Cosmic Shear: Inference from Forward Models
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Density-estimation likelihood-free inference (DELFI) has recently been proposed as an effi-
cient method for simulation-based cosmological parameter inference. Compared to the standard
likelihood-based Markov Chain Monte Carlo (MCMC) approach, DELFI has several advantages:
it is highly parallelizable, there is no need to assume a possibly incorrect functional form for the
likelihood and complicated effects (e.g the mask and detector systematics) are easier to handle with
forward models. In light of this, we present two DELFI pipelines to perform weak lensing parameter
inference with lognormal realizations of the tomographic shear field — using the Cy summary statis-
tic. The first pipeline accounts for the non-Gaussianities of the shear field, intrinsic alignments and
photometric-redshift error. We validate that it is accurate enough for Stage III experiments and
estimate that @(1000) simulations are needed to perform inference on Stage IV data. By comparing
the second DELFI pipeline, which makes no assumption about the functional form of the likelihood,
with the standard MCMC approach, which assumes a Gaussian likelihood, we test the impact of
the Gaussian likelihood approximation in the MCMC analysis. We find it has a negligible impact
on Stage IV parameter constraints. Our pipeline is a step towards seamlessly propagating all data-
processing, instrumental, theoretical and astrophysical systematics through to the final parameter

constraints.

I. INTRODUCTION

Weak lensing by large scale structure offers some
of the tightest constraints on cosmological parameters.
Over the next decade data from Stage IV experiments
including Euclid!] [1], WFIRSTP| [2] and LSSTf| [3] will
begin taking data. Extracting as much information from
these ground-breaking data sets, in an unbiased way,
presents a formidable challenge.

The majority of cosmic shear studies to date focus
on extracting information from two-point statistics and
in particular the correlation function, £(6), in config-
uration space and the lensing power spectrum, Cy, in
spherical harmonic space [4H8]. While the non-Gaussian
information in the shear field is accessed with higher-
order statistics [9, [10], peak counts [I1, 12] or machine
learning [13], the impact of systematics on the two-point
functions have been extensively studied [I4]. For this
reason we will focus on these statistics and leave the
higher-order information to a future study. In particu-
lar we focus on the Cy statistic because computing cor-
relation functions from catalogues with billions galaxies
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— even using an efficient code such as TREECORR [I5] — is
extremely computationally demanding.

Apart from [16] [I7], existing studies of the shear two-
point statistics [4H8] use a Gaussian likelihood analysis
to infer the cosmological parameters. This approach has
drawbacks. For example, with the improved statistical
precision of next generation data, we will need to propa-
gate complicated ‘theoretical systematics’ (e.g. reduced
shear [I8]) and detector effects [14] into the final cosmo-
logical constraints. It is difficult to derive the expected
impact of these effects as is required for a likelihood
analysis. It is much easier to produce forward model
realizations.

It has also recently been claimed that because the true
lensing likelihood is left-skewed, not Gaussian, parame-
ter constraints from correlation functions are biased low
in the og — £, plane [19, 20]. The same argument given
in these papers applies to the Cy statistic. More will be
said about this in Section [TIl

To overcome these issues, a mnew method
called density-estimation likelihood-free inference
(DELFI) [2IH27] offers a way forward. DELFT is
a ‘likelihood-free’ method similar to approximate
Bayesian computation (ABC) [28], but much more
computationally efficient. Using summary statistics
(the Cp statistic, in this case) generated from full
forward models of the data at different points in cos-
mological parameter space, DELFT is used to estimate
the posterior distribution.
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Performing inference on realizations of the data may
seem computationally challenging, but using efficient
data compression [25] [29] most applications require only
O(10%) simulations [27]. This is less than the number of
simulations already required to produce a valid estimate
of the inverse covariance matrix in a Stage I'V likelihood
analysis. DELFT is also highly parallelizable.

In this paper we develop two cosmic shear forward
model pipelines for DELFI, using the publicly avail-
able pydel:fjﬁimplemem‘cation7 summarized in Figure
Pipeline I takes full advantage of the benefits of forward
modelling and is intended for application to real data-
sets, while Pipeline II is intended only for comparison
with the standard likelihood analysis. We also consider
3 different analyses summarized in Table [l DAL is a
DELFTI analysis using shear Pipeline I. Meanwhile we
compare the DELFI analysis, DA2, to the likelihood
analysis, LA, to test the impact of the Gaussian likeli-
hood approximation. It is useful for the reader to refer
back to Table [[]and Figure [I] throughout the text.

The structure of this paper is as follows. The for-
malism of cosmic shear and cosmological parameter in-
ference is reviewed in Sections [IHTIl While DELFT has
already been applied to cosmic shear in a simple Gaus-
sian field setting [27], in Section [IV| we go beyond this
and present a more realistic forward model (Pipeline I)
which includes the impact of intrinsic alignments and
non-Gaussianities of the shear field. We also estimate
the number of simulations required for a Stage IV ex-
periment and check to confirm that we recover the input
cosmology from a DA1 anlysis on mock data. Next we
discuss the feasibility of the DA1 analysis for Stage III
data in Section [V} In Section [VI] we test the impact
of the Gaussian likelihood approximation by comparing
the DA2 analysis to the LA analysis. In Section [VI]]
we discuss future prospects for DELFI in cosmic shear
studies, before concluding in Section [[X}

II. COSMIC SHEAR FORMALISM AND THE
LOGNORMAL FIELD APPROXIMATION

A. The Lensing Spectrum

Assuming the Limber [30, [31], spatially-flat Uni-
verse [32], flat sky [3I] and equal-time correlator ap-
proximations [33], the lensing spectrum, C’;JGG, is given

by Hl:
Cloe = /OH dr%P (fr) (1)

where P(k,r) is the matter power spectrum and the
lensing efficiency kernel, ¢; is defined as:

3HEQy 7 TH v —r
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FIG. 1. A schematic of the two forward model pipelines
used in this work given model parameters p. In Pipeline
I we develop a forward model of cosmic shear data for in-
ference with DELFI which takes advantage of the forward
model approach. There is no need to deconvolve the mask
or pixel window function, for example. In Pipeline IT we use
a Gaussian field, do not use a mask, subtract off the shot-
noise or deconvolve the pixel window function. These choices
allow us to make a direct comparison between DELFI and a
Gaussian likelihood analysis to test the Gaussian likelihood
assumption.
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DA1 DA2 LA
Inference DELFI DELFI Gaussian likelihood
Pipeline Pipeline 1 Pipeline 11 NA
Number of galaxies 1.56 x 10° 1.56 x 10° 1.56 x 10°
Number of tomographic bins||6 2 2
Number of ¢-bins 15 with £ € [10, 1000] 15 with £ € [10, 1000] 15 with £ € [10, 1000]
Field type Lognormal Gaussian NA
Deconvolve Pixel Window ||No Yes NA
Mask Yes No NA
Subtract shot-noise No Yes NA

