥,𝑦{𝐷𝜙 (𝑥 |𝑦)2}. Following Adler & Öktem
(2018), we use a small drift penalty weight of 𝛼2 = 0.001. We used
the Adam optimiser (Kingma 2014) with a learning rate of 10−3,
𝛽1 = 0, and 𝛽2 = 0.99. Our model was trained across 4 Nvidia A-
100 GPUs, and took approximately 6.5 hours to train for 100 epochs.

4.5 Model Validation

To evaluate the performance of the trained model we validated it on
a subset of our mock COSMOS dataset previously unseen by the
model.

For validation we looked at the peak signal-to-noise ratio (PSNR),

PSNR = 10 log10

(
MAX2

𝐼

MSE

)
, (29)

where MAX𝐼 is the maximum possible pixel value, and MSE is
the mean squared error between the truth and the reconstruction. We
calculated the PSNR of a single posterior sample as well as the PSNR
of a reconstruction made from the average of 𝑁 = 32 samples (for
discussion on our choice of 𝑁 see Section 5.1.1).

This procedure is repeated across a number of different input
maps. We then collate the data and calculate the difference between
the single PSNR and reconstruction PSNR. We define a tolerance,
and if the magnitude of the difference is larger than that tolerance
we remove the epoch from the set. We took this approach to ensure
that any epoch we considered as our final model was not one prone
to over-variance in the generated samples.

With the remaining epochs, we calculated a range of metrics across
a set of mock maps and reconstructions. These metrics were the
PSNR, RMSE, and Pearson correlation coefficient,

𝑟 =

∑
𝑖
(𝑥𝑖 − 𝑥) (𝑝𝑖 − 𝑝)√︂∑

𝑖
(𝑥𝑖 − 𝑥)2

√︂∑
𝑖
(𝑝𝑖 − 𝑝)2

, (30)

where 𝑥𝑖 and 𝑝𝑖 are the truth and the reconstruction, respectively,
and 𝑥, 𝑝 denote their respective means. We selected the epoch which
performed best across all metrics as our final model.

5 RESULTS

In this section we present both the performance of our model on the
mock COSMOS test simulations, followed by its application to the
true COSMOS field data. We show some example reconstructions
and discuss how the quality of the reconstruction changes with the
number of approximate posterior samples used to create it. We also
compare our results to the Kaiser-Squires method, and in the case
of our full COSMOS reconstruction we show it alongside the Remy
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Table 1. Reconstruction quality for different values of 𝑁 , where 𝑁 is the
number of posterior samples averaged over to create a reconstruction.

N PSNR ↑ SSIM ↑

1 28.90 ± 0.03 0.6886 ± 0.0007
2 30.12 ± 0.03 0.7426 ± 0.0006
4 30.89 ± 0.03 0.7745 ± 0.0006
8 31.32 ± 0.03 0.7916 ± 0.0006
16 31.57 ± 0.03 0.8016 ± 0.0007
32 31.69 ± 0.03 0.8064 ± 0.0006

et al. (2023) reconstruction. In addition, we show how the standard
deviation map of the approximate posterior samples can be used to
quantify the uncertainty in the reconstruction.

To assess reconstruction quality, we compared to the pixel-wise
absolute error= |𝑥 (𝑁 )−𝑥 | between the reconstruction and the ground
truth. We also used the absolute error to asses the usefulness of
using the standard deviation of the generated approximate posterior
samples as a measure of uncertainty.

5.1 Simulations

In this subsection we present the results of our model applied to the
mock COSMOS simulations. We begin by motivating the choice of
𝑁 = 32 for the number of approximate posterior samples used to
create a reconstruction. We then show some example reconstructions
and approximate posterior samples. We directly compare our results
to the Kaiser-Squires method, as well as qualitatively compare to
other state-of-the-art methods. Finally, we assess the quality of our
uncertainty quantification and calculate coverage probabilities for
our reconstructions.

