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Abstract

High-dimensional inverse problems are central to modern scientific discovery, yet the transition to the exascale
era presents significant computational challenges. As instruments like the Square Kilometre Array (SKA) produce
data at unprecedented volumes, traditional Bayesian inference via Markov chain Monte Carlo (MCMC) becomes
computationally infeasible. While deep learning offers a powerful alternative for reconstructing complex signals,
standard black-box models often lack the necessary physical consistency and rigorous uncertainty quantification
required for scientific analysis. We synthesize disparate trends in the literature to chart a path toward a unified
framework for high-dimensional uncertainty quantification with deep data-driven Al priors. We evaluate state-of-
the-art methods against the competing demands of computational efficiency, robustness, reconstruction fidelity, and
statistical reliability, finding that no single existing method simultaneously satisfies all these criteria. Consequently,
we advocate for a trustworthy framework that integrates efficient physics-informed architectures to ensure data
consistency, expressive deep data-driven artificial intelligence (Al) priors to capture complex signal structure, and
scalable uncertainty quantification strategies. Crucially, we highlight the use of post-hoc calibration via conformal
prediction to bridge the reliability gap, transforming heuristic uncertainty estimates into rigorous statistical bounds.
We conclude that combining physics-informed generative unrolled networks with conformal calibration offers a
promising path toward robust, scalable, and scientifically reliable imaging in the exascale regime.

1. INTRODUCTION

High-dimensional inverse problems are ubiquitous in modern science, from medical imaging to astrophysics. As
we enter the “exascale” era, instruments are producing data at unprecedented volumes and resolutions. A prime
example is the Square Kilometre Array (SKA), which will generate petabytes of visibility data to reconstruct
gigapixel images of the radio sky [40]. In these regimes, the sheer scale of both the data volumes and parame-
ter spaces, and the cost of the measurement operator, renders traditional computational methods inadequate. We
require new methods that are computationally efficient, physics-informed, expressive, and able to quantify uncer-
tainties.

We focus on the ubiquitous setting of linear inverse problems of the form y = ®x + n, where y € R represents
the observed data of dimension M, x € RY is the underlying signal to be reconstructed, of dimension N, ® :
RY — RM is the measurement operator, and n € RM denotes noise (extensions to non-linear problems are
also possible). Prominent examples of linear inverse problems include radio interferometric imaging and weak
gravitational lensing mass-mapping in astronomy, alongside magnetic resonance imaging (MRI) and computed
tomography (CT) in medical imaging.

In many scientific applications, such as those mentioned above, inverse problems are ill-conditioned and ill-posed,
in the sense of Hadamard [19]. That is, a solution may not exist, or may not be unique, or may not be stable
with respect to the data. Consequently, we must inject prior information to regularize the problem. Moreover,
quantifying uncertainty is thus of critical importance. In fields like astronomy and medical imaging, a single
“best guess” point estimate is insufficient. Scientific inquiry requires quantifying the reliability of reconstructed
structures to determine whether a feature is a physical reality or an artifact of the reconstruction. These dual
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requirements of regularization for stability and uncertainty quantification for scientific rigour, strongly motivate
the Bayesian inference paradigm, where the goal is not merely a single image but the characterization of the full
posterior distribution p(x|y).

Ideally, one would explore the full posterior distribution using Markov chain Monte Carlo (MCMC) sampling [e.g.
30,128]]. However, for modern high-dimensional problems the computational cost of standard MCMC is prohibitive
due to three compounding factors: (i) the high-dimensional parameter space, where the number of parameters N
of x is very large (e.g., gigapixel images); (ii) the large data volume, where the number of measurements M of y is
massive (e.g., petabytes of visibility data); and (iii) the costly measurement operator ®, which is computationally
expensive to evaluate (e.g., non-uniform FFTs with modelling to account for wide-field effects and non-coplanar
baselines in radio interferometry [34}35])). For instance, radio interferometric imaging with the SKA hits all three
bottlenecks simultaneously, rendering standard MCMC approaches computationally infeasible.