TABLE I. The three analyses in this paper. In DA1 we use DELFT to infer the cosmological parameters. Since we perform
inference with forward models, there is no need to deconvolve the pixel window function, deconvolve the mask or subtract off
the shot noise. This analysis is applied to mock Stage IV data in Section [[V] Meanwhile by comparing the DELFI analysis,
DA2, with the likelihood analysis, LA, we test the impact of the Gaussian likelihood approximation. In DA2 our modeling
choices are governed by the constraint that we must match the Gaussian likelihood analysis as closely as possible. Some of
the map-level choices are not applicable to the likelihood analysis LA.

and we generate the Niomo tomographic bins, n; ('), by
dividing the radial distribution function:

n (zp) Ny
C1

_ (z=0.7)2 _ (z—1.2)2
2

e A (3)

with (al/cl,bl,dl) = (15/02,032,046) [34] into bins
with an equal number of galaxies per bin. To account
for photometric redshift error, each bin is smoothed by
the Gaussian kernel:

= 20, 4
p(z|zp) Py (Zp)e » ) (4)
With ceal = 1, Zbias = 0 and 0, = A1+ Zp) with A =
0.05 [35].

B. Intrinsic Alignments

The tidal alignment of galaxies around massive ha-
los adds two additional terms to the lensing spectrum.
An ‘II term’ accounts for the intrinsic tidal alignment
of galaxies around massive dark matter halos, while
a ‘Gl term’ accounts for the anti-correlation between
tidally aligned galaxies at low redshifts and weakly
lensed galaxies at high redshift.

We model this effect using the non-linear alignment
(NLA) model [4, [36]. We also allow the intrinsic am-
plitude, A(z), to vary as a function of redshift so that
A(z) = [(1+20)/(1+ 2)]" [37], where zy is the mean
redshift of the survey. This is zo = 0.76 for the n(z)
given in equation . This model was used in the joint
KiDS-450+2dFLenS [38] analysis and was one of the
models considered in the Dark Energy Survey Year 1
cosmic shear analysis (hereafter DESY1) [5].

In this case the IT spectrum, Cyy;, is given by:

” ™ n(r)n, 14
Cén :/ dr%& (r”")’ (5)
0

where the II matter power spectrum is:

Pu(k,z) = F?(2)P(k, 2) (6)
and
F(Z) = _AICIpcrit‘DQ(IZ) (m) ) (7)

where pcrit is the critical density of the Universe, D(z)
is the growth factor and C; =5 x 10_14h_2M51Mp03.
The GI power spectrum is:

ij " qi(r)ng(r) + ni(r)g; 4
Crlar = /0 ap B0 0) 2n (1)g;(r) FPar (T7T> :

(8)

and the GI matter power spectrum is:
Pgi(k,z) = F(2)P(k, 2). (9)

Altogether the theoretical lensing spectrum, C’ZT’” , 18

given by the sum of the three contributions:

Cl = Z,jGG + Cz,jc;l + Czi,jn (10)
Henceforth we will routinely drop the tomographic bin
labels for convenience, as we have done here, on the left
hand side.

All lensing spectra are generated inside the Cosmosis
framework [39]. The linear power spectrum and expan-
sion history are computed with CAMB [40] and the non-
linear corrections are computed with HALOFIT [41].

C. The Lognormal Field Approximation

Generating lognormal convergence fields [42] is com-
putationally inexpensive and captures the impact of
nonlinear structure growth more accurately than Gaus-
sian realizations. This approximation was recently used
in DESY1 [5] to compute the covariance matrix from
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FIG. 2. A single masked data realization of the convergence
field, x, and the two observable shear components: ~; and
~2 (including shape noise) for a typical Stage IV experiment.
This is the lowest redshift bin of six, where the effect of non-
Gaussianity is largest. The non-Gaussianity is clearly visible
in the k-map (the color scale runs between the minimum and
maximum value of the k-field to make the non-Gaussianity
more visible), where the majority of pixels are very slightly
negative with a small number of pixels taking very large
(positive) k-values. The mask cuts all pixels lying within
22.5 deg of the galactic and ecliptic planes.

noisy realisations of the data. No differences in param-
eter constraints were found when the covariance was
computed using lognormal fields compared to the halo
model approach [43].

In the lognormal field approximation the convergence,
#'(0), inside each tomographic bin, i, is generated by ex-
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ponentiating and shifting a Gaussian realization, g* (6),
according to:

K (6) = exp [g" (8)] — Ko, (11)

where ) is a constant shift parameter.

We use Flask [44] to generate consistent lognormal
realizations [42] of the convergence and shear fields —
correlated between redshift slices. The procedure is dis-
cussed in detail in Section 5.2 of [44] (see also [45]).

Flask takes just two inputs:

e Flask takes the theoretical lensing spectrum, C},
defined in Sections [TAHITB] Formally Flask uses
the convergence spectrum to generate a conver-
gence field, k, from which it computes a consis-
tent shear field, . In the flat sky approximation —
which we assume throughout — the shear and con-
vergence spectrum are the same, but care would
be needed to correctly re-scale the input conver-
gence spectrum by the appropriate ¢-factor if the
flat sky approximation was dropped [31], 46].

e Flask requires the shift parameter, xj for each
tomographic bin i. We compute this by taking a
weighted average of the shift parameter at each
redshift:

Kb = /dz ni(2)kh(2), (12)
using the fitting formula:

K (2) = 0.008z + 0.02922 — 0.00792° + 0.00652* (13)

derived from simulations [42].

While the fitting formula will have some cosmolog-
ical dependence, the shift parameter does not affect
the power spectrum of the field — only impacting cos-
mological constraints through the covariance. Non-
Gaussian corrections to the covariance already have a
sub-dominant impact [47, 48], hence the dependence
of these corrections on the cosmology is further sub-
dominant. For this reason we ignore the cosmological
dependence of the shift parameter.

A valid covariance matrix between data must be
positive-definite, but this is not guaranteed for correla-
tions between tomographic lognormal fields [44]. Flask
overcomes this issue by perturbing the lognormal fields
following the regularization procedure outlined in Sec-
tion 3.1 of [44]. Provided that the regularization is ap-
plied to a small number of tomographic bins, it is found
in [44] that C,*®/C* < 1 x 1075, where C},*® is the re-
covered regularized spectrum and C}* is the spectrum
recovered from the unregularized map [44]. In Section
we verify that this will not impact Stage III parameter
constraints.

