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Abstract—This paper presents single and multi-shell sampling
schemes for diffusion MRI that are optimal in terms of the
number of measurements whilst enabling accurate and robust
reconstruction of the diffusion signal. In diffusion MRI, it is
paramount that the number of samples is as small as possible
in order that scan times are practical in a clinical setting. The
proposed schemes use the optimal number of measurements in
that the number of samples is equal to the number of degrees
of freedom in the orthonormal bases used for reconstruction.
Both the single and multi-shell schemes have novel reconstruction
algorithms which use smaller subsystems of linear equations
compared to the standard regularized least-squares method
of reconstruction. The smaller matrices used in these novel
reconstruction algorithms are designed to be well-conditioned,
leading to improved reconstruction accuracy. Accurate and
robust reconstruction is also achieved through incorporation
of regularization into the novel reconstruction algorithms and
using a Rician or non-central Chi noise model. We quantitatively
validate our single and multi-shell schemes against standard least-
squares reconstruction methods to show that they enable more
accurate reconstruction when the optimal number of samples
are used. Human brain data is also used to qualitatively evaluate
reconstruction.

Index Terms—diffusion magnetic resonance imaging, sampling
schemes, multi-shell acquisition, spherical harmonics, spherical
polar Fourier basis, regularization, Rician noise, non-central Chi
noise.

I. INTRODUCTION

Diffusion MRI is the preferred imaging modality for study-
ing white-matter connectivity in the brain and diagnosing
white-matter disorders. Measurements of the diffusion signal
are normally collected on single or multiple shells in q-
space. It is necessary that the number of samples is as
small as possible in order that scan times are suitable for a
clinical setting, where acquisition time and cost need to be
minimized [1], [2].
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the Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland.

E-mail corresponding author: alice.bates@anu.edu.au

From the q-space samples, the diffusion signal can be re-
constructed within every voxel by expansion in an orthonormal
basis. After reconstruction, features of the diffusion signal
such as generalized fractional anisotropy [3], [4], orientation
distribution function (ODF) [3], [5] and fiber ODF [6] can then
be estimated. Connectivity of the brain can then be determined
using tractography which uses the intravoxel fiber orientation,
determined from the peaks of the ODF, in neighbouring voxels
to determine the direction of fibers in the white-matter. For
feature extraction and tractography to perform well, it is
paramount that the sampling scheme allows for the diffusion
signal to be accurately reconstructed within each voxel.

Accurate reconstruction requires that the sampling grid is
designed such that the number of samples is at least equal
to the number of coefficients in the orthonormal basis, which
we define as the optimal number of samples, and that their
structure enables an accurate reconstruction transform to be
defined [7]. For accurate reconstruction of the diffusion signal,
the effect of noise on the signal also needs to be modelled and
its contribution removed from the measurements. Although the
noise associated with the signal in each coil is Gaussian, the
distribution of the diffusion signal depends on factors such
as how the signals from these coils are combined and the
number of coils. In order to remove phase related artefacts,
often the magnitude of the diffusion MRI signal is taken. The
Rician distribution arises when the magnitude of the complex
signal from one coil or the magnitude of the sum of the
signals from multiple coils is taken, while the non-central
Chi distributions (NCC) results from taking the root sum-of-
squares of the complex signal from the different coils [6], [8],
[9]. NCC and Rician distributions are well-approximated as
Gaussian if the signal-to-noise (SNR) of the data is high; when
this is not the case, treating the noise as Gaussian degrades
performance [6], [9].

As discussed above, a sampling scheme and associated
reconstruction algorithm should meet the following require-
ments: (1) as few measurements as possible to minimize
scan time; (2) sampling grids are designed to enable accurate
reconstruction; and (3) an accurate and robust reconstruction
algorithm which takes into account the non-Gaussian distribu-
tion of the noise.

Most diffusion MRI sampling schemes use uniform sam-
pling within each shell to ensure that the reconstruction ac-
curacy is rotationally invariant [10]–[14]. Such schemes have
a structure that only allows for least-squares reconstruction
which requires more than the optimal number of samples, as
the least-squares matrix is ill-conditioned with the optimal
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number of samples, and the accuracy improves with more
measurements [7]. The standard reconstruction algorithm is
regularized least-squares, which implicitly assumes Gaussian
distributed noise. Regularization is used so that the recon-
structed signal does not fit too closely to noisy measurements
by trading off a smooth solution and fitting to the data [15],
[16].

Sampling schemes that use least-squares reconstruction can
be used in the majorize-minimize framework proposed in [9].
The majorize-minimize framework iteratively finds the pe-
nalized maximum likelihood (PML) estimate for Rician and
NCC noise. The algorithm is a two step process where there
is a measurement update to remove the noise bias and a
coefficient update using regularized least-square to the noise
variance. The Robust and Unbiased Model-BAsed spherical
Deconvolution (RUMBA-SD) technique [6], that is based on a
Richardson-Lucy algorithm altered for Rician and NCC likeli-
hood models, has a similar iterative algorithm for finding the
maximum likelihood estimate for NCC noise for recovering
the fiber ODF.

The single-shell sampling scheme proposed in [17], [18]
uses the optimal number of samples. The sampling grid
in this scheme is designed so that it enables an accurate
reconstruction algorithm with better conditioned matrices than
the least-squares matrix. For this reason, this scheme enables
more accurate reconstruction than the state-of-the-art sampling
schemes which use least-squares for synthetic noise-free mea-
surements of the diffusion signal [18]. However the scheme
proposed in [17] does not regularize the reconstruction and
implicitly assumes that the noise has a Gaussian distribution.

This work extends [17] to a multi-shell sampling scheme
and aims to enable robust reconstruction of the diffusion signal
by including regularization in the reconstruction algorithm
and considering the non-Gaussian noise of the data, thereby
meeting all three requirements. Preliminary parts of this work
were reported in a conference paper [19].