As instruments become more powerful, capturing higher resolutions and more complex structures, the simple,
hand-crafted priors of the past (e.g., sparsity, wavelets, total variation) are no longer sufficient. Reconstructing
these complex images requires more expressive data-driven priors, a task where artificial intelligence (Al) excels.
Deep data-driven priors offer superior reconstruction fidelity compared to classical methods, capturing intricate
signal structures that analytical priors fail to model.

To address the challenges of modern, highly computationally demanding inverse problems, which are exacerbated
at the exascale as demonstrated by the SKA, we advocate for approaches that satisfy four simultaneous criteria:

1. Computationally Efficient: Methods must scale to high dimensions, typically relying on optimization
rather than full MCMC.

2. Physics-Informed: The forward operator ® must be explicitly integrated to ensure data consistency and
physical plausibility, allowing methods to generalize across varying measurement configurations.

3. Expressive Data-Driven Al Priors: Leverage deep learning to enhance reconstruction fidelity beyond
hand-crafted priors such as, e.g., wavelet sparsity.

4. Quantified Uncertainties: Go beyond point estimates to provide rigorous error bars or confidence intervals
that are reliable.

In this article we review the state-of-the-art through the lens of these four competing requirements. To date, no
single method appears to simultaneously satisfy all these criteria. Consequently, this article serves not merely as a
review but as a synthesis of disparate trends in the literature, charting a path toward a unified framework for high-
dimensional uncertainty quantification with deep data-driven Al priors. We begin by reviewing reconstruction
methods to solve the inverse problem (Section [2), proceed to discuss scalable uncertainty quantification strategies
(Section [3), and then address the critical issue of trustworthiness via coverage testing and calibration (Section [).
Finally, concluding remarks are given in Section 5]

2. RECONSTRUCTION: SOLVING THE INVERSE PROBLEM

We review contemporary data-driven approaches for solving high-dimensional inverse problems, focusing initially
on methods designed to recover accurate point estimates of the underlying signal. We trace the evolution of these
techniques from purely data-driven “black-box” models to hybrid architectures that explicitly integrate the physical
measurement operator. By combining the expressivity of deep learning with the robustness of physical models,
these strategies aim to overcome the limitations of classical regularization while scaling to the data volumes of the
exascale era. A diagrammatic overview of the various approaches is illustrated in Figure[l]

2.1 Fully Learned Reconstruction (Pre-/Post-Processing)

The most straightforward application of deep learning to inverse problems is to learn a direct mapping from the
observed data y, or more commonly a proxy such as the “dirty” image Zginy = ®1y, to the underlying signal
(1, 21]]. Architectures like the U-Net [38]] are typically employed to approximate the inverse mapping Tgiry — &,
effectively treating the reconstruction as a learned denoising or artifact-removal task. This approach is computa-
tionally efficient, often requiring only a single network pass and one application of the adjoint operator ®f, making
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Figure 1: Schematic overview of deep learning-based imaging methods for inverse problems. (a) Fully learned
reconstruction: A neural network (e.g., U-Net) maps a proxy reconstruction (such as the dirty image, ®'y) to the
estimated signal &, with the measurement operator used only implicitly during training. (b) Plug-and-Play (PnP):
Iterative algorithms alternate between explicit physics-based data consistency and a learned denoiser, treating
the network as a proximal operator replacement. (c) Unrolled: The iterations of an optimization algorithm are
“unfolded” into a fixed-depth neural network, often allowing parameters and proximal operators to be learned
from data, and explicitly incorporating the measurement operator at each layer. Generative extensions: Genera-
tive models (e.g., GANs, diffusion models) can be incorporated for all approaches, i.e., post hoc (direct mapping
from the dirty image or intermediate reconstructions to posterior samples), as the denoising step in PnP, or within
unrolled architectures (e.g., generative GU-Nets), combining physical data consistency with expressive learned
priors.

it highly attractive for real-time applications like the SPIDER instrument [33} 25] or large-scale surveys like those
expected with the SKA [26].

However, these methods face significant limitations. First, they are generally restricted to the specific training
conditions; a network trained on a fixed telescope configuration (e.g., a specific uv-coverage) may fail to generalize
to observations with different sampling patterns, leading to poor performance when the forward operator varies
[26]]. Second, because the measurement operator ¢ is not explicitly incorporated into the inference step (only
implicitly during training), there is no guarantee of data consistency; the reconstructed Z may not satisfy y ~ ®z.
This “black box” nature can result in hallucinations or the removal of faint physical structures not well-represented
in the training set.