In Figure[2] we plot a single lognormal realization gen-
erated with Pipeline I. We show the masked convergence
and components of the shear field in the lowest redshift



bin. This is where the non-Gaussianities are most pro-
nounced and clearly visible. In the convergence map
the majority of the pixels take small negative values.
However there are rare incidences of large positive con-
vergence. This physically corresponds to collapsed high-
density structures along the line-of-sight.

D. Band-limit Bias from the Lognormal Field

Unlike Gaussian fields, lognormal realizations are not
band-limited in ¢ [44] (see Section 5.2.2 therein). In
particular, Taylor expanding the lognormal convergence
field, (), in terms of the Gaussian field, g* (¢), yields
quadratic and higher order terms in g’. In harmonic
space this mixes different /-modes. When a band-limit
is imposed, this biases the lensing spectrum recovered
from the map.

III. COSMOLOGICAL PARAMETER
INFERENCE

A. Gaussian likelihood Analysis

In the standard two-point cosmic shear likelihood
analysis, we assume a Gaussian likelihood:

In £(p) =5 D

a,b

~T.(p)C! Dy — Ty (p)],

(14)
where D, and T, (p) are the data and theory vectors
respectively composed of the C, estimated from data
and the theoretical expectation of Cy given cosmological
parameters p.

Meanwhile Ca_b1 is the inverse of the covariance ma-
trix. Since we generate the covariance matrix from
noisy simulations of the data we make the Anderson-
Hartlap [49] [50] correction, to avoid bias from inverting
the covariance matrix, for the remainder of the paper.

B. The Potential Insufficiency of the Gaussian
likelihood Approximation in Cosmic Shear

To see why the Gaussian likelihood assumptions can
lead to bias we summarize the argument given in [20].
Inside a single bin the unmasked lensing spectrum is:

l
_ 1 2
Co= Wil Z | Yem |° - (15)

m=—{

Since the harmonic coefficients, v4.,,, are computed as a
summation over a large number of pixels, they are Gaus-
sian distributed by the central limit theorem. Squaring
a Gaussian random variable gives a gamma distribution
— which is left-skewed.

Taking a Gaussian rather than a gamma distribu-
tion for the likelihood could bias parameter constraints.

Since S2 = 02(,,/0.3) and €, enter into the shear
spectrum amplitude, we would expect these parameters
to be ones which are most affected — and biased low.
Only in the limit of large ¢ — as the C} itself becomes
the sum over a large number of m-modes — does the
central limit theorem kick in and the likelihood become
Gaussian.

C. Density-estimation Likelihood-free
Compression

Since density-estimation likelihood-free inference
methods are most effective in low dimensions [25], we
compress the C, summary statistic. =~ As suggested
n [29], the lensing spectra are compressed into a new
vector, t, according to:

Cy = t=V,L,, (16)

where p is the set of cosmological parameters that we
are inferring, £, is a proposal Gaussian likelihood cen-
tred at a fiducial set of parameters which we take to be
(s hoy Qpyms, S, Ay ) = (0.3,0.72,0.96,0.79,1.,2.8)
throughout, where S = 05(£2,,/0.3)?5, A and 7 are the
intrinsic alignment parameters defined in Section [[TB]
and the other parameters take their standard cosmo-
logical definitions. As the assumption of a Gaussian
likelihood here is only for compression purposes, it does
not bias the final parameter constraints and the Fisher
information is preserved provided the true likelihood
is Gaussian [29]. If the true likelihood is not exactly
Gaussian, some information will be lost. This is inves-
tigated in Section [VIl For more advanced compression
techniques using neural networks, see [51].

D. Density-estimation Likelihood-free Inference

We use pydelfi [27] to learn the conditional den-
sity P(¢|p) (this software comes with many different run-
mode options, but we restrict our attention to the meth-
ods used in this work). The likelihood is then given by
P(t = tgatalp), where tqata is the mock data generated
from either Pipeline I or II. Multiplying by the prior,
which we take to be flat in all parameters, yields the
posterior.

Using the default setting in pydelfi, we train five
neural density estimators (NDE) (four mixture density
networks (MDN) and one masked autoregressive flow
(MAF), see [27] for more details) with the default net-
work architectures described in Section 4 of [27], pa-
rameterized in terms of a set of neural network weights,
w. Training multiple networks allows DELFI to avoid
over-fitting and increases robustness.

We use sequential learning to learn the weights, w,
updating our knowledge of the conditional density dis-
tribution P(t = tqatalp). Specifically we divide the in-
ference task into 20 training steps with 100 simulations



per step. Given a large enough computer all the simu-
lations in each training step could be run in parallel, so
that the total time of the simulations would not exceed
the time it took to perform 20 simulations.

As an initial guess for the conditional distribution, we
take the multivariate Gaussian:

P(tlp) = N(tlp, F ), (17)

where F~! is the inverse of the Fisher matrix of the cos-
mological parameters, F' = 7<vag’”£*>. At each step
thereafter, we train each neural density estimator on a
set of parameter realization pairs {p;,t;} drawing sam-
ples from the conditional density of the previous step
to ensure that the highest density regions are the most
finely sampled. Meanwhile ten percent of the samples
are retained as a validation set to avoid over-fitting.

At each step each NDE learns the weights, w, by min-
imizing the negative loss function:

Nsamples

—InU(w) = — Z InP(t;|p, w), (18)

i=1

which is an estimate of the Kullback-Leibler divergence
between the density estimator P(t = tgata|p) and the
true distribution [27] (the minus sign is pulled out of
U(w) on the left-hand side following the convention
in [27]). The final estimate for the conditional distri-
bution is given as a weighted average over the estimates
from the five networks:

P(tlp;w)= > Bipi(tlp;w), (19)

i€networks

where the weights are determined by the relative likeli-
hood of each NDE [27].

IV. THE FULL FORWARD MODEL

In this section we use Pipeline I to generate mock
Stage IV data and then run analysis DA1 to recover
the input cosmology. This allows us to test our pipeline
and estimate the number of simulations needed for a
Stage IV experiment. We describe the model choices
and results below.

A. The Mask

We use a typical Stage IV survey mask shown in Fig-
ure[2] All pixels lying within 22.5 deg of either the galac-
tic or ecliptic planes are masked. This leaves 14,490 deg?
of unmasked pixels which, as a fraction of the full sky,
is fsky =0.35.