This paper is organized as follows. First the notation and
mathematical background is established in Section II. In Sec-
tion III and Section IV we present our proposed sampling and
reconstruction schemes for single and multi-shell acquisitions
respectively. We first present the single and multi-shell sam-
pling grids and reconstruction algorithms before presenting
the regularized and non-Gaussian noise removal extensions to
these reconstruction algorithms. In Section V we quantitatively
evaluate our proposed schemes using synthetic data-sets and
also perform qualitative evaluation using human brain data.
These results are discussed in Section VI.

II. NOTATION AND MATHEMATICAL BACKGROUND

Here we present the notation and mathematical formulation
for the diffusion signal on a single shell (on the unit sphere)
and multiple shells (in 3-dimensional space) in q-space.

A. Diffusion Signal on the Sphere and Spherical Harmonics

Let the diffusion signal at a fixed q-space radius be denoted
by d(θ, φ), where the two angles colatitude θ ∈ [0, π] and

longitude φ ∈ [0, 2π) parametrize a point q(θ, φ) = q/||q||2 =
(sin θ cosφ, sin θ sinφ, cos θ)′ ∈ R3 on the unit sphere S2.

The spherical harmonic (SH) functions form a complete
basis for square integrable functions on the unit sphere L2(S2)
and are defined as [20]

Y m` (θ, φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ, (1)

for integer degree ` ≥ 0 and integer order |m| ≤ `. In (1),
Pm` denotes the associated Legendre function of degree ` and
order m [20]. The SH coefficients of the diffusion signal on
the sphere cm` are given by the SH transform, defined as

cm` ,
∫
S2
d(θ, φ)Y m` (θ, φ) sin θ dθ dφ. (2)

We can then reconstruct the diffusion signal on the sphere
from its SH coefficients using the inverse SH transform, given
by

d(θ, φ) =

∞∑
`=0

∑̀
m=−`

cm` Y
m
` (θ, φ). (3)

The diffusion signal has the property that it is antipodally
symmetric; it has the same value at locations diametrically
opposite each other, with d(θ, φ) = d(π − θ, φ + π). Since
Y m` (θ, φ) = Y m` (π − θ, π + φ) for even ` and Y m` (θ, φ) =
−Y m` (π − θ, π + φ) for odd `, the diffusion signal d(θ, φ)
has only even degree SH coefficients, that is, cm` = 0 for
odd degree ` [2], [21], [22]. In this work, we assume that the
diffusion signal is band-limited at degree L such that cm` = 0
for ` > L. With these considerations, we rewrite the expansion
in (3) as

d(θ, φ) =

L∑
`=0
` even

∑̀
m=−`

cm` Y
m
` (θ, φ), L even. (4)

The number of SH coefficients required to represent the
diffusion signal, given in (4), is NO = (L+ 1)(L+ 2)/2 [16],
[17], which is the optimal number of samples, that is, the
minimum number of samples attainable by any single-shell
sampling scheme that allows for the accurate computation
of the SHT of any band-limited antipodal signal. General
spherical sampling theorems in contrast, require on the order
of 2L2 samples [23].

1) Measurement and Reconstruction: As only a finite num-
ber of measurements of the diffusion signal can be obtained,
the SHT (2) can not be solved analytically. The SH coefficients
cm` are commonly estimated numerically using the least-
squares solution of the inverse SHT (4) [16], [24]–[26]. Let d
denote the vector containing M measurements of the diffusion
signal, with d = [d(θ0, φ0), d(θ1, φ1), . . . , d(θM−1, φM−1)]T ,
where (.)T denotes the transpose operator, containing mea-
surements taken over the sphere. The least-squares estimate is
given by

ĉ = arg min
c
||Ac− d||22 = (AHA)−1AHd, (5)

where (.)H denotes the Hermitian operator, the columns of the
matrix A correspond to sampled versions of the even degree
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` SH basis functions, c = [c00, c
−2
2 , c−12 , c02, c

1
2, c

2
2, . . . , c

L
L]T is

the column vector of length (L+1)(L+2)/2 containing even
` SH coefficients of the diffusion signal and ĉ is the estimate
of c. The least-squares estimate improves with a larger M ,
as the matrix inversion tends to be ill-conditioned with a
small number of samples [7]. Regularization of the solution is
commonly used to improve the condition number of the matrix
and add robustness to noise [16], [24]

Laplace-Beltrami regularization is widely used for recon-
struction of the diffusion signal on the sphere [9], [24]. The
Laplace-Beltrami operator ∆b penalizes non-smooth signals
[24]. In [24], a measure of the deviation of a signal on the
sphere d(θ, φ) from smooth is defined as:

U(d(θ, φ)) =

∫
S2

(
∆bd(θ, φ)

)2
sin θ dθ dφ. (6)

This can be written in the spectral domain by using ∆bY
m
` =

−`(` + 1)Y m` and by expanding d in the SH basis using (2)
[24],

U(d(θ, φ)) =

L∑
`=0
` even

∑̀
m=−`

(cm` )2`2(`+ 1)2 (7)

=

(L+1)(L+2)/2∑
j=1

(c
m(j)
l(j) )2`(j)2(`(j) + 1)2. (8)

U(d(θ, φ)) can also be written in matrix form as:

U(d(θ, φ)) = cHLc, (9)

where L is a diagonal matrix of size (L+ 1)(L+ 2)/2× (L+
1)(L+ 2)/2 with entries `2(`+ 1)2 associated with each SH
degree. The SH coefficients of the diffusion signal can then
be estimated by solving the following least-squares problem
with Laplace-Beltrami regularization:

ĉ = arg min
c
||Ac− d||22 + λcHLc = (AHA + λL)−1AHd,

(10)
where λ is a regularization parameter. Different values of λ are
used to trade-off a smooth solution with fitting to the data [16].