2.2 Plug-and-Play (PnP)

Plug-and-Play (PnP) approaches offer a flexible framework that bridges the gap between model-based optimization
and deep learning. In traditional iterative algorithms, such as the Alternating Direction Method of Multipliers
(ADMM) or Forward-Backward Splitting [13]], the solution is found by alternating between a data-fidelity step and
a regularization step. The PnP approach replaces the proximal operator associated with the explicit prior (e.g., total
variation or /7 sparsity) with a learned off-the-shelf denoiser, such as a deep neural network [45]]. This substitution
effectively injects a learned data distribution as the prior without requiring an explicit analytical formulation.

A primary benefit of the PnP framework is the decoupling of the prior from the forward measurement operator.
Because the denoiser is trained independently of the specific inverse problem, it remains robust to changes in
the physics of the instrument, such as varying telescope configurations in radio interferometry. This contrasts
with fully learned reconstruction methods, which often fail to generalize when the measurement operator deviates
from the training distribution. Furthermore, recent theoretical developments have addressed the stability of these
heuristic methods [32]]. By constraining the deep data-driven prior, for instance, by enforcing a Lipschitz constant
strictly less than unity via spectral normalization, it is possible to prove fixed-point convergence for the iterative
scheme [39].

Despite these advantages, PnP methods face a significant computational bottleneck. The iterative nature of the
algorithm typically requires hundreds or even thousands of iterations to reach convergence [43, Table 1]. Since
each iteration involves applying the forward measurement operator and its adjoint, due to the likelihood gradient
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calculation, the total computational cost can be prohibitive for high-dimensional exascale problems where the
operator itself is expensive to evaluate.

2.3 Unrolled architectures

Unrolled networks represent a hybrid approach that unfolds the iterations of a classical optimization algorithm,
such as ADMM or Forward-Backward Splitting, into a fixed number of layers in a deep neural network [18]. By
interpreting the iteration index as a layer index, these architectures can be trained end-to-end, allowing the network
to learn optimal step sizes and regularization parameters (or even the proximal operators themselves) from data.
However, these approaches face significant challenges: they typically require the measurement operator to be
differentiable, which may not always be available for complex instrument models, and they necessitate multiple
expensive evaluations of the measurement operator for a single network pass during training, resulting in high
computational and memory costs.

To overcome the significant computational cost of standard unrolled approaches, a Gradient U-Net (GU-Net) can
be considered, where the measurement operator is effectively applied at different resolutions inside the U-Net
architecture [25) 26]. This multiscale integration significantly reduces the computational burden, as only two full-
resolution measurement operator applications are required during the network pass. At each layer, the network
ingests not only the current image representation but also the gradient of the data fidelity term, ensuring data
consistency is actively enforced.

2.4 Generative AI Extensions

Generative models offer a powerful mechanism to enhance reconstruction fidelity by leveraging deep learning to
capture the complex, non-Gaussian statistics of the underlying signal. Unlike simple analytical priors, generative
models, such as Generative Adversarial Networks (GANS) [[16,15] or diffusion models [20}41]], learn an expressive
distribution from high-quality training data, enabling the recovery of intricate structures that traditional methods
often smooth over. While their primary advantage here is the superior quality of the point estimates they can
produce, these models also naturally support the generation of multiple samples, offering a potential route to
uncertainty quantification (as discussed further in Section[3).

Generative Post-Processing. The most direct extension of learned reconstruction is to condition a generative
model, such as a conditional GAN [1]], on the dirty image or a preliminary reconstruction. In this framework,
the generator learns a mapping from the observed data and a latent noise vector to a sample from the posterior
distribution. For example, Whitney et al. [46] demonstrate this approach for weak gravitational lensing mass-
mapping, using a conditional GAN to produce posterior samples that capture non-Gaussian statistics. To prevent
mode collapse, a common failure mode where the generator ignores the latent code and produces a single deter-
ministic output, which can be particularly problematic in the context of inverse problems, regularization strategies
are essential. The regularization strategy of Bendel et al. [[7]] is adopted by Whitney et al. [46], which explicitly
penalizes the lack of diversity in generated samples, ensuring that the first and second moments of the posterior
are correctly recovered in idealised settings. While computationally efficient, post-processing methods based on
generative models may be less robust to shifts in the measurement operator, as the physics is not explicitly encoded
in the generation process.