B. Shot-Noise Model

The noise, 7, for each pixel, p, is drawn from a Gaus-
sian distribution [10]:

Oe
VNp
where N p is the number of galaxies in each pixel, the ori-
entation is angle is drawn from a uniform distribution,
we take the intrinsic shape dispersion as o = 0.3 [52]
and use 30 galaxies per arcmin® throughout. This is a
good approximation since in all our simulations there

are a large number of galaxies in each pixel, so the cen-
tral limit theorem applies.

w~N |0, (20)

C. Forward Modelling the Mask

One advantage of performing inference with full for-
ward models of the data is that we do not need to decon-
volve the mask. This is both computationally simpler
and avoids the risk of bias from inaccurate deconvolu-
tion which is present in the standard likelihood analysis.

Given two masked shear fields a(f) and b(6), a naive
estimate of the lensing spectrum is the pixel pseudo-CYy
spectrum:

14
~ . 1
pix,EE __ FE 1 F
CZ - 20+ 1 E <a’lmblm>’ (21)

m=—

where the tilde is used to denote the fact that we have
not corrected for the mask and the ‘pix’ superscript re-
minds us that we have not accounted for the pixel win-
dow function. Analogous expressions are easily found
for the EB and BB spectra.

In an unmasked field, lensing by large scale structure
will only induce power in the E'F spectra, but to retain
information leaked into the EB and BB spectra due to
the presence of a mask, in Pipeline I, we use:

égix _ éé)ix,EE + 5Eix,EB + 5§>ix,BE + 5[{:)ix,BB7 (22)

as the estimator. This is computed using HEALpy [53|
nd].

In a future pipeline it may still be desirable to use
the pseudo-Cy formalism to avoid mixing between E
and B-modes, allowing us to immediately remove B-
modes induced by unknown systematics. As long as the
data and theory are treated in the same way the pseudo-
Cy formalism will not introduce bias, as it could in the
standard likelihood analysis.

D. Mimicking a Stage IV Experiment

To estimate the number of simulations needed for a
Stage IV experiment and ensure that pipeline recov-
ers the input cosmology we produce mock data with
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FIG. 3. 68% and 95% credible region parameter constraints found with DELFI analysis DA1 after 1000 simulations, for a
mock Stage IV experiment. We confirm that we recover the input cosmology within statistical errors. We plot the convergence
in Figure 4] In a realistic situation there may be a larger number of nuisance parameters. This would not dramatically slow
convergence because we could ‘nuisance harden’ the data compression step, to only learn the posterior for the parameters of

interest [55].

Pipeline I. We use 6 tomographic bins sampling 15 log-
arithmicly spaced ¢-bins in the range ¢ € [10, 1000]. We
then run pydelfi to estimate the posterior distribution
of the cosmological parameters for this data. The final
parameter constraints for a lambda cold dark matter
(LCDM) cosmology with two nuisance intrinsic align-
ment parameters are shown in Figure [3] This confirms
that we recover the input parameters within errors.

In Figure [4 we plot the negative loss function defined
in equation for the training and validation sets.
Both have converged within O(1000) simulations. This
is similar to the number found in the simple Gaussian
field pipeline presented in [27], suggesting that the inclu-
sion of higher order effects including intrinsic alignments
and non-Gaussian field corrections does not significantly
increase the required number of simulations.
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FIG. 4. The negative loss function defined in equation
for the training and validation sets as a function of the num-
ber of simulations. This suggests that O(1000) simulations
are needed for a Stage IV experiment. This is similar to
the number found in [27], which only considered a simple
Gaussian field forward model with no intrinsic alignments,
implying that the convergence rate is fairly insensitive to the
precise details of the model.

When working with real data, we may require a large
number of nuisance parameters. Nevertheless, we do not
expect this to dramatically increase the number of simu-
lations needed, since we can always tune the data com-
pression to maximize the information retention of the
parameters of interest, following the procedure in [55].

Each simulation takes approximately 33 minutes on a
single thread of a 1.8 GHz Intel Xeon (E5-2650Lv3)
Processor. Thus if run on 100 threads in parallel, the
total simulation time of the DELFT inference step takes
only 10 hours. Many of the individual modules in the
pipeline are multithreaded (e.g Flask), so running on
even more threads would further reduce the total run-
time.

V. PROSPECTS FOR STAGE III DATA

In this section we discuss the viability of applying
analysis DA1 to existing Stage III data. For the re-
mainder of this section we assume a circular mask of
4951 deg?, similar to the final coverage of the Dark En-
ergy Survey [56] with 10 galaxies per arcmin® and use
Pipeline I throughout this section — except where mod-
ifications are explicitly stated.

A. Validating the Lognormal Simulations

Lognormal fields were used to generate the covariance
matrix in the recent Dark Energy Survey Year 1 anal-
ysis [B]. The authors found no difference in parameter

1072 4

---- 1% error

10t 102 103

FIG. 5. The colored lines show the absolute value of the
difference between the average recovered cross and intra-bin
spectra from 100 lognormal and 100 Gaussian realizations
(4 tomographic bins, Ngae = 512 and ¢ € [10,1535]). The
difference is due to the band-limit bias in the lognormal field
discussed in Section[[TDl With these model choices the band-
limit bias is safely below 1% for nearly all data points.

constraints between this analysis and one which used a
halo model to generate the covariance matrix — but to
verify that our pipeline is ready for Stage III data, we
must also ensure that we recover an unbiased C; from
the maps.

Given an accurate input Cy, the only bias in Pipeline
I comes from regularizing the map (see Section .
We would not expect the band-limit bias of the lognor-
mal field to be problematic since imposing a band-limit
would affect the data in the same way. However this
assumes that the true field is exactly lognormal. Nev-
ertheless we check to ensure that the combined effect
of regularization and imposing a band-limit is small.
We quantify this statement by finding the difference
between the average recovered pixelated Cy’s from 100
Gaussian simulations (where no band-limit bias or reg-
ularization bias is present) and 100 lognormal simula-
tions. Each 4-tomographic bin simulation takes approx-
imately 15 minutes on a single thread and the difference
in the recovered spectra is shown in Figure [5| The bias
is safely below 1% in all but three data points. This
confirms that once minor updates have been made (see
next subsection), the pipeline will be ready for use on
today’s data.

B. Model Improvements

Only a small number of adjustments must be made
to DA1 to apply this analysis to existing data. These
are:

e We must accurately account for baryonic physics.



This can be handled using a halo model code [57],
potentially in combination with the k-cut cosmic
shear approach [58), [59], optimally cutting scales
which can not be accurately modeled.

e We must introduce several nuisance parameters.
As well as allowing for free multiplicative and ad-
ditive shear biases, photo-z bias parameters will
need to be allowed to vary, as in the Dark Energy
Year 1 analysis [5]. This will increase the number
of nuisance parameters. To avoid excessive com-
putational costs we must ‘nuisance harden’ [55]
the data compression step.