B. Diffusion Signal in 3D and Spherical Polar Fourier Basis

The diffusion signal in R3, d(q), can be expanded in the
spherical polar Fourier (SPF) basis [26], a 3D orthonormal
basis which is separable in the angular and radial directions,
as

d(q) =

N∑
n=0

L∑
`=0
` even

∑̀
m=−`

en`mRn(q)Y m` (θ, φ), L even,

(11)
where q = |q| and the radial functions Rn are Gaussian-
Laguerre polynomials with

Rn(q) =

[
2

ζ1.5
n!

Γ(n+ 1.5)

]0.5
exp

(
−q2

2ζ

)
L1/2
n

(
q2

ζ

)
,

(12)

where ζ denotes the scale factor and L
1/2
n are the n-th

generalized Laguerre polynomials of order half. The expansion
coefficients are given by

en`m = 〈d(q), Rn(q)Y m` (θ, φ)〉

=

∫
q

∫
S2
d(q)Rn(q)Y m` (θ, φ) q2 sin(θ) dθ dφ dq. (13)

The expansion in (11) is band-limited at radial order N and
angular order L.

1) Measurement and Reconstruction: The SPF coeffi-
cients are typically computed numerically using the least-
squares solution to (11) [26]. Let the length M measure-
ment vector d contain measurements of the diffusion sig-
nal taken on a multi-shell sampling scheme with d =
[d(q0), d(q1), . . . , d(qM−1)]T . The least-squares estimate is
given by

ê = arg min
e
||Be− d||22 = (BHB)−1BHd, (14)

where the columns of the matrix B correspond
to sampled versions of the SPF functions, e =
[(e)000, (e)02−2, . . . , (e)NLL]T is the vector containing
even angular degree ` SPF coefficients of the diffusion signal
and ê is the estimate of e. Laplace-Beltrami regularization in
the angular direction combined with a radial regularization
term which penalizes higher radial degrees is commonly
used in multi-shell reconstruction [26], [27]. Using this
regularization, the SPF coefficients of the diffusion signal can
be estimated as follows:

ê = arg min
e
||Be− d||22 + λ`e

HLe + λne
HNe

= (BHB + λ`L + λnN)−1BHd, (15)

where N is a diagonal matrix of size (N + 1)(L + 1)(L +
2)/2 × (N + 1)(L + 1)(L + 2)/2 with entries n2(n + 1)2

associated with each SPF radial degree, L is a matrix of size
(N + 1)(L + 1)(L + 2)/2 × (N + 1)(L + 1)(L + 2)/2 with
entries `2(` + 1)2 associated with each SPF angular degree
along the diagonal and λ` and λn are the angular and radial
regularization parameters respectively.

C. Rician and Non-central Chi Distributed Noise

In diffusion MRI, the diffusion signal typically has a Rician
or non-central Chi distribution (NCC) [9]. The negative log-
likelihood for a NCC distribution given by [6], [9],

Lncc(d|x) =

M∑
p=1

{
[K(x)]2p

2σ2
− ln

(
IC−1

(
[K(x)]p[d]p

σ2

)
[K(x)]C−1p

)}
,

(16)
where σ2 is the variance of the real and imaginary parts of
the Gaussian noise of the complex diffusion MRI signal, C is
the number of coils, K is the operator mapping x to d and
x is the vector of coefficients of the diffusion signal in that
basis. Eq. (16) reduces to the Rician negative log-likelihood
when C = 1.
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In [9], a method is proposed for solving the penalized max-
imum likelihood (PML) estimator for the NCC distribution:

x̂ = arg min
x
Lncc(d|x) +R(x), (17)

where R(x) is some regularization term applied to x, The
algorithm in [9], when applied to estimating the coefficients
of the diffusion signal in some orthonormal basis when the
measurements are corrupted by NCC or Rician noise, consists
of the following steps to find estimate of the coefficients x̂ :

1) Initialize (x̂)0.
2) Until convergence:

(x̂)i+1 = arg min
x:K(x)≥0

1

2σ2
||K(x)− (d̃)i||22 +R(x),

(18)
where

[(d̃)i]p = [d]p
IC

(
[K((x̂)i)]p[d]p

σ2

)
IC−1

(
[K((x̂)i)]p[d]p

σ2

) . (19)

When K((x̂)i+1) ≥ 0 the solution of (18) is simply regularized
least-squares, for example (10) or (15). When non-negativity
does not hold, (18) is solved as a quadratic program. We note
that this algorithm is similar to the multiplicative Richardson-
Lucy algorithm for estimating the fiber orientation distribution
function termed RUMBA-SD in [6].

Eq. (19) requires an estimate of σ2, which is difficult
to obtain accurately from real data. Hence in RUMBA-SD
σ2 is also estimated iteratively. We incorporate this into the
above denoising method, where the following estimate σ̂2 is
obtained by minimizing the negative log-likelihood function,
given in (16), with respect to σ2:

(σ̂2)i =
1

CM

(
dHd +K((x̂)i)

HK((x̂)i)

2

−
M−1∑
p=0

[d]p[K((x̂)i)]p
IC

(
[K((x̂)i)]p[d]p

(σ̂2)i−1

)
IC−1

(
[K((x̂)i)]p[d]p

(σ̂2)i−1

)). (20)

D. Gaussian Mixture Model of the Diffusion Signal

The Gaussian mixture model (GMM) is commonly used to
simulate the diffusion signal in white-matter tissue and can be
used to represent fiber crossings as well as single fibers [26],
[28]. The diffusion weighted signal for a single voxel is given
by

d(q) = d(θ, φ; b) =

F∑
k=1

fke
−bu(θ,φ)TDku(θ,φ), (21)

where F is the number of fiber populations, fk are the
corresponding fractions such that

∑F
k=1 fk = 1, Dk encodes

the diffusivity properties for the kth fiber in the voxel and
the diffusion weighting is given by the b-value, where b
is proportional to q2. Each fiber’s tensor is computed from
a rotated version of a tensor, D = diag(λ1, λ2, λ3), with
Dk = RT

kDRk, where λ1 is the diffusivity along the main
axis of a fiber while λ2 and λ3 are the diffusivities in the plane
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Fig. 1: The SH band-limit L required to accurately represent
the diffusion signal at different b-values. Results are reported
for three levels of anisotropy of the signal, i.e. fractional
anisotropies (FA) 0.4, 0.6 and 0.8.

perpendicular to it, and Rk is the rotation matrix that rotates
the kth fiber to the direction of the kth fiber population.