5.1.1 Reconstructions of Simulations

When building a reconstruction it is important to choose an appropri-
ate number of generated samples from which to calculate the mean.
We calculated both the PSNR and the Pearson correlation coefficient
for reconstructions made with different numbers, 𝑁 , of samples.
For both metrics, a higher value indicates a better reconstruction.
Figure 1 illustrates how these metrics change with the number of
samples used to create the reconstruction. As can be seen, there is
a large increase in quality between 𝑁 = 1 and 𝑁 = 4, however, the
curves quickly flatten out for larger 𝑁 indicating that from a quality
perspective there is no need to choose an excessively high value for
𝑁 . We choose 𝑁 = 32 henceforth for reconstructions.

Table 1 further explores how the reconstruction changes as the
number of generated samples used changes. It shows the PSNR and
structural similarity index measure (SSIM) (Wang et al. 2004) on
reconstructions with different values of 𝑁 , calculated during model
validation. These metrics were calculated by comparing reconstruc-
tions with the ground truths for the mock data.

Figure 2 provides an overview of a given reconstruction, including
the truth, a full reconstruction made by MMGAN, the absolute error
between both, and the standard deviation of the approximate posterior
samples used for the reconstruction. Note, the model was trained on
masked data, so while it was able to fill small masked pixels within
the central map, areas beyond the outer mask boundary (shown as
a white contour on all figures) should be ignored, as the model was
not trained there. We also show a Kaiser-Squires reconstruction,
applying Gaussian smoothing here and throughout with variance

Figure 1. PSNR and Pearson correlation coefficient values of MMGAN re-
construction dependant on the number of approximate posterior samples used
to create that reconstruction, which is given by the mean of the approximate
posterior samples. The curve flattens out for both metrics, indicating there is
little need to consider 𝑁 > 32.

𝜎 = 1 arcmin, following Remy et al. (2023), as this was shown to
minimise the RMSE.

As can be seen in Figure 2 our model has successfully captured
the visual structure of the convergence map. The peaks are not sup-
pressed in the reconstruction. The error between the truth and the
reconstruction is very small in most areas. The same is true for the
standard deviation. Importantly, from visual assessment, areas with
the largest standard deviation correlate with areas of the highest er-
ror. This is sensical, as we expect that areas where the model is less
certain of the true map, it will explore a wider range of possible
reconstructions. Further examples for other simulated maps can be
seen in the appendix, in Figure A1.

As mentioned, MMGAN outputs samples from the learned pos-
terior distribution. Figure 3 shows a selection of generated samples,
which highlights the sample generation diversity. Large scale features
are consistent across the samples, however, the variability shows it-
self in the smaller scale structure, as can be seen in the differences in
the zoomed-in regions of the figure.

Figure 4 shows how the reconstruction varies as the number of
samples used to build it changes. There is more detail when a smaller
number of samples are used, however, these reconstructions are more
prone to the variability of any individual posterior sample. By av-
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Figure 2. A reconstructed convergence map for one of the mock COSMOS maps. Our reconstruction is the average over 32 approximate posterior samples. On
the bottom row is the pixel-wise absolute error between the reconstruction and the ground truth, and the standard deviation between the 32 samples used to
build the reconstruction. The white contour indicates the outer border of the mask applied to the data. We achieve superior visual quality as compared to the
Kaiser-Squires reconstruction, with no peak suppression. Additionally, we see visual correlation between the absolute error and the standard deviation map.

eraging over a larger number of samples, we do lose some level of
small-scale structure, however, the features in the resulting recon-
struction are more likely to be true features of the data. That said,
even our ’smoother’ reconstruction, with 𝑁 = 32, more accurately
captures the small-scale structure to a higher level than the Kaiser-
Squires reconstruction. Additionally, because we are not applying any
additional post-processing—such as the Gaussian smoothing typical
in Kaiser-Squires maps—there is no peak suppression of the small
scale features.