VI. TESTING THE GAUSSIAN LIKELTHOOD
APPROXIMATION

In this section we compare DELFI and the standard
Gaussian likelihood analysis by running the DA2 anal-
ysis and the LA analysis, on the same mock Stage IV
data. We use Pipeline II to generate the mock data,
produce the covariance matrix and generate the forward
models in DA2. Since DELFI does not assume any par-
ticular likelihood, differences in the resulting parameter
constraints are only due to the Gaussian likelihood as-
sumption in LA. Because we can not just forward model
everything in LA, care must be taken to ensure that
the band-limit bias, deconvolving the mask, deconvolv-
ing the pixel window function and subtracting the shot-
noise does not lead to additional bias between the two
analyses. Controlling for these effects is described in the
first subsection.

A. Modeling Choices In Pipeline IT

To avoid the band-limit bias we use a Gaussian field,
rather than the lognormal field.

We do not apply a mask in DA2 as we have found
that using the pseudo-Cy; method [60H62] (with the pub-
lic code NaMaster [62]) can bias parameter constraints,
with our choice of HEALpix E| Nsige and £p.x by up to
lo. Instead we adjust the galaxy number density so that
total number of galaxies and hence the signal-to-noise
remains unchanged.

In LA we decide to take the Cy, with no shot-noise
term in the intra-bin case, as the data vector. Thus
we must subtract off the expected value of the noise
in DA2. This is computed by running 500 noise-only
simulations, as in the analysis of [§].

We must also account for the fact that the shear spec-
tra are computed on pixelized maps — that is, we must
deconvolve the pixel window function, wy, which is de-
fined in [63] and computed using HEALpix. This as-
sumes that the scale of the signal is large relative to the

5 https://sourceforge.net/projects/healpix/
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FIG. 6. The absolute value of the bias, | b |, due to imperfect
pixel-window deconvolution and noise subtraction relative
to the statistical error, o, from 500 Pipeline IT simulations.
This confirms that the comparison between DELFI and the
likelihood analysis presented in Section [VIB] will be unaf-
fected.

pixel scale and that all pixels are the same shape. The
window-corrected spectrum, CY, is given in terms of the
spectrum computed from a pixelized map, C7**, by:

Cy = w;20P™. (23)

By running 500 Gaussian field simulations we have
confirmed that the combined bias from deconvolving the
pixel window function and subtracting the shot-noise is
small, so that we can fair comparison between the DA2
analysis and the LA analysis. This is shown in Figure[f]
The absolute value of the bias, |b], is small relative to
the statistical error, o, with |b|/oc < 0.1 for all data
points.

B. Impact of the Gaussian Likelihood
Approximation

To test the impact of the Gaussian likelihood approx-
imation we first generate 1000 mock data realizations
using Pipeline I1. We take 15 logarithmically spaced /-
bins in the range [10, 1000] and restrict our attention to
the Sg — Q,,, plane. To cut computation cost, we use
only two tomographic bins. The parameters Sg and §2,,
primarily impact the amplitude of the shear spectrum,
so we do not expect to lose too much information with
this choice [64) [65].

For three random data realizations, we run a DELFI
and a Gaussian likelihood analysis. The resulting pos-
teriors are shown in Figure[7] Each subplot corresponds
to one of the three realizations.

In all three cases the DELFI and Gaussian likeli-
hood contours are very similar. This suggests the Gaus-
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FIG. 7. The 68% and 95% credible region parameter con-
straints for three random data realizations found using a
MCMC Gaussian likelihood analysis and DELFI, which
makes no assumption about the functional form of the like-
lihood. The mock data input cosmology is labeled by black
dotted lines. Only in the first realization, does the input cos-
mology lie outside the 68% credible region — but statistically
this is to be expected for a small number of realizations. The
contours found using the two different analyses are very sim-
ilar for all three data realizations suggesting that the Gaus-
sian likelihood approximation has negligible impact, and the
compression in equation (16)) is lossless. This former state-
ment is confirmed in Figure 3]
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FIG. 8. The 68% and 95% credible region of the MLE dis-
tribution, assuming a Gaussian likelihood. The value of the
input cosmology is indicated by the black dotted lines, and
lies at the center of the contours. This implies that the Gaus-
sian likelihood approximation does not lead to any measur-
able bias in our setup.

sian likelihood assumption does not bias parameter con-
straints in the Sg — €2, plane and the compression de-
fined in equation is lossless.

To confirm and quantify this statement, we sample
the maximum likelihood estimator (MLE) distribution
assuming a Gaussian likelihood, using the 1000 data
realizations generated earlier. For each realization, the
MLE is found using the Nelder-Mead algorithm built
into scipy and wrapped into Cosmosis using the default
settings. The resulting MLE distribution is shown in
Figure The input cosmology lies almost exactly at
the center of the 68% credible region which implies that
there is no measurable bias from the Gaussian likelihood
approximation.

We stress that these conclusions only hold for the Cy
analysis presented in this work. In particular, the ¢-
binning strategy matters. By binning f-modes we are
taking a sum over random variables, so by the central
limit theorem broader bins correspond to more Gaussian
data. The Gaussian likelihood approximation could be
important for much narrower bins. Similarly the Gaus-
sian likelihood approximation might be important in a
correlation function analysis. Since correlation func-
tions are integrals over Cy’s weighted by a Bessel fil-
ter function [66], the non-Gaussianities at low-¢ will be
present in every data point.



VII. FUTURE PROSPECTS

We review the main known cosmic shear systematics
which must eventually be included in the full forward
model. To account for many of these effects we must
first take the base model presented in this work to ‘cat-
alog level’. This can be done by first generating a con-
sistent density field — either with Flask or by taking the
difference between two neighbouring tomographic bins
— and then populating the density field with a realis-
tic population of galaxies [67] assuming a biased tracer
model (e.g [68]). Cosmic shear systematics break down
into four broad categories: data-processing, theoretical,
astrophysical and instrumental systematics.

On the data-processing side, accurately measuring
the shape and photometric redshift of galaxies is the
primary challenge. Both measurements are dependent
on the galaxy-type [69], and this is in turn correlated
with the density through the morphology-density rela-
tion [70]. Rather than using the best fit parameters for
each galaxy, we can sample the posterior on each galaxy
as in a Bayesian hierarchical model [I6] to propagate the
measurement uncertainty into the final parameter con-
straints, as suggested in [27]. We can also account for
image blending [69) [7I] more easily with forward mod-
els.