In the numerical experiments where the effect of noise is
considered, we add Rician noise to the diffusion weighted
signal as [8]

d(θ, φ; b)noisy =

√(
d(θ, φ; b) + η1

)2
+ η22 , (22)

with η1, η2 ∼ N (0, σ2) and σ = d0/SNR. The signal-to-noise
ratio (SNR) controls the level of noise on the baseline image
with b = 0, d0 [28].

E. Spherical Harmonic Band-limit Selection for each Shell

The SH band-limit L required to accurately represent the
diffusion signal depends on the b-value [21], [25], [29]. In [29],
a study is carried out, using the GMM of the diffusion signal
presented in Section II-D, to determine what L is required for
different b-values.

The diffusivities λ1, λ2 and λ3 were varied in this experi-
ment to produce different fractional anisotropies (FA), where
FA ∈ [0, 1] is a widely-used measure of the anisotropy of
diffusion, for various numbers of fiber populations and, various
volume fractions and crossing angles. The band-limit is found
to increase with the FA and be independent of the other
factors due to the GMM being the sum of the signals from
the different fibre populations. We repeat this experiment and
confirm the results shown in Fig. 1 for FA = 0.4, 0.6 and 0.8.
Fig. 1 is used for determining what L to use in each shell of
the proposed single and multi-shell schemes presented later in
the paper.

III. PROPOSED SINGLE-SHELL SAMPLING SCHEME

The proposed single-shell sampling grid and SHT were
presented in [17] and are summarized here so that the paper
is self-contained. The sampling grid structure enables the
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(a) (b)
Fig. 2: Proposed single-shell sampling grid for L = 6 (a)
North pole view and (b) side view.

development of a novel SHT which, unlike least-squares,
has well-conditioned matrices when the optimal number of
samples is used. We also extend the sampling scheme so that
it allows for more robust reconstruction by using regularization
and considering the non-Gaussian nature of the noise.

A. Sampling Grid and Transform
In [17], an iso-latitude sampling scheme is presented with

(L+ 2)/2 iso-latitude rings, located at

θ , [θ0, θ1, . . . , θL/2]T , L even, (23)

and sample equally spaced along longitude, with k-th sample
location, denoted by φjk, in the ring placed at θj given by

φjk ,
2kπ

4j + 1
, j ∈ [0, L/2], k ∈ [0, 4j]. (24)

The SH band-limit L is chosen, depending on the b-value of
the shell, using Fig. 1. Fig. 2 shows the proposed single-shell
sampling scheme for band-limit L = 6 with measurements
taken on both hemispheres; antipodal points are shown lighter
in colour. Measurements can either be taken at either a point
or its antipodal point, thus measurements can be taken on
one hemisphere or spread between both hemispheres. It can
be seen in Fig. 2 that the proposed sampling scheme is not
uniform by design but neither does it have dense sampling on
any part of the sphere.

Remark 1 (Dimensionality of proposed single-shell scheme):
The total number of samples in the proposed scheme is

NO =

L/2∑
j=0

(4j + 1) =
(L+ 1)(L+ 2)

2
. (25)

Hence it attains the optimal number of samples in the SH
basis.

1) Novel Spherical Harmonic Transform: The sampling
grid, defined by the vectors θ and φjk, given in (23) and (24)
enables the following novel SHT algorithm. That is, the isolat-
itude rings of samples enables the seperation of the transform
in θ and φ, as well as the SH coefficients to be calculated one
order m at a time. Let θm , [θ|m/2|, θ|m/2|+1, . . . , θL/2]T ⊂
θ, |m| ≤ L, m even and θm , θm+1, m odd. The vector
gm ≡ Gm(θm), with

Gm(θj) ,
∫ 2π

0

d(θj , φ)e−imφdφ = 2π

L∑
`=|m|
` even

cm` P̃
m
` (θj),

(26)

is defined for |m| ≤ L and θj ∈ θ, where P̃m` (θj) ,
Y m` (θj , 0). The SH coefficients of order m can be recovered
from (26) by setting up a system of linear equations of size
d(L+ 1− |m|)/2e, given by

gm = Pmcm, |m| ≤ L, (27)

where

cm =

{[
cm|m|, c

m
|m|+2, . . . , c

m
L

]T
, m even,[

cm|m|+1, c
m
|m|+3, . . . , c

m
L

]T
, m odd,

(28)

and Pm is defined as

Pm , 2π


P̃m
|m|(θs) P̃m

|m|+2(θs) · · · P̃m
L (θs)

P̃m
|m|(θs+1) P̃m

|m|+2(θs+1) · · · P̃m
L (θs+1)

...
...

. . .
...

P̃m
|m|(θL

2
) P̃m

|m|+2(θL
2
) · · · P̃m

L (θL
2
)

 ,

for even m and

Pm , 2π


P̃m
|m|+1(θs) P̃m

|m|+3(θs) · · · P̃m
L (θs)

P̃m
|m|+1(θs+1)P̃

m
|m|+3(θs+1)· · · P̃m

L (θs+1)
...

...
. . .

...
P̃m
|m|+1(θL

2
) P̃m

|m|+3(θL
2
) · · · P̃m

L (θL
2
)

 ,

for odd m. Here s = d|m|/2e, where d·e denotes the integer
ceiling function.