In addition to visually comparing our MMGAN reconstructions
to the Kaiser-Squires reconstruction, we also compare the two quan-
titatively through calculating a range of metrics. Those metrics are
the Pearson correlation coefficient, RMSE, and PSNR. The results
of this comparison can be seen in Table 2. MMGAN significantly
outperforms Kaiser-Squires for each metric, which indicates that not
only does our model produce reconstructions that visually appear
to be of higher quality, but also that MMGAN is better capturing
the underlying features of the data. Additionally, in Table 2 we have
included results from other state-of-the-art methods, as reported in
Remy et al. (2023, §Table 1) including GLIMPSE (Lanusse et al.
2016), MCAlens (Starck et al. 2021), DeepMass (Jeffrey et al. 2020),
and DLPosterior (Remy et al. 2023). These results are also using
mock COSMOS data, built in the same way as our dataset. However,
it is critical to stress that the validation set used to calculate these
metrics differ, as can be seen from the difference in results for the
Kaiser-Squires method. Therefore, the values in the table with an as-
terisk should not be compared directly with our own, however, they

Table 2. Results of validation metrics. The Pearson correlation coefficient,
RMSE, and PSNR, were calculated for the Kaiser-Squires reconstruction
(with 𝜎 = 1 arcmin smoothing, chosen to minimise RMSE) and our 32-
sample MMGAN reconstruction across a validation dataset. The results were
averaged and then used to create this Table. Metrics for methods marked with
an asterisk (*) are sourced from Table 1 in Remy et al. (2023) and there-
fore should not be directly compared with our results, since they consider a
different validation set. Instead, they serve to provide a general comparison
between MMGAN and other methods. Notably, the Kaiser-Squires results
differ slightly from those reported in Remy et al. (2023), likely due to varia-
tions in the validation set.

Pearson ↑ RMSE ↓ PSNR ↑

MMGAN (Ours) 0.727 0.0197 31.674
Kaiser-Squires 0.622 0.0229 30.387

Kaiser-Squires * 0.57 0.0240 -
Wiener filter * 0.61 0.0231 -
GLIMPSE * 0.42 0.0284 -
MCAlens * 0.67 0.0219 -
DeepMass * 0.68 0.0218 -
DLPosterior * 0.68 0.0216 -

provide a general sense of MMGAN’s performance with respect to
other methods. In general, MMGAN, MCAlens, DeepMass, and DL-
Posterior all perform similarly well. Where MMGAN stands apart,
is its ability to quantify uncertainties in a highly computationally
efficient manner.
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Figure 3. A selection of generated approximate posterior samples for a given shear map, in comparison with the ground truth. We have zoomed in on a region
of the samples, to better show the variation within different samples.

5.1.2 Uncertainty Quantification Validation

A well as evaluating reconstruction quality, we also assessed the ef-
fectiveness of our uncertainty quantification. When building recon-
structions of simulated convergence maps, we qualitatively compared
the resulting uncertainty map with the pixel-wise absolute error be-
tween the MMGAN reconstruction and the ground truth. Visually,
there is a correlation between these fields, as can be seen in Figure 2
and Figure A1.

We also calculated the empirical coverage probability of recon-
structions compared to the ground truth maps at 90% and 95% con-
fidence intervals. We found that across 100 maps from our test set,
the coverage was in reasonably close agreement at 85% and 89%
respectively.

5.2 COSMOS Field Reconstruction

After validation we apply our full methodology to the COSMOS field
data, using the catalog described in Subsection 4.2. Figure 5 shows an
overview of our results. We compare with the DLPosterior COSMOS
reconstruction of Remy et al. (2023), in addition to the Kaiser-Squires
reconstruction which acts as our baseline. Both our method and
DLPosterior provide uncertainties, which are also included in Figure
5. The three reconstructions are all shown on the same scale.

When comparing the features present in our reconstruction with
DLPosterior, we find good agreement in both the large and small
scale structure. Peaks in the reconstructions are consistent in terms
of magnitude and position.