Two important theoretical systematics are the re-
duced shear correction [I8] [66] and magnification
bias [72} [73]. The former correction accounts for the
fact that we measure the reduced shear v/(1— k) with a
weak lensing experiment. In a likelihood analysis, this
can be computed using a perturbative expansion as in
[18, [74]. This is slow and requires us to rely on poten-
tially inaccurate fitting functions for the lensing bispec-
trum. Meanwhile the magnification bias accounts for
the fact that galaxies of the same luminosity can fall
above (below) the detectability limit in regions of high
(low) lensing magnification. In both cases, these sys-
tematics can be easily handled with full forward models
of consistent shear and convergence fields.

The two dominant instrumental systematics are the
telescope’s point spread function (PSF) [14] and the ef-
fect of charge transfer inefficiency (CTI) in the charge-
coupled devices (CCDs) [14], [75]. Efforts are underway
to build pipelines which characterize these effects in up-
coming experiments (e.g [76] and Paykari et al. (in
prep)). Integrating these pipelines into ours would en-
able the propagation of instrumental errors through to
the the final parameter constraints.

On the astrophysical side, the two dominant sys-
tematics are the impact of baryons on the density
field [9] and the intrinsic alignment of galaxies [36, [77].
For Stage IV data, forward models will likely have
to be based on high-resolution N-body lensing simula-
tions [78], [79] to include the effects of baryons. Even
with today’s highest resolution simulations the impact
baryons is still uncertain [80], so it will likely be nec-
essary to optimally cut [58] or marginalize out uncer-
tain scales [80]. Meanwhile more sophisticated intrinsic
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alignment models which account for different alignment
behaviour by galaxy type [81] will need to be included.

Eventually higher-order statistics such as peak counts
and the shear bispectrum can be added. Since DELFI
automatically handles multiple summary statistics in a
unified way, the constraints will be tighter than doing
the two-point and higher-order statistic analyses sep-
arately. With a greater ability to handle systematics,
DELFI may also open up the possibility of perform-
ing inference with weak lensing flux and size magnifica-
tion [27), 82HSH].

VIII. CONCLUSION

By comparing a Gaussian likelihood analysis to a fully
likelihood-free DELFT analysis, we have found that the
Gaussian likelihood approximation will have a negligible
impact on Stage IV parameters constraints. Neverthe-
less we recommend the development of DELFI pipelines,
because they offer the possibility of performing rapid
parallel inference on full forward realizations of the shear
data. In the future, this will allow us to seamlessly han-
dle astrophysical and detector systematics — at a mini-
mal computational cost.

We have taken the first steps towards this goal by
developing a pipeline to rapidly generate realistic non-
Gaussian shear data, including the impact of intrinsic
alignments. Integrating this pipeline into pydelfi, we
confirm that pydelfi is feasible, requiring only @(1000)
simulations for Stage IV data, and we verify that the
current pipeline is accurate enough for today’s data. As
the pipeline is computationally inexpensive, in the fu-
ture it will be useful for quickly determining which sys-
tematics are important.

We conclude that DELFI has a promising future in
cosmic shear studies. Developing fast simulations that
fully integrate all relevant astrophysical, detector and
modelling effects is the primary hurdle. With so many
clear advantages over the traditional likelihood analysis,
developing these simulations should be a priority.

IX. ACKNOWLEDGEMENTS

The authors would like to thank Luke Pratley and
David Alonso. We are indebted to the developers of all
public code used in this work. PLT acknowledges the
hospitality of the Flatiron Institute. This work was sup-
ported by a collaborative visit funded by the Cosmology
and Astroparticle Student and Postdoc Exchange Net-
work (CASPEN). PLT is supported by the UK Science
and Technology Facilities Council. TDK is supported by
a Royal Society University Research Fellowship. JA was
partially supported by the research project grant “Fun-
damental Physics from Cosmological Surveys” funded
by the Swedish Research Council (VR) under Dnr 2017-
04212. BDW is supported by the Simons foundation.



The authors acknowledge the support of the Leverhume

12

Trust.

[1] R. J. Laureijs, L. Duvet, I. E. Sanz, P. Gondoin, D. H.
Lumb, T. Oosterbroek, and G. S. Criado, in Proc.
SPIE, Vol. 7731 (2010) p. 77311H.

[2] D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J. Breck-
inridge, M. Donahue, A. Dressler, B. Gaudi, T. Greene,
O. Guyon, et al., arXiv preprint arXiv:1503.03757
(2015).

[3] J. Anthony and L. Collaboration, in Proc. of SPIE Vol,
Vol. 4836, p. 11.

[4] C. Heymans, E. Grocutt, A. Heavens, M. Kilbinger,
T. D. Kitching, F. Simpson, J. Benjamin, T. Erben,
H. Hildebrandt, H. Hoekstra, et al., Monthly Notices of
the Royal Astronomical Society 432, 2433 (2013).

[5] M. Troxel, N. MacCrann, J. Zuntz, T. Eifler, E. Krause,
S. Dodelson, D. Gruen, J. Blazek, O. Friedrich,
S. Samuroff, et al., arXiv preprint arXiv:1708.01538
(2017).

[6] T. Kitching, A. Heavens, J. Alsing, T. Erben,
C. Heymans, H. Hildebrandt, H. Hoekstra, A. Jaffe,
A. Kiessling, Y. Mellier, et al., Monthly Notices of the
Royal Astronomical Society 442, 1326 (2014).

[7] H. Hildebrandt, M. Viola, C. Heymans, S. Joudaki,
K. Kuijken, C. Blake, T. Erben, B. Joachimi, D. Klaes,
L. Miller, et al., Monthly Notices of the Royal Astro-
nomical Society (2017).

[8] C. Hikage, M. Oguri, T. Hamana, S. More, R. Man-
delbaum, M. Takada, F. Kohlinger, H. Miyatake,
A. J. Nishizawa, H. Aihara, et al., arXiv preprint
arXiv:1809.09148 (2018).

[9] E. Semboloni, T. Schrabback, L. van Waerbeke,
S. Vafaei, J. Hartlap, and S. Hilbert, Monthly Notices
of the Royal Astronomical Society 410, 143 (2010).

[10] L. Fu, M. Kilbinger, T. Erben, C. Heymans, H. Hilde-
brandt, H. Hoekstra, T. D. Kitching, Y. Mellier,
L. Miller, E. Semboloni, et al., Monthly Notices of the
Royal Astronomical Society 441, 2725 (2014).

[11] A. Peel, C.-A. Lin, F. Lanusse, A. Leonard, J.-L. Starck,
and M. Kilbinger, Astronomy & Astrophysics 599, A79
(2017).

[12] B. Jain and L. Van Waerbeke, The Astrophysical Jour-
nal Letters 530, L1 (2000).

[13] A. Gupta, J. M. Z. Matilla, D. Hsu, and Z. Haiman,
Physical Review D 97, 103515 (2018).