The integral in (26) can be accurately evaluated as a
summation provided there are at least 2m+ 1 samples along
φ [7]. In order to accurately compute the SHT, we choose the
sampling points along co-latitude such that the matrix Pm is
well-conditioned for each |m| ≤ L [7], [22]. The Pm matrices
are of size d(L+ 1− |m|)/2e × d(L+ 1− |m|)/2e, with the
largest P0 = (L/2 + 1)2, compared with the least-squares
matrix A in (5) and (10) which is size L(L+1)/2×L(L+1)/2.
The novel SHT allows for accurate reconstruction, with the
reconstruction error on the order of machine precision for
antipodally symmetric noise-free signals band-limited in the
SH basis. In reality the diffusion signal is corrupted by noise
and it is necessary to regularize the solution.

B. Regularization

Here we develop regularization for the sampling scheme
presented above. Equation (7) can be rewritten with the order
of summation changed to be an outer summation over order
m and an inner summation over degree ` as,

U(d(θ, φ)) =

L∑
m=−L

L∑
`=0
` even

(cm` )2`2(`+ 1)2. (29)

We define U(d(θ, φ),m) as the per order measure of deviation
of a signal on the sphere from smooth with,

U(d(θ, φ),m) =

L∑
`=0
` even

(cm` )2`2(`+ 1)2 = cmLmcm, (30)
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where Lm = diag
(
`2(`+ 1)2, ` = m : L, ` even

)
. Using the

novel SHT presented in Section III-A, the regularized least-
squares method of obtaining the SH coefficients (10) can be
solved equivalently for each m as:

ĉm = arg min
cm

||Pmcm − gm||22 + λcHmLmcm

= (PHmPm + λLm)−1PHmgm, (31)

resulting in a Laplace-Beltrami regularized novel SHT.

C. Non-Gaussian Noise Removal

We further extend the proposed sampling scheme presented
above to include non-Gaussian noise removal by incorporating
it into the majorize-minimize framework for denoising diffu-
sion MRI with NCC distributed or Rician noise [9] summa-
rized in Section II-C. The steps for the resulting reconstruction
algorithm are as follows:

1) Initialize (ĉ)0 using the regularized novel SHT (31).
2) Until convergence, calculate the SH coefficients of the

diffusion signal estimate ĉ for each order m:

(ĉm)i+1 = arg min
cm

1

2σ2
||Pmcm − (g̃m)i||22

+ λcHmLmcm,

= (PHmPm + λLm)−1PHm(g̃m)i. (32)

where (g̃m)i is calculated using (26) with d replaced
by (d̃)i and (d̃)i is calculated using (19). In (19) an
updated estimate of σ2, is used calculated using (20).

IV. PROPOSED MULTI-SHELL SAMPLING SCHEME

We here propose a novel multi-shell sampling scheme which
is a generalization of the single-shell scheme presented in
Section III.

A. Sampling Scheme and Novel SPF Transform

Due to the separability of the SPF basis, the 3D transform
for calculating the diffusion signal coefficients (13) can be
separated into transforms in the radial and angular dimensions.
Rearranging (13),

en`m =

∫
q

Rn(q) q2
∫
S2
d(q)Y m` (θ, φ) sin(θ) dθ dφ dq, (33)

where the inner integral is the SHT (2). We use the novel SHT
presented in Section III-A1 to perform the angular transform.

For the radial transformation, Gauss-Laguerre quadrature
can be used, where N + 1 sampling nodes is sufficient for
exact quadrature, enabling (33) to be written as,

en`m =

N∑
s=0

wsRn(qs)

∫
S2
d(qs)Y m` (θ, φ) sin(θ) dθ dφ,

(34)
where the q2 in (33) is incorporated into the weights ws and s
is the shell index. The N+1 shells of the proposed multi-shell
sampling scheme are placed at qs =

√
ζxs where xs are the

(a) (b)
Fig. 3: Proposed multi-shell sampling scheme for N = 3 and
L(s) = [2, 4, 6, 8] (a) North pole view and (b) side view.

roots of the (N +1)-th generalised Laguerre function of order
a half. We determine the corresponding weights to be

ws =
0.5ζ0.5Γ(N + 2.5)xse

xs

(N + 1)!(N + 2)2[L0.5
N+2(xs)]2

. (35)

We set the scaling factor ζ so that shells are located at b-values
within an interval of interest. For sampling within each shell,
we use the proposed single-shell sampling scheme presented
in Section III-A. The SH band-limit, and therefore the number
of samples in each shell, is determined using Fig. 1.

Remark 2 (Dimensionality of proposed multi-shell scheme):
The total number of samples in the proposed scheme is

N∑
s=0

(L(s) + 1)(L(s) + 2)

2
, (36)

,where L(s) is a vector of length N + 1 containing the SH
band-limit for each shell, that is the multi-shell sampling
scheme obtains the optimal number of samples NO in each
shell. This is enabled through the novel SPF transform which
uses the separability of the SPF basis to perform the angular
and radial transforms separately. This means that a different
SH band-limit can be used in each shell. To our knowledge no
other reconstruction algorithm in diffusion MRI enables this;
standard least-squares calculates all the SPF coefficients in one
step using (15) and so must use a single spherical harmonic
band-limit for all shells.
Fig. 3 shows the proposed sampling scheme with N = 3 and
L(s) = [2, 4, 6, 8] projected onto a single sphere, samples on
the inner most to outer most shell are shown in black, green,
red and blue for each shell respectively. Locations where
antipodal symmetry is used to infer the value of the signal
are lighter in color.

B. Regularization

Here we increase the robustness of the novel SPF trans-
form presented above by regularizing the solution. This is
done by extending the single-shell regularization presented in
Section III-B to multi-shell reconstruction by adding a radial
regularization term which penalizes higher radial degrees as
is done in the standard regularized least-squares method (15).