Generative Plug-and-Play. A more physically rigorous approach integrates generative models as priors within
iterative schemes. Diffusion models, or score-based generative models, have emerged as powerful data-driven
priors. By learning the score function V, log p(x) of the signal class, these models can be combined with the
likelihood score V, log p(y|z) to sample from the approximate posterior [12} [14] following Langevin dynamics.
This “Generative PnP” approach has been successfully applied to radio interferometry [15] and mass-mapping
[36]. These methods offer high reconstruction quality and can handle complex, non-linear measurement operators.
However, they inherit the computational cost of iterative schemes, often requiring thousands of likelihood gradient
evaluations to generate a single sample, which can be prohibitive for computationally demanding problems.

Generative Unrolled. To bridge the gap between the efficiency of direct mapping and the rigor of iterative sam-
pling, recent work has proposed integrating generative models into unrolled architectures. A prime example is the
RI-GAN framework [27]], which builds a conditional GAN upon a Gradient Unrolled Network (GU-Net) [25} [26]]
and again adopts the regularization strategy of Bendel et al. [7]. In this architecture, the generator is not a stan-
dard U-Net but a physics-informed unrolled network that explicitly incorporates the measurement operator (or
its approximation) at multiple scales. This design ensures data consistency by construction while leveraging the
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adversarial training to capture complex signal priors. The result is a method that is both expressive and extremely
fast, capable of generating independent posterior samples with only a few evaluations of the forward operator.

3. UNCERTAINTIES: SCALABLE UNCERTAINTY QUANTIFICATION

Having reviewed methods for point estimation, we now turn to the critical challenge of quantifying uncertainty in
high-dimensional inverse problems. In scientific applications, a single reconstructed image is often insufficient;
rigorous error bars are required to distinguish physical signals from reconstruction artifacts. We review strategies
that scale to the exascale regime, ranging from fast heuristic approximations, to approximate posterior sampling,
to methods that exploit symmetry.

3.1 Learned Summary Statistics

A computationally efficient approach to uncertainty quantification involves training deep neural networks to output
pixel-wise summary statistics directly. This strategy treats uncertainty estimation as a supervised learning problem,
employing distinct loss functions to capture different heuristic notions of uncertainty.

One common method is to regress the magnitude of the residual, where the network learns to predict the absolute
error |y — ¢| at each pixel [3]. This provides a direct estimate of the reconstruction error but typically yields
symmetric intervals that may not capture complex, asymmetric posterior distributions . Alternatively, one can
adopt a parametric approach, such as modeling each pixel as a Gaussian distribution [29]. In this case, the network
outputs both a mean and a standard deviation, trained by minimizing the negative Gaussian log-likelihood. The
problem can also be formulated as a classification task, where the network predicts a softmax distribution over
discrete pixel value bins, effectively learning a histogram at each pixel [8]. Another robust approach is pixel-wise
quantile regression [23, 22} [37], where the network estimates specific lower and upper quantiles (e.g., for a 90%
prediction interval) by minimizing the pinball loss.

While these methods are attractive for their speed, requiring only a single forward pass during inference, they
remain inherently heuristic. The predicted standard deviations or quantile intervals are not guaranteed to be statis-
tically valid, particularly when the test data distribution shifts from the training set. Consequently, these learned
statistics should be viewed as heuristic signals of uncertainty that require subsequent calibration to provide rigorous
coverage guarantees.