[14] R. Massey, H. Hoekstra, T. Kitching, J. Rhodes,
M. Cropper, J. Amiaux, D. Harvey, Y. Mellier,
M. Meneghetti, L. Miller, et al., Monthly Notices of the
Royal Astronomical Society 429, 661 (2012).

[15] M. Jarvis, Mon. Not. R. Astron. Soc. 352, 338 (2004).

[16] J. Alsing, A. Heavens, A. H. Jaffe, A. Kiessling, B. Wan-
delt, and T. Hoffmann, Monthly Notices of the Royal
Astronomical Society 455, 4452 (2015).

[17] J. Alsing, A. Heavens, and A. H. Jaffe, Monthly Notices
of the Royal Astronomical Society 466, 3272 (2016).

[18] S. Dodelson, C. Shapiro, and M. White, Physical Re-
view D 73, 023009 (2006).

[19] E. Sellentin and A. F. Heavens, Monthly Notices of the
Royal Astronomical Society 473, 2355 (2017).

[20] E. Sellentin, C. Heymans, and J. Harnois-Déraps,
Monthly Notices of the Royal Astronomical Society

477, 4879 (2018).

[21] F. V. Bonassi, L. You, and M. West, Statistical appli-
cations in genetics and molecular biology 10 (2011).

[22] G. Papamakarios, D. C. Sterratt, and I. Murray, arXiv
preprint arXiv:1805.07226 (2018).

[23] Y. Fan, D. J. Nott, and S. A. Sisson, Stat 2, 34 (2013).

[24] G. Papamakarios, I. Murray, and T. Pavlakou,
“Advances in neural information processing systems,”
(2016).

[25] J. Alsing, B. Wandelt, and S. Feeney, Monthly Notices
of the Royal Astronomical Society 477, 2874 (2018).

[26] J.-M. Lueckmann, G. Bassetto, T. Karaletsos, and J. H.
Macke, arXiv preprint arXiv:1805.09294 (2018).

[27] S. F. B. W. Justin Alsing, Tom Charnock, arXiv
preprint arXiv:1903:00007 (2019).

[28] E. Ishida, S. Vitenti, M. Penna-Lima, J. Cisewski,
R. de Souza, A. Trindade, E. Cameron, V. Busti, C. col-
laboration, et al., Astronomy and Computing 13, 1
(2015).

[29] J. Alsing and B. Wandelt, Monthly Notices of the Royal
Astronomical Society: Letters 476, L60 (2018).

[30] M. LoVerde and N. Afshordi, Physical Review D 78,
123506 (2008).

[31] T. D. Kitching, J. Alsing, A. F. Heavens, R. Jimenez,
J. D. McEwen, and L. Verde, arXiv preprint
arXiv:1611.04954 (2016).

[32] P. L. Taylor, T. D. Kitching, J. D. McEwen, and
T. Tram, Phys. Rev. D 98, 023522 (2018).

[33] T. D. Kitching and A. Heavens, Physical Review D 95,
063522 (2017).

[34] L. Van Waerbeke, J. Benjamin, T. Erben, C. Heymans,
H. Hildebrandt, H. Hoekstra, T. D. Kitching, Y. Mel-
lier, L. Miller, J. Coupon, et al., Monthly Notices of the
Royal Astronomical Society 433, 3373 (2013).

[35] O. Ilbert, S. Arnouts, H. McCracken, M. Bolzonella,
E. Bertin, O. Le Fevre, Y. Mellier, G. Zamorani,
R. Pello, A. Iovino, et al., Astronomy & Astrophysics
457, 841 (2006).

[36] C. M. Hirata and U. Seljak, Physical Review D 70,
063526 (2004).

[37] N. MacCrann, J. Zuntz, S. Bridle, B. Jain, and M. R.
Becker, Monthly Notices of the Royal Astronomical So-
ciety 451, 2877 (2015).

[38] S. Joudaki, C. Blake, A. Johnson, A. Amon, M. Asgari,
A. Choi, T. Erben, K. Glazebrook, J. Harnois-Déraps,
C. Heymans, et al., Monthly Notices of the Royal As-
tronomical Society 474, 4894 (2017).

[39] J. Zuntz, M. Paterno, E. Jennings, D. Rudd, A. Man-
zotti, S. Dodelson, S. Bridle, S. Sehrish, and
J. Kowalkowski, Astronomy and Computing 12, 45
(2015).

[40] A. Lewis and A. Challinor, Astrophysics Source Code
Library (2011).

[41] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and
M. Oguri, The Astrophysical Journal 761, 152 (2012).

[42] S. Hilbert, J. Hartlap, and P. Schneider, Astronomy &
Astrophysics 536, A85 (2011).

[43] E. Krause and T. Eifler, Monthly Notices of the Royal
Astronomical Society 470, 2100 (2017).


http://dx.doi.org/10.1103/PhysRevD.98.023522

[44] H. S. Xavier, F. B. Abdalla, and B. Joachimi, Monthly
Notices of the Royal Astronomical Society 459, 3693
(2016).

[45] A. S. Mancini, P. Taylor, R. Reischke, T. Kitching,
V. Pettorino, B. Schéfer, B. Zieser, and P. M. Merkel,
Physical Review D 98, 103507 (2018).

[46] P. Castro, A. Heavens, and T. Kitching, Physical Re-
view D 72, 023516 (2005).

[47] M. Sato and T. Nishimichi, Physical Review D 87,
123538 (2013).

[48] T. Eifler, E. Krause, P. Schneider, and K. Honscheid,
Monthly Notices of the Royal Astronomical Society
440, 1379 (2014).

[49] J. Hartlap, P. Simon, and P. Schneider, Astronomy &
Astrophysics 464, 399 (2007).

[50] T. W. Anderson, T. W. Anderson, T. W. Anderson,
T. W. Anderson, and E.-U. Mathématicien, An intro-
duction to multivariate statistical analysis, Vol. 2 (Wiley
New York, 1958).

[61] T. Charnock, G. Lavaux, and B. D. Wandelt, Physical
Review D 97, 083004 (2018).

[52] M. Brown, A. Taylor, N. Hambly, and S. Dye, Monthly
Notices of the Royal Astronomical Society 333, 501
(2002).

[53] K. M. Gorski, B. D. Wandelt, F. K. Hansen, E. Hivon,
and A. J. Banday, arXiv preprint astro-ph/9905275
(1999).

[54] K. M. Gérski, E. Hivon, A. J. Banday, B. D. Wandelt,
F. K. Hansen, M. Reinecke, and M. Bartelmann, As-
trophys. J. 622, 759 (2005), arXiv:astro-ph/0409513.

[65] J.  Alsing and B. Wandelt, arXiv preprint
arXiv:1903:01473 (2019).