The regularized penalized least-squares method of comput-
ing the SPF coefficients (15) can be solved equivalently for
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(a) SNR=10, crossing angle = 30◦
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(b) SNR=20, crossing angle = 30◦
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(c) SNR=30, crossing angle = 30◦
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(d) SNR=10, crossing angle = 90◦
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(e) SNR=20, crossing angle = 90◦
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(f) SNR=30, crossing angle = 90◦

Fig. 4: Normalized root mean-squared error of the SH coefficients, NRMSEc, obtained using LS-Regularized, LS-Regularized-
Denoised, nSHt-Regularized and nSHt-Regularized-Denoised for Gaussian mixture model (GMM) simulations with two fiber
compartments with crossing angles 30◦ (first row) and 90◦ (second row) with SNR 10, 20, and 30.

each radial degree n and for each shell by calculating the SH
coefficients of order m as:

(ĉm)ns = arg min
(cm)ns

||Pm(cm)ns − gm||22

+ λ`(cm)ns
H
Lm(cm)ns + λn(cm)HnsNn(cm)ns

= (PHmPm + λ`Lm + λnNn)−1PHmgm, (37)

where Nn has entries n2(n+1)2 along the diagonal depending
on what iteration n of the radial order. Let (ĉm` )ns denote the
SH coefficient calculated for shell s and radial order n. The
SPF transform in (34) can then be computed with radial and
angular regularization as

ên`m =

N∑
s=0

wsRn(qs)(ĉ
m
` )ns. (38)

Remark 3 (Conditioning of Matrix Inversion): The Pm
matrices are designed to be well-conditioned as discussed
in Section III-A1. For instance, for the multi-shell sampling
scheme with parameters N and L(s) as shown in Fig. 3,
the maximum condition number of the Pm matrices is 17,
whereas the least-squares matrix B in (14) is ill-conditioned
when the optimal number of samples is used in each shell,
with a condition number of 1.5× 1018 without regularization.
Though regularization improves this, the condition number is

at least on the order of 1013 for all values of the regularization
parameters λ` and λn.

C. Non-Gaussian Noise Removal

We further improve the robustness of the novel SPF trans-
form with regularization by including non-Gaussian noise
removal by extending the proposed single-shell denoising
algorithm presented in Section III-C to multi-shell as follows:

1) Initialize (ê)0 using the regularized novel SPF transform
(38).

2) Until converge of the SPF coefficient estimates ê, for
each shell s and radial degree n, for each order m:

((ĉm)ns)i+1 = arg min
(cm)ns

1

2σ2
||Pm(cm)ns − (g̃m)i||22

+ λ`(cm)HnsLm(cm)ns + λn(cm)HnsNn(cm)ns

= (PHmPm + λ`Lm + λnNn)−1PHm(g̃m)i, (39)

where (g̃m)i is calculated using (26) with d replaced by
(d̃)i and (d̃)i is calculated using (19). In (19) an updated
estimate of σ2, is used calculated using (20). The
SPF coefficients (ê)i+1 are obtained from ((ĉm)ns)i+1

using (38).
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V. VALIDATION

We here validate the proposed single and multi-shell sam-
pling schemes presented in Section III and Section IV respec-
tively using synthetic and real diffusion MRI data-sets. This is
done by comparing the proposed schemes to the standard reg-
ularized least-squares method of reconstruction given by (10)
and (15) which we denote LS-Reg and least-squares used
in the PML estimation method presented in Section II-C to
account for non-Gaussian noise, denoted by LS-Reg-Denoised.
The comparison is done using the optimal number of samples,
using the single-shell and multi-shell sampling grids presented
in Section III-A and Section IV-A respectively. Thus, we are
comparing both how using the novel SH transform, for the
single-shell scheme, and the novel SPF transform, for the
multi-shell scheme, rather than using least-squares transforms
and how taking into account the non-Gaussian noise changes
the reconstruction accuracy.

A. Synthetic Data

We quantitatively validate the proposed single and multi-
shell sampling schemes using synthetic data-sets using the
GMM, presented in Section II-D, with Rician noise added.

The first synthetic data-set is generated to test the effect of
crossing angle on reconstruction accuracy. The GMM with two
fibers of equal volume fractions (f1 = f2 = 0.5) and diffusiv-
ities λ1 = 1.7 × 10−3mm2/s, λ2 = λ3 = 0.3 × 10−3mm2/s
is used to simulate the diffusion signal in a voxel. The results
are averaged over 100 different noise realizations for SNR
= 10, 20 and 30, corresponding to a low, moderate and high
SNR, and the angle between the fibers is varied from 0◦ to
90◦.

Another synthetic data-set is generated to determine how FA
changes reconstruction accuracy. Using a single fiber volume
fractions (f1 = 1), the FA is varied from 0.5 to 1 and the
results are averaged over 100 different noise realizations for
SNR = 10, 20 and 30.

1) Single-shell: Here we evaluate the proposed single-shell
scheme with novel regularized SH transform presented in Sec-
tion III-B, denoted nSHt-Reg, and also the proposed scheme
additionally modelling the non-Gaussian noise presented in
Section III-C, denoted nSHt-Reg-Denoised. As evaluation met-
rics, we use the normalized root mean-squared error (NRMSE)
of the estimated SH coefficients given by,

NRMSEc =
||ĉ− c||2
||c||2

, (40)

where the ground truth SH coefficients c are calculated from
the GMM without noise added, and the NRMSE reconstruction
error at the diffusion signal sample locations given by,

NRMSEd =
||d̂− d||2
||d||2

. (41)

Here NRMSEc and NRMSEd are calculated for a b-value
of 4000s/mm

2. Using Fig. 1 it can be determined that the
maximum SH degree ` needed at this b-value is L = 8.

NRMSEc as a function of regularization parameter λ for
the first synthetic data-set where the crossing angle is changed

is shown in Fig. 4 and for the second data-set where the FA
is changed is shown in Fig. 5. Due to space constraints, only
results for crossing-angles of 30◦ and 90◦, and for FAs of 0.6
and 0.8 are shown here. Results for the other crossing angles
and FAs are contained in the supplementary material. As
NRMSEc and NRMSEd have the same trend, only NRMSEc

is included in the paper, the figures for NRMSEd are also
contained in the supplementary material.