Our reconstruction uncertainty is largely low throughout, with the
highest magnitudes appearing in the masked region outside the COS-
MOS survey boundary. Again, the model was not trained to optimise
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Figure 4. Demonstration of how the 𝑁 -sample reconstruction varies for 𝑁 ∈ {1, 4, 8, 32}, 𝑁 = 1 being a single posterior sample, for the zoomed-in region
shown in the red box. The figure also shows the Kaiser-Squires map for the same region. As can be seen, the reconstruction becomes smoother as 𝑁 increases,
however, the prominent features remain. An individual sample has a far higher level of detail, comparable with the true map, however, it can be seen that features
differ slightly to the truth, indicating why it is necessary to average over a number of samples. Despite some loss of the smallest-scale structure for 𝑁 = 32,
there is less peak suppression than the Kaiser-Squires reconstruction.

this region, so a high level of uncertainty here is not surprising, and re-
sults in this region should be ignored. Interestingly, the uncertainties
in the MMGAN reconstruction and the DLPosterior reconstruction
are similar, with higher levels of uncertainty in the same regions.
In order to better compare the uncertainties between MMGAN and
DLPosterior reconstructions, we have shown them both on the same
scale.

In order to draw a more detailed comparison between the recon-
structions, we overlaid known x-ray clusters using a subset of the most
massive clusters from the Finoguenov et al. (2007) XMM-Newton
data, seen in Figure 6. We get good agreement between the features
in our reconstruction and the cluster positions. There are a number
of peaks in our reconstruction which do not have a corresponding
cluster, however, given these features also appear in the DLPosterior
and Kaiser-Squires reconstructions, they may be features which are
beyond the depth of the x-ray data.

Another method of comparing our reconstruction with the DLPos-
terior reconstruction, is to take the relative uncertainty (RU) between
the two using the following equation

RU =
𝑀1 − 𝑀2√︃
𝑆2

1 + 𝑆2
2

, (31)

where 𝑀1 and 𝑀2 are the convergence maps, and 𝑆1 and 𝑆2 are the
standard deviations across the approximate posterior samples used
for each reconstruction respectively. This equation can be interpreted
as the number of standard deviations between the two reconstructions
given the uncertainty estimated by each method. A low value means
a high level of agreement between the two maps, and a high value
indicates areas where the reconstructions do not agree as well. We
show the relative uncertainty map between our reconstruction and the

DLPosterior reconstruction in Figure 6, as the lower panel. Overall
the two reconstructions are in close agreement, with many pixels
being within 1 standard deviation. The peaks in particular are in
good agreement with one another, with the largest differences in the
maps appearing in lower density regions in the reconstructions.

6 CONCLUSIONS

Deep learning methods are a powerful tool in improving mass-
mapping. They utilise data-driven priors, can handle the large
amounts of data being collected by modern surveys, and are of-
ten better at capturing complex features in the data than traditional
methods. However, in this era of precision cosmology, is it prefer-
ential that convergence map reconstructions which will be used for
statistical analysis are accompanied by uncertainty maps. Most prior
methods, including traditional and deep learning approaches, do not
provide uncertainty estimates, and those that do can be slow. In order
to address this gap, we propose MMGAN, a novel convergence map
reconstruction method that provides uncertainties. MMGAN lever-
ages a regularised conditional GAN to generate approximate poste-
rior samples given shear observations, and then uses these samples
to build a reconstruction and associated uncertainties. Under some
assumptions, it can be shown that regularised conditional GANs are
able to approximate the true posterior mean and standard deviation.
Given these assumptions do not hold in all cases, an auto-tuning
mechanism is adopted during training.

