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Abstract—The cadence that is eventually decided upon for the Large
Synoptic Survey Telescope (LSST) will play an important part in our
ability to do Type Ia Cosmology. With the expected number of Supernovae
that will be detected being far larger than previous surveys, it is not
feasible for all to be spectroscopically followed up. Therefore, being
able to photometrically classify supernova well will allow us to leverage
the power of the datasets LSST will provide and further constrain
cosmological parameters. Presented here is a machine learning approach
to comparatively study different proposed observing strategies of the
LSST to determine the optimal cadence suited for classification of
supernova light curves.

1. INTRODUCTION

The aim of this investigation is to analyse the affect a particular ca-
dence has on one’s ability to photometrically classify supernova. This
investigation has been carried out by the developers of snmachine
who work in the Supernova Working Group under the umbrella of
the Dark Energy Science Collaboration (DESC). snmachine is a
DESC product that is used as a photometric classification pipeline
[1].

The motivation for this work comes from the desire to identify
as many Type Ia Supernovae as possible in order to help constrain
the nature of Dark Energy. LSST will observe more Supernovae than
ever before, at a rate that is not feasible for all transients to be spec-
troscopically followed up and classified. Thus to handle the deluge of
data and the challenge of classifying objects photometrically, machine
learning methods are required.

In order to conduct this analysis, use of SNANA[2], has been
employed to generate the latest light curves that correspond to
different cadences runs from OpSim[3] outputs.

By interpolating the sampled light curved with Gaussian processes
and then applying a wavelet decomposition to these interpolated light
curves, one obtains features that could be provided to a classifier,
in this case a Random Forest algorithm. For performance, the
dimensions of these features were reduced further with a principle
component analysis and then these reduced features were provided
as inputs to the algorithm. To ensure a controlled test, for each
cadence run, a classifier was trained on 2000 light curves only and
then tested on the remaining set of light curves that were in the
corresponding dataset produced from SNANA, in relation to specific
OpSim cadence simulation. The results for which are shown in
Figure 1. The performance of the interpolation is directly affected
by the amount of samples one has on the light curve. More samples
improve the reliability of the Gaussian processes and thus provide
better features via the wave decomposition.

Therefore, it can be understood that in order to classify transients,
short sampling of a light curve is important. This is particularly
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Fig. 1. auROC performance of various OpSim cadence runs for WFDY 10

crucial for early classification leading to possible spectroscopic follow
up.

Figure 1 shows the comparative classification performances be-
tween 6 cadences for the Wide-Fast-Deep observations over the
10 year survey (WFDY10). The area under the Receiver Operating
Characteristic (auROC) curves were chosen as the metric to evaluate
the performance.

The results for the WFDY 10 case show a significant difference in
classification performance, with alt_sched_rolling being most
favourable. This cadence has a higher number of points on a light
curve in r-band, thus providing better sampling along the light curve.
Further studies are being carried out to explore which other specific
cadence properties result in better classification performance.

Further analysis was also done on Deep-Drilling-Fields (DDF)
cadence runs with work in progress for models trained on DDF
and then tested on WFD. Work is ongoing to formulate the optimal
cadence with results being published soon following the call for white
papers, and to be incorporated with the PLAsTiICC competition’.
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