2) Multi-shell: Here we evaluate the proposed multi-shell
scheme with regularized novel SPF transform presented in
Section IV-B, denoted nSPFt-Reg, and also the scheme addi-
tionally modelling the non-Gaussian noise presented in Sec-
tion IV-C, denoted nSPFt-Reg-Denoised.

We sample the GMM of the diffusion signal using the multi-
shell sampling grid presented in Section IV-A. Here, we use a
maximum b-value of 4000 s/mm

2 and N = 3 (4 shells), as
it is found in [26] that this number of shells is sufficient for
convergence to the ground truth when the signal is Gaussian or
bi-Gaussian, resulting in shells at b = 206, 847, 2018 and 4000
s/mm

2. It should be noted that the scheme can be designed
for any maximum b-value and any number of shells. The SH
band-limit is determined using Fig. 1 to be L(s) = [2, 4, 6, 8]
for the inner most (smaller b-value) to outer most shell, giving
a total of 94 samples, calculated using (36).

As an evaluation metric, we use the NRMSE of the esti-
mated SPF coefficients,

NRMSEe =
||ê− e||2
||e||2

, (42)

where the ground truth SPF coefficients e are calculated from
the GMM without noise added, and the NRMSE reconstruction
error at the diffusion signal sample locations is given by (41).

NRMSEe for the synthetic data-set where the crossing
angle was changed is shown in Fig. 6(a)-(c) and in Fig. 6(d)-(f)
for the data-set where the FA was changed. As NRMSEe and
NRMSEd have the same trend, only NRMSEe is included
in the paper, the figures for NRMSEd are contained in
the supplementary material. The regularization parameters λ`
and λn were chosen individually for each of the 4 methods
compared in Fig. 6 to minimize the NRMSE.

B. Real Data Validation

Single-shell data has been acquired from a young healthy
adult volunteer using a Siemens Prisma working at 3T with
a head coil with 64 channels with adaptive combine method,
resulting in the noise having a Rician distribution [9], [30]. 45
measurements were collected using the single-shell sampling
grid with L = 8 described in Section III-A with a b-value of
4000s/mm

2 and a spatial resolution of 1.8× 1.8× 1.8 mm.
The proposed sampling schemes reconstruct the diffusion

signal, which can then be used to extract its features such
as the ODF, which we do here. The SH coefficients of
the diffusion signal are computed in every voxel using the
single-shell sampling scheme with regularized SH transform,
nSHt-Regularized. The SH coefficients of the ODF are then
calculated from the coefficients of the diffusion signal [5].
The reconstructed ODFs are shown in Fig. 7(b) for a coro-
nal region of interest on the left hemisphere of the brain,
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(a) SNR=10, fractional anisotropy = 0.6
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(b) SNR=20, fractional anisotropy = 0.6
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(c) SNR=30, fractional anisotropy = 0.6
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(d) SNR=10, fractional anisotropy = 0.8
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(e) SNR=20, fractional anisotropy = 0.8
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(f) SNR=30, fractional anisotropy = 0.8

Fig. 5: Normalized root mean-squared error of the SH coefficients, NRMSEc, obtained using LS-Regularized, LS-Regularized-
Denoised, nSHt-Regularized and nSHt-Regularized-Denoised for GMM simulations with a single fiber compartment with
fractional anisotropies (FA) 0.6 (first row) and 0.8 (second row) with SNR 10, 20, and 30.

shown by the blue box in Fig. 7(a). The ODFs are colour
coded to show the diffusion directions, with red, blue and
green representing diffusion from left to right (along the x-
axis), anterior-posterior (y-axis) and inferior-superior (z-axis),
respectively. For comparison, the ODFs for the same region
obtained using standard regularized least-squares reconstruc-
tion method, LS-Regularized, to compute the SH coefficients
of the diffusion signal are shown in Fig. 8. In Fig. 8(a) the
optimal regularization parameter is used for least-squares and
in Fig. 8(b) the same regularization parameter is used as for
the proposed method. The results obtained using denoising
are indistinguishable from just regularizing the solution, due
to the relatively high SNR, and are hence not shown. The
regularization parameter λ is set for each voxel based on what
minimizes the NRMSE for the GMM for different FAs, where
the FA is approximated by the generalized FA of a voxel.

VI. DISCUSSION

From the quantitative results shown in Fig. 4, Fig. 5 and
Fig. 6 and the qualitative results shown in Fig. 7 and Fig. 8, it
can be seen that the proposed single and multi-shell sampling
schemes perform better than the standard regularized least-
squares method for reconstructing the diffusion signal when
the optimal number of samples is used.

For single-shell reconstruction, it can be seen in Fig. 4
and Fig. 5 that for all FAs, crossing-angles and SNRs, the
proposed single-shell scheme with just regularization, nSHt-
Regularized, achieves the minimum NRMSEc (and also
NRMSEd) for a regularization parameter λ that is an or-
der of magnitude or two smaller of that required by the
least-squares method of reconstruction, with just regular-
ization, LS-Regularized. Likewise, the proposed single-shell
scheme with regularization and denoising, nSHt-Regularized-
Denoised, achieves the minimum NRMSEc for a larger reg-
ularization parameter λ than required by the least-squares
method of reconstruction, with regularization and denoising
LS-Regularized-Denoised. Thus, the proposed scheme bet-
ter preserves features of the data, whereas the least-squares
method of reconstruction over-smooths to achieve the same
reconstruction accuracy. The reason for this is, as stated in
Remark 3, that the Pm matrices have been designed to be
well-conditioned compared with the larger matrix B that is ill-
conditioned with the optimal number of samples, this results
in a smaller regularization parameter required in (37) than (15)
for accurate reconstruction.