3.2 Exploiting Convexity

Before the advent of deep learning, significant progress was made in uncertainty quantification by exploiting the
mathematical properties of convex optimization with analytical priors. While full posterior sampling via MCMC
provides a gold standard, as discussed it is often computationally prohibitive for high-dimensional imaging [9].
An alternative strategy, established by Pereyra [31]], leverages the geometric properties of high-dimensional prob-
ability distributions. Pereyra [31] showed that for log-concave posterior distributions, typically resulting from
convex priors such as ¢; sparsity, the probability mass concentrates heavily around the mode. Consequently, the
maximum a posteriori (MAP) estimate acts as an accurate surrogate for the posterior mean, and rigorous highest
posterior density (HPD) credible regions can be approximated directly from the MAP solution using theoretical
concentration bounds. Cai et al. [10] leveraged this result to also construct local credible intervals and successfully
applied the framework to radio interferometry using sparse wavelet priors, demonstrating that rigorous error bars
and hypothesis tests could be computed orders of magnitude faster than by MCMC.

To extend this rigorous and efficient uncertainty quantification framework to the data-driven Al setting presents
challenges. Standard deep learning priors (e.g., denoisers or GANs) generally define non-convex potentials, break-
ing the log-concavity guarantee required for the concentration of measure results to hold. To bridge this gap, one
requires a learned prior that is both expressive, convex and also exhibits an explicit potential. The QuantifAl ap-
proach [24]] extends this framework to the data-driven Al setting by parameterizing the regularization potential with
an input convex neural network (ICNN) [17]]. By ensuring the learned prior is convex, and assuming a log-concave
likelihood (e.g., Gaussian noise with a linear measurement operator), the resulting posterior is guaranteed to be
log-concave. This allows the concentration of measure theory from Pereyra [31] to be applied to a deep learning
model.

In this framework, uncertainty is quantified through hypothesis testing, where one can statistically test whether
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specific structures in the reconstructed image are significant or consistent with noise, and local credible intervals.
One can compute rigorous Bayesian error bars for individual pixels (or superpixels) without sampling. By defining
the local interval as the range of values a pixel can take while the full image remains within the global HPD
credible region, the problem is recast as a constrained optimization task [10} 24]. This enables the computation
of pixel-wise uncertainties at multiple scales with orders of magnitude fewer likelihood evaluations than MCMC
sampling.

The primary advantages of this method are its scalability and theoretical guarantees. It provides theoretically
grounded Bayesian uncertainties with the speed of convex optimization, while also guaranteeing convergence of
the underlying optimization algorithms. However, the requirement of convexity inevitably limits the expressivity of
the prior compared to non-convex generative models. Moreover, the approach is restricted to forms of uncertainty
quantification that can be derived from HPD regions, precluding access to the full posterior distribution. This
represents a clear trade-off between theoretical rigour on the one hand, and representational power and flexibility
on the other.

3.3 Generative Posterior Sampling

While QuantifAl provides a rigorous and scalable path to uncertainty quantification by exploiting convexity, it
inevitably restricts the expressivity of the prior and limits the forms of uncertainty that can be quantified. To capture
more complex, non-convex signal structures, and provide more flexible uncertainty quantification, we must turn
to generative models. The goal here shifts from finding a single best reconstruction estimate that is supplemented
with various quantified uncertainties, to instead generating samples from the full posterior distribution p(z|y). This
allows for the exploration of multimodal distributions and the characterization of complex uncertainties that simple
summary statistics cannot capture.

Conditional Generative Adversarial Networks. A powerful approach to achieve fast posterior sampling is to
train a conditional GAN, as discussed above. In this framework, the generator learns a mapping from the observed
data y (or a proxy like the dirty image) and a latent noise vector z to a sample & ~ p(z|y). By sampling differ-
ent z, one can rapidly generate multiple independent realizations of the signal that capture the learned posterior
distribution.

This strategy can be deployed in two primary ways, as discussed briefly above. First, as a stochastic post-processor,
where the model refines a preliminary reconstruction. For instance, Whitney et al. [46] apply this to weak gravita-
tional lensing mass-mapping (MM-GAN), demonstrating the ability to recover non-Gaussian statistics effectively
and extremely computationally efficiently (an approximate posterior sample can be generated in less than a second
[46], whereas an alternative diffusion approach requires of order 10 minutes to generate a single posterior sample
[36]). Second, and more robustly, the generative model can be integrated into an unrolled physics-informed archi-
tecture. The RI-GAN framework of Mars et al. [27] exemplifies this by building a conditional GAN on top of a
Gradient U-Net (GU-Net). Here, the generator explicitly incorporates the measurement operator at multiple scales,
ensuring that the generated samples are not only realistic but also consistent with the observed data.