Given a noisy shear observation, we construct a pseudo-
reconstruction, and pass both into the MMGAN generator, which
then outputs an approximate posterior sample. We take the poste-
rior mean of 𝑁 = 32 approximate posterior samples as our final
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Figure 5. MMGAN reconstruction of the COSMOS field convergence map with uncertainties (top), the DLPosterior reconstruction with uncertainties (middle),
and the Kaiser-Squires reconstruction (bottom). All reconstructions are shown on the same scale; uncertainties also share a colour scale. The white contour
indicates the outer border of the mask on the COSMOS field data.
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Figure 6. MMGAN COSMOS reconstruction (top), the DLPosterior reconstruction (middle), and the relative uncertainty between the two reconstructions
(bottom). The white points indicate the positions of known x-ray clusters from the Finoguenov et al. (2007) XMM-Newton data, and the white border is the edge
of the COSMOS field mask. Both reconstructions are shown on the same scale. Both reconstructions are in good agreement with the x-ray data, and generally
in good agreement with each other.
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reconstruction, and the standard deviation of these samples to quan-
tify our uncertainties. Currently, we choose a Kaiser-Squires map as
our pseudo-reconstruction, however, this could be replaced with a
more sophisticated reconstruction method, such as the Wiener filter.
MMGAN does not require an explicit choice of cosmology, which
is another reason why we chose the Kaiser-Squires methods as our
pseudo-reconstruction. We trained MMGAN on a mock dataset with
a fixed cosmology, although in future it would be interesting to ex-
plore how MMGAN performs when trained on a dataset with a range
of cosmologies.

To train MMGAN, we used mock COSMOS-style shear and con-
vergence maps, made from the 𝜅TNG simulations. We validated our
model on a subset of the mock COSMOS data not seen during train-
ing. We used the PSNR to ensure the model was suitably constrained
in terms of variance in its sample generation, and then used standard
metrics such as the PSNR, RMSE, and Pearson correlation coefficient
to select the best training epoch of our model. We found that our MM-
GAN reconstructions are able to capture both large- and small-scale
structure, and do not require any post-processing such as smoothing,
which is known to suppress peaks. The resulting MMGAN model
leverages data-driven priors to produce high-fidelity reconstructions
with uncertainty estimates, all generated within seconds.

After validation we made a reconstruction of the COSMOS field,
and found the results to be comparable to state-of-the-art methods,
such as DLPosterior (Remy et al. 2023), and significantly more de-
tailed than Kaiser-Squires. MMGAN was able to generate this recon-
struction and associated uncertainties in under a minute, as compared
to the ∼10 GPU minutes required to generate each independent ap-
proximate posterior sample by DLPosterior. The Kaiser-Squires re-
construction method (Kaiser & Squires 1993) and alternative deep
learning approaches (Jeffrey et al. 2020; Saxena & Cao 2021), while
also being quick, provide no uncertainties. Fast techniques that also
quantify uncertainties are important for integration into downstream
cosmological parameter estimation and model comparison pipelines
so that uncertainties in the mass-mapping process are captured.

We hope our method will be useful in future mass-mapping anal-
yses, in particular within larger pipelines that can make use of the
rapid speeds at which posterior distribution samples can be gener-
ated. We make the code used for this work publicly available to the
community, and hope it can be used to further the field of weak
lensing mass-mapping.
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APPENDIX A: ADDITIONAL SIMULATION PLOTS

In this section we provide an additional set of plots (A1) showing the
MMGAN reconstructions of some simulated mock maps, alongside
the ground truth, pixel-wise absolute error, and pixel-wise standard
deviation. These plots are similar to those shown in Figure 2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. Overview of the MMGAN reconstructions of the COSMOS mocks including MMGAN reconstructions built from 𝑁 = 32 approximate posterior
samples, the ground truth, the pixel-wise absolute error between the reconstruction and the ground truth, and the pixel-wise standard deviation between the 32
approximate posterior samples used to build the reconstructions.

RASTI 000, 1–15 (2024)


	Introduction
	Background
	Weak Gravitational Lensing
	Lensing Inverse Problem
	Generative Adversarial Networks

	Methodology
	Conditional GANs
	Conditional Wasserstein GANs
	Regularised conditional GANs
	MMGAN

	Simulations, Training, and Validation
	KappaTNG Simulations
	COSMOS Data
	Mock COSMOS Dataset
	Training
	Model Validation

	Results
	Simulations
	COSMOS Field Reconstruction

	Conclusions
	Additional Simulation Plots