The effects of this can be seen in the real data, where the
ODFs in Fig. 7(a) are sharper than Fig. 8(a) and the crossing
fibres are more easily detected. When the same λ is used in
the standard regularized least-squares reconstruction method as
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(c) SNR=30
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Fig. 6: Normalized root mean-squared error of the SPF coefficients, NRMSEe, obtained using LS-Regularized, LS-Regularized-
Denoised, nSPFt-Regularized and nSPFt-Regularized-Denoised. In the first row NRMSEe is shown for GMM simulations with
two fiber compartments with crossing angles 0◦ to 90◦ with SNR 10 (a), 20 (b), and 30 (c). In the second row NRMSEe is
also shown for GMM with a single fiber compartment with FA of 0.5 to 1 with SNR 10 (d), 20 (e), and 30 (f).

for the proposed method, the ODFs reconstructed using least-
squares in Fig. 8(b) are noisy. This is particularly obvious in
the voxels containing grey-matter which should be smooth. For
example, in the four voxels enclosed by the yellow rectangle in
Fig. 7(b) and Fig. 8, for the ODFs obtained using the proposed
method, in Fig. 7(b), fibres can be clearly distinguished from
peaks of the ODF. Whereas, for the ODFs obtained using least-
squares, in Fig. 8(a), the over-smoothing of the ODFs means
that some fibres cannot be distinguished and in Fig. 8(b) there
are spurious peaks to the ODFs.

For multi-shell reconstruction, it can be seen in Fig. 6
that for all SNRs, fiber crossing angles and FAs the pro-
posed multi-shell scheme (both with just regularization,
nSPFt-Regularized, and regularization and denoising, nSPFt-
Regularized-Denoised) has a smaller NRMSEe (and also
NRMSEd) than the least-squares method of reconstruction
(both with just regularization, LS-Regularized, and regulariza-
tion and denoising, LS-Regularized-Denoised). For the least-
squares method, NRMSEe does not change much with SNR
as the error is dominated by the ill-conditioned least-squares
matrix inversion.

The proposed multi-shell scheme has a sampling structure
which enables an accurate SPF transform with the optimal
number of samples, unlike least-squares. The novel SPF
transform is also more flexible than least-squares in that it
is able to have different SH band-limits for each shell. A
benefit of least-squares is that it can be used with any sampling

scheme, whereas the proposed scheme requires knowledge of
the diffusion signal at specific points in q-space. However, the
use of interpolation to approximate the value of the diffusion
signal at these locations if measurements are taken on a
different sampling grid could be explored as future work.

For both single and multi-shell simulations in Fig. 4, Fig. 5
and Fig. 6, it is apparent that taking into account the non-
Gaussian nature of the noise is more beneficial at low SNRs
than at higher SNRs, with a bigger difference between the
methods which solve the PML compared to just regularizing
the solution for the both the proposed and least-squares
methods. This is because the noise is approximately Gaussian
at higher SNRs. Hence, why the ODFs generated from the
real-data were indistinguishable when reconstruction was done
using just regularization or when both regularization and
denoising were used. The non-Gaussian noise modelling of the
proposed scheme is particularly useful for low SNR data where
Gaussian assumption is not valid, this occurs for example for
high spatial resolution data. For moderate to high SNR data the
regularized version of the proposed reconstruction algorithm
is sufficient.

The proposed single and multi-shell sampling schemes
allow accurate reconstruction of the diffusion signal with a re-
duced number of measurements and thus a shorter acquisition
time. Hence, this new approach can be useful for the clinical
diffusion MRI. The reconstructed diffusion signal can then be
used with any of the many methods that compute features of
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(a) (b)

Fig. 7: (a) The FA of a coronal slice with the blue box surrounding the a region of interest in the left hemisphere of the brain.
(b) Visualization of the ODFs estimated using the proposed method nSHt-Regularized in the region of interest.

the diffusion signal, such as computing the ODF.

VII. CONCLUSIONS

We have proposed novel single and multi-shell sampling
and reconstruction schemes for diffusion MRI that are optimal
in terms of the number of samples while enabling accurate
reconstruction of the diffusion signal. Robust and accurate
reconstruction was achieved by regularizing the solution and
accounting for the non-Gaussian nature of the noise by min-
imizing the penalized maximum likelihood (PML) for Rician
or non-central Chi noise.

We evaluated the proposed single and multi-shell sampling
schemes using synthetic and real data-sets by comparing their
performance with that of the standard regularized least-squares
method of reconstruction and regularized least-squares with
PML to remove non-Gaussian noise. Both the single and multi-
shell schemes have reconstruction algorithms that use smaller
subsystems of linear equations to achieve better conditioning
of the matrices used in the reconstruction algorithm compared
to the standard least-squares method of reconstruction. In the
single-shell case this enables accurate reconstruction with less
regularization than the least-squares method of reconstruction.
When the single-shell scheme was used on human brain data,
this resulted in the orientation distribution functions (ODF)

in the region of interest in the brain more clearly showing
crossing fibers and having sharper peaks in single fiber areas
compared to the least-squares method of reconstruction where
the ODFs were over-smoothed.

In the case of the multi-shell sampling scheme the novel
reconstruction algorithm, allowed by the separability of the
spherical polar Fourier basis, enables different spherical har-
monic band-limits per shell, depending on the b-value of the
shell, enabling accurate reconstruction with an optimal number
of samples to be achieved. This is not possible with least-
squares, where the least-squares matrix becomes very poorly
conditioned with this number of samples, resulting in a much
higher reconstruction error than the proposed method.

Considering the non-Gaussian nature of the noise also
improves reconstruction accuracy at low SNR and is expected
to be useful for reconstructing diffusion MRI data where this
occurs, such as for high spatial resolution data. The proposed
single and multi-shell sampling schemes are expected to be
useful in clinical diffusion MRI where acquisition times need
to be as short as possible.
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(a)

(b)

Fig. 8: Visualization of the ODFs estimated using standard regularized least-squares reconstruction LS-Regularized in a region
of interest in the left hemisphere of the brain shown in Fig. 7(a). In (a) optimal regularization for least-squares is used and in
(b) the same regularization is used as for Fig. 7(b).
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