A historic challenge with GANs is mode collapse, where the generator ignores the latent code and produces deter-
ministic outputs. To address this, Bendel et al. [7]] propose a regularized conditional GAN that includes specific
penalties to enforce diversity. Crucially, they provide theoretical guarantees that their formulation recovers the
correct first and second moments (mean and variance) of the posterior distribution in the idealised Gaussian set-
ting, offering a degree of statistical rigour often missing in adversarial methods. This regularization approach is
integrated in both the MM-GAN [46] and RI-GAN [27]] frameworks discussed above.

Diffusion Models. Diffusion models, or score-based generative models, represent the current state-of-the-art in
terms of generative image fidelity. By learning the score function of the data distribution, they allow for sampling
from the posterior via Langevin dynamics [[12} |36} [15|14]. While these methods produce samples of exceptional fi-
delity and can handle complex non-linear inverse problems, they are computationally expensive, typically requiring
hundreds to thousands of iterations for a single sample. This makes them less suitable for the real-time or highly
computationally demanding processing required by exascale experiments compared to the single-pass efficiency
of GANSs. Furthermore, rigorous posterior sampling faces the challenge of an intractable likelihood [12,[14]. The
reverse diffusion process requires the score of the likelihood V., log p(y|z:) at each noise level ¢, but the mea-
surement model is defined only for the clean signal z¢. Evaluating p(y|x;) formally requires marginalising over
all possible clean images xzy, which is computationally infeasible. To circumvent this, methods typically employ
approximations that replace the integral with a likelihood evaluated at a denoised estimate Zo(x;), introducing a
trade-off between theoretical exactness and tractability [[12, [14]].
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3.4 Exploiting Symmetry

A fundamentally different approach to uncertainty quantification is proposed by Tachella and Pereyra [42], which
avoids the need for explicit Bayesian modeling or posterior sampling entirely. Instead, this method, termed the
equivariant bootstrap, leverages the inherent symmetries of the signal class to construct a frequentist confidence
region. It is a “method agnostic” wrapper that can be applied to any reconstruction algorithm, whether a simple
unregularized inverse or a complex deep learning model, to provide rigorous high-dimensional error bars.

The core concept relies on group invariance. In many imaging problems, the set of plausible signals is invariant
under a group of transformations (G, such as rotations or translations (e.g., a rotated image of the sky is still a
valid image of the sky). However, the measurement operator @ is typically not equivariant with respect to these
transformations; for instance, a radio interferometer observes different spatial frequencies as the sky rotates relative
to the baseline distribution. The equivariant bootstrap exploits this property to probe the nullspace of the operator.

The procedure generates bootstrap samples by transforming the data and estimates. Specifically, for a given
reconstruction Z(y), one draws a random transformation g € G and generates a synthetic measurement §j, =
®T,2(y) + n, where T}, is the operator corresponding to the transformation g and n is a new noise realisation.
The reconstruction method is then applied to this synthetic data to obtain £(g,), which is subsequently inversely
transformed: & = T,-1&(yy). The variation in these bootstrapped samples {Z} provides a proxy for the estima-
tion error. For example, Cherif et al. [11]] have effectively applied the equivariant bootstrap in a simplified radio
interferometric imaging setting, demonstrating its ability to quantify uncertainty in this challenging setting.

Standard parametric bootstrapping typically underestimates uncertainty in ill-posed problems because the esti-
mator Z(y) is often biased towards the subspace where ® is well-conditioned, failing to explore the nullspace.
By introducing the group transformation, the equivariant bootstrap effectively “rotates” the problem, forcing the
measurement operator to sample different components of the signal, thereby mitigating this bias.

The primary benefit of this approach is its ability to produce accurate, high-dimensional confidence regions with-
out the computational burden of MCMC or the training complexity of generative models. It is also applicable in
unsupervised settings where ground truth data is unavailable. However, the method relies on the existence of a
known symmetry group for the signal class, and its effectiveness depends on the interplay between these symme-
tries and the measurement operator; ideally, the operator should not be equivariant to the group transformations to
maximize nullspace exploration.