[66] M. Troxel and M. Ishak, Physics Reports 558, 1 (2015).

[57] A. Mead, J. Peacock, C. Heymans, S. Joudaki, and
A. Heavens, Monthly Notices of the Royal Astronomical
Society 454, 1958 (2015).

[58] P. L. Taylor, F. Bernardeau, and T. D. Kitching, Phys-
ical Review D 98, 083514 (2018).

[59] F. Bernardeau, T. Nishimichi, and A. Taruya, Monthly
Notices of the Royal Astronomical Society 445, 1526
(2014).

[60] B. D. Wandelt, E. Hivon, and K. M. Gorski, Physical
Review D 64, 083003 (2001).

[61] M. Brown, P. Castro, and A. Taylor, arXiv preprint
astro-ph/0410394 (2008).

[62] D. Alonso, J. Sanchez, and A. Slosar, Monthly Notices
of the Royal Astronomical Society (2018).

[63] D. Jeong, J. Chluba, L. Dai, M. Kamionkowski, and
X. Wang, Physical Review D 89, 023003 (2014).

[64] P. L. Taylor, T. D. Kitching, and J. D. McEwen, Phys.
Rev. D 99, 043532 (2019).

[65] A. Spurio Mancini, R. Reischke, V. Pettorino,
B. Schéfer, and M. Zumalacdrregui, Monthly Notices
of the Royal Astronomical Society 480, 3725 (2018).

[66] M. Bartelmann and P. Schneider, Physics Reports 340,
291 (2001).

[67] L. Miller, T. Kitching, C. Heymans, A. Heavens, and
L. Van Waerbeke, Monthly Notices of the Royal Astro-
nomical Society 382, 315 (2007).

[68] J. Elvin-Poole, M. Crocce, A. Ross, T. Giannantonio,
E. Rozo, E. Rykoff, S. Avila, N. Banik, J. Blazek, S. Bri-
dle, et al., Physical Review D 98, 042006 (2018).

[69] A. Kannawadi, H. Hoekstra, L. Miller, M. Viola,
I. F. Conti, R. Herbonnet, T. Erben, C. Heymans,

13

H. Hildebrandt, K. Kuijken, et al., arXiv preprint
arXiv:1812.03983 (2018).

[70] R. Houghton, Monthly Notices of the Royal Astronom-
ical Society 451, 3427 (2015).

[71] S. Samuroff, S. Bridle, J. Zuntz, M. Troxel, D. Gruen,
R. Rollins, G. Bernstein, T. Eifler, E. Huff, T. Kacprzak,
et al., Monthly Notices of the Royal Astronomical Soci-
ety 475, 4524 (2017).

[72] T. Hamana, Monthly Notices of the Royal Astronomical
Society 326, 326 (2001).

[73] J. Liu, Z. Haiman, L. Hui, J. M. Kratochvil, and
M. May, Physical Review D 89, 023515 (2014).

[74] C. Shapiro, The Astrophysical Journal 696, 775 (2009).

[75] J. Rhodes, A. Leauthaud, C. Stoughton, R. Massey,
K. Dawson, W. Kolbe, and N. Roe, Publications of the
Astronomical Society of the Pacific 122, 439 (2010).

[76] R. D. Vavrek, R. J. Laureijs, J. L. Alvarez, J. Amiaux,
Y. Mellier, R. Azzollini, G. Buenadicha, G. S. Criado,
M. Cropper, C. Dabin, et al., in Modeling, Systems En-
gineering, and Project Management for Astronomy VI,
Vol. 9911 (International Society for Optics and Photon-
ics, 2016) p. 991105.

[77] A. Kiessling, M. Cacciato, B. Joachimi, D. Kirk, T. D.
Kitching, A. Leonard, R. Mandelbaum, B. M. Schéfer,
C. Sifén, M. L. Brown, et al., Space Science Reviews
193, 67 (2015).

[78] A. Izard, P. Fosalba, and M. Crocce, Monthly Notices
of the Royal Astronomical Society 473, 3051 (2017).

[79] A. Kiessling, A. Heavens, A. Taylor, and B. Joachimi,
Monthly Notices of the Royal Astronomical Society
414, 2235 (2011).

[80] H.-J. Huang, T. Eifler, R. Mandelbaum, and S. Dodel-
son, arXiv preprint arXiv:1809.01146 (2018).

[81] S. Samuroff, J. Blazek, M. Troxel, N. MacCrann,
E. Krause, C. Leonard, J. Prat, D. Gruen, S. Dodel-
son, T. Eifler, et al., arXiv preprint arXiv:1811.06989
(2018).

[82] J. Alsing, D. Kirk, A. Heavens, and A. H. Jaffe,
Monthly Notices of the Royal Astronomical Society
452, 1202 (2015).

[83] C. A. Duncan, B. Joachimi, A. F. Heavens, C. Heymans,
and H. Hildebrandt, Monthly Notices of the Royal As-
tronomical Society 437, 2471 (2013).

[84] E. M. Huff and G. J. Graves, The Astrophysical Journal
Letters 780, L16 (2013).

[85] H. Hildebrandt, L. van Waerbeke, D. Scott,
M. Béthermin, J. Bock, D. Clements, A. Conley,
A. Cooray, J. Dunlop, S. Eales, et al., Monthly Notices
of the Royal Astronomical Society 429, 3230 (2013).

[86] A. Heavens, J. Alsing, and A. H. Jaffe, Monthly No-
tices of the Royal Astronomical Society: Letters 433,
L6 (2013).


http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1086/427976
http://arxiv.org/abs/arXiv:astro-ph/0409513
http://dx.doi.org/10.1103/PhysRevD.99.043532
http://dx.doi.org/10.1103/PhysRevD.99.043532

	Cosmic Shear: Inference from Forward Models
	Abstract
	Introduction
	Cosmic Shear Formalism and the Lognormal Field Approximation
	The Lensing Spectrum
	Intrinsic Alignments
	The Lognormal Field Approximation
	Band-limit Bias from the Lognormal Field

	Cosmological Parameter Inference
	Gaussian likelihood Analysis
	The Potential Insufficiency of the Gaussian likelihood Approximation in Cosmic Shear
	Density-estimation Likelihood-free Compression
	Density-estimation Likelihood-free Inference

	The Full Forward Model
	The Mask
	Shot-Noise Model
	Forward Modelling the Mask
	Mimicking a Stage IV Experiment

	Prospects for Stage III Data
	Validating the Lognormal Simulations
	Model Improvements

	Testing the Gaussian Likelihood Approximation
	Modeling Choices In Pipeline II
	Impact of the Gaussian Likelihood Approximation

	Future Prospects
	Conclusion
	Acknowledgements
	References