4. TRUSTWORTHINESS: COVERAGE TESTING AND CALIBRATION

As we transition to using deep data-driven priors in high-stakes scientific applications, a critical question arises:
can we trust the “black box”? While the methods discussed in Section [3|offer mechanisms to quantify uncertainty,
ranging from heuristic statistics to full approximate posterior sampling, the mere production of a probability dis-
tribution does not guarantee its validity. Many techniques rely on heuristics, such as learned summary statistics,
or fail to provide comprehensive theoretical guarantees. For example, regularized conditional GANs offer assur-
ances primarily within idealized Gaussian settings, while diffusion posterior sampling contends with intractable
likelihoods. Conversely, approaches that do secure rigorous guarantees, like the QuantifAl framework, typically
require restricting the flexibility of the prior or the forms of uncertainty quantification available. In order to adopt
more the expressive and flexible uncertainty quantification approaches discussed, we need a mechanism to assess
the trustworthiness of our models and to ensure that our uncertainty estimates are reliable. This brings us to the
crucial final stage of our proposed framework: rigorous coverage testing and calibration.

4.1 The Reliability Gap

There exists a fundamental tension between the Bayesian interpretation of probability as a measure of subjec-
tive belief and the frequentist requirement for long-run frequency guarantees. In an ideal world where the model
perfectly matches reality (the “M-complete” setting), Bayesian credible regions naturally possess frequentist cov-
erage. However, in practice, our models, especially deep generative priors, are approximations.

Recent empirical studies have highlighted a significant “reliability gap” in modern Bayesian imaging. Thong
et al. [44] conducted an extensive evaluation of state-of-the-art Bayesian methods, assessing whether the reported
probabilities are meaningful under replication. Their findings are striking: methods that achieve the highest recon-
struction fidelity, such as diffusion models, can be dangerously overconfident. For instance, credible regions that



44th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering 8

claimed to capture 99% of the probability mass were found to contain the ground truth in less than 2% of trials
[44]. Conversely, simpler methods like empirical Bayes with total variation priors, while producing lower fidelity
images, were found to be conservative, often over-estimating uncertainty. This reveals a disconnect between esti-
mation accuracy (e.g., PSNR) and uncertainty quantification reliability, underscoring the danger of assuming that
better images imply better error bars.

Consequently, to deploy these powerful methods in practice, we must adopt a two-stage trustworthiness protocol:
first, we must rigorously fest the coverage probabilities of our method to diagnose any reliability gaps; second, we
must calibrate the uncertainties to ensure they deliver the advertised frequentist coverage.

4.2 Coverage Testing

To bridge the reliability gap, we must rigorously test whether our Bayesian credible regions are statistically valid.
Coverage testing evaluates this by checking the empirical frequency with which the ground truth lies within the
predicted credible regions over a large set of test examples.

Marginal Coverage. Marginal coverage assesses reliability at the level of individual pixels or parameters. For an
image reconstruction task, this involves checking whether the true value of a pixel falls within its predicted 1 — «
credible interval (1—«)% of the time, averaged over all pixels and all test images. Angelopoulos et al. [3] formalize
this for image-to-image regression, advocating for methods that control the risk (e.g., the expected fraction of
uncovered pixels) at a user-specified level (as discussed further in the next subsection). This approach provides
fine-grained, interpretable error bars for local features and is often computationally straightforward to evaluate.
However, by focusing on individual pixels, it may not explicitly capture the joint statistics of the full posterior,
meaning that while each pixel is well-calibrated in isolation, the coherent spatial structures in the sampled images
might not reflect the true global uncertainty.

Global Coverage. Global coverage testing, conversely, assesses whether the entire ground truth image lies within a
high-dimensional credible region C,, (such as the HPD region) with probability 1—c«. Thong et al. [44] demonstrate
that this provides a holistic test of the posterior geometry, sensitive to correlations that marginal checks might
miss. While this offers a rigorous check of the full high-dimensional distribution, global metrics can be difficult
to interpret physically—a failure in global coverage does not necessarily pinpoint which features are unreliable.
Furthermore, passing a marginal coverage test does not guarantee global coverage, and vice versa; thus, these two
perspectives offer complementary, rather than competing, views on trustworthiness.

4.3 Calibration with Conformal Prediction

Once coverage testing has diagnosed the reliability gap, the final step is to fix it. This is the domain of calibra-
tion. While we cannot easily force a deep generative model to learn the perfect posterior, we can apply post-hoc
corrections to its uncertainty estimates to ensure they satisfy frequentist guarantees.

Conformal prediction (2 4] offers a powerful, distribution-free framework for this task. The core idea is to use
a held-out calibration dataset to compute a scalar correction factor A that adjusts the size of the predicted cred-
ible regions. For example, in the context of image-to-image regression, Angelopoulos et al. [3]] introduce Risk-
Controlling Prediction Sets (RCPS) [6]. This method allows a user to specify a tolerable error rate § (e.g., ensuring
that no more than 10% of pixels are incorrectly excluded from the credible intervals). The algorithm then uses the
calibration data to find the smallest A such that the risk is controlled at level o with high probability (e.g., 1 — 9).

This approach transforms “heuristic” uncertainty maps into “rigorous” statistical bounds. A deep network might
output a point estimate p and a heuristic standard deviation o that is uncalibrated. Conformal prediction allows
us to wrap this output in a rigorous interval [ — Ao, p + Ao] that is guaranteed to contain the ground truth with
the specified probability, regardless of the distribution of the data or the architecture of the network. This provides
a safety layer for scientific applications of Al, ensuring that even if the model is imperfect, its error bars are
trustworthy. Crucially, while the validity of these guarantees holds regardless of the accuracy of the initial heuristic
uncertainty, the efficiency of the resulting prediction sets does not. If the initial estimates are poor, conformal
calibration will simply inflate the intervals to be large enough to satisfy the coverage requirement, resulting in
uninformative error bars. Thus, accurate initial uncertainty estimation remains vital for producing tight, adaptive,
and scientifically useful constraints. However, this guarantee comes with a caveat: it requires an exchangeable
calibration dataset that is representative of the test distribution. If the distribution shifts (e.g., observing a new
type of galaxy not seen during calibration), the guarantees may no longer hold, highlighting the continued need for
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robust out-of-distribution detection.

5. SUMMARY & OUTLOOK

We have reviewed the landscape of high-dimensional uncertainty quantification, tracing the evolution from black-
box deep learning to rigorous, physics-informed frameworks. The transition from point estimation to trustworthy
UQ is essential for the scientific utility of Al, particularly in computationally demanding settings where MCMC
sampling is infeasible due to the high-dimensional parameter spaces of large images, massive data volumes, and
computationally costly measurement operators.

Contemporary methods generally face a trilemma between computational efficiency, reconstruction fidelity, and
statistical rigour. While convex approaches like QuantifAl offer rigour and speed, they limit expressivity. Con-
versely, generative sampling, such as diffusion models, offers high fidelity but often at a prohibitive computational
cost. We argue that the optimal strategy for highly computationally demanding problems lies in the intersection
of these fields. By combining physics-informed unrolled architectures, with generative models and conformal pre-
diction, we can satisfy the four key criteria identified in the introduction: (i) computational efficiency is achieved
through unrolled optimization; (ii) the approach is physics-informed by design; (iii) expressive generative data-
driven Al priors are leveraged to capture complex signal structure; and (iv) rigorous quantified uncertainties are
provided via conformal calibration.

Looking forward, three key challenges remain. First, conformal guarantees rely on exchangeability, so developing
methods that remain robust or fail gracefully when the test data drifts from the calibration distribution is criti-
cal, for example when discovering new physical phenomena. Second, the next generation of priors may move
beyond specific datasets to large-scale foundation models. Adapting these universal priors to specific physical
measurement operators while maintaining calibration will be a key frontier. Finally, calibrated images are often in-
termediate products. The field must move towards propagating these rigorous pixel-level uncertainties into reliable
constraints on high-level scientific parameters.

By combining the expressivity of Al, the robustness of physics, and the rigour of conformal calibration, we can
enable a new era of trustworthy scientific discovery for highly computationally demanding inverse problems.